CHAPTER 6

Adaptive LQ Control

In this chapter we will discuss the design of controllers using the minimization of the quadratic criterion where the linear model of the system is known (the LQ method).

In theory, the field of LQ control has seen detailed development. This chapter, however, concentrates mainly on the results of theoretical work and how they affect control behaviour in practice. This will be done by testing the results in simulation using the well-known MATLAB - SIMULINK environment, which allows the user to experiment interactively. For the benefit of those who do not have access to MATLAB, the SIMULINK illustrations must serve as diagrams and the simulation results taken on trust.
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The chapter is composed of several sections which may be of interest to a variety of readers. The first two sections, 6.1 and 6.2, provide a survey of the standard results of LQ control. There is a selection of examples to demonstrate the typical behaviour of LQ controlled loops and the effect of the basic „tuning“ parameters representing the penalty of the control output in the quadratic criterion. This is used to achieve the desired control behaviour. In these examples we studied the match between the model and the system. Section 6.3 is devoted to the problems involved in using LQ designs in adaptive controllers. Section 6.4 gives an in-depth description of the characteristics of the LQ approach from various aspects and contains information that is readily available from textbooks, together with results from more hidden sources and from the work of the authors themselves. These are given here because our understanding of the individual aspects and properties of LQ control forms the basis for establishing a methodology to tune LQ controllers. This methodology is dealt with in section 6.5. Section 6.6 briefly discusses extending the application of these methods to multidimensional  control loops. Section 6.7 deals with the algorithmic aspects of LQ synthesis and details the square root method of minimization of the quadratic criteria on which all the versions of LQ controller used are based. There is also a reference to the related m-files for the MATLAB environment. Section 6.8 describes the procedures used here plus the MATLAB and SIMULINK 

Fig. 6.1  Diagram of a control loop

programs which together create the toolbox.

6.1 The Principles of Controller Design Using the Minimization of the Quadratic Criterion

We will take the basic control scheme pictured in fig. 6.1 as our starting point. This is a simplified and idealized version of reality. System S is the process under consideration. This could, for example, be an electric oven. The temperature inside the oven at a given spot is the variable we wish to control, i.e. the output. The temperature depends on the energy supplied, which we usually vary by altering the electrical current, and on the temperature in the  surrounding area. The electrical current, therefore, is simultaneously system input variable u(t) and the controller output. The effects of the other variables are represented by disturbance n(t). In this example, disturbance is both the change in the voltage supply, which also influences power input, and changes in the surrounding temperature. Sometimes the effect of disturbance can be specified more precisely. The  influence of the voltage supply can be defined with relative precision and, if we know how  it behaves, it can be effectively compensated. We call this type of disturbance „measurable“ and it is represented by signal v(t) in the diagram. Output y(t), which we measure for use in the control process, does not always correspond to the true physical variable. This difference  is represented by signal q(t). We will not take this signal into account but assume that we have a sufficiently precise measuring system. In the section dealing with the properties of LQ controllers we will show how its effects might be felt. The remaining variable w(t) in the diagram represents the setpoint.

In controller design it is necessary to know (select) the criterion and process of the model and to use a suitable optimization procedure. We will concern ourselves with the discrete approach where  the signal is known  at the instants of sampling  only. The choice of sampling period is, therefore, an important factor in the design of an LQ controller for a continuous process. We will discuss the influence of the sampling period in section 6.4, but for now we will assume that it was chosen in such a way as to provide a discrete model which describes the behaviour of the system well.

6.1.1 The Criterion

The aim of control is to generate the kind of input signal u(k) which results in a system output close to the setpoint, i.e. so that


[w(k) - y(k)] ( min

for all the k values under observation. This means that the criterion used to evaluate the quality of control must be a non-negative function of all variables (w(k) - y(k)) at those values of k we wish to use in the design. These conditions are satisfied by the quadratic criterion
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(6.1)

When evaluating the quality of control achieved we must also consider the cost of a larger input signal to improve quality. This is reflected in the criterion by a further term
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(6.2)

where 

, 

 and 

  are the basic criterion parameters. We try to choose these in such a way as to make the criterion represent the user’s definition of optimal control behaviour.

Later we will discuss a further extension of the quadratic criterion to include a reference signal for the controller output. This criterion will have the form
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(6.3)

This makes the control output dependent on yet another purposely chosen signal, and we will show how this can be used to advantage in maintaining the controller’s useful properties.

6.1.2 The Model

The principle of LQ design is that we start from current time k0, and try to generate values  of 

, 

,...,  and 
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 to keep the future error to a minimum. In order to be able to put the LQ method into practice, models must be available which allow us to determine the future values of all signals (variables) occurring in the criterion. In the simplest case this is a system model used to calculate the future values of output 

, and a model which determines the behaviour of the setpoint in the future. As far as the setpoint is concerned, it may be that we know its future numeric value rather than having to refer to the model.
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Fig. 6.2   Diagram of a controller

One linear model which satisfies the minimization of the quadratic criterion is the linear regression model given in chapter three. Because the model is a good one from the point of view of parameter identification and can be used in synthesis, it is the most frequently used in adaptive controllers.

We will consider a regression model with measurable external disturbance (transformed into the system output), i.e. regression model
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(6.4)

Note 1: we must bear in mind that a single difference equation (regression model) can represent several transfer functions. This is true in this example where model (6.4) represents the transfer  functions shown in Fig. 3.1.

Note 2: it is a matter for frequent discussion as to whether b0 should be included in model (6.4) or not. The important thing is that, where the system has no time delay, the first product bi u(k - i)  of the second sum in (6.4) should represent effect u(k), which  immediately precedes  y(k). It makes no difference whether this product is i = 0 or i = 1. In the first instance the preceding input will be marked  u(k), and in the second u(k – 1) In both cases the sample of the true input signal will be the same. The boundaries of the sum will be either 
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. An error will occur if only b0 = 0 is taken into consideration, but the upper boundary remains unchanged. When this occasionally happens, the modification represents rather a change in the structure of the model than  the time delay.

Similarly the structure of a controller is represented by more transfer  functions. Minimization of the criterion leads to a difference equation for optimal u(k) in the form (6.5)
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(6.5)

This corresponds to the diagram given in fig. 6.2

We can see that the control law obtained simultaneously represents the feedback from the system output and the feedforward from the individually measurable variables. It follows that the controller here does not operate with a control error but independently with each individual signal. If we wish to compare the properties of the loop with a situation where control error is first introduced as controller input, we must transform the loop into the structure given in fig. 6.3.
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Fig. 6.3  Diagram of the error approach

The structure of the controller is closely bound to that of the model. We should employ all the transfer functions produced by the model in the controller. If, for example, we only use the feedback part we can expect a significant deterioration in the behaviour.

6.1.3 The Optimization Approach

The standard method of minimizing the quadratic criterion for LQ control is derived from the state description of the system. The state space formulation permits the elegant use of dynamic programming so that the minimizing process is performed from the end of the interval back to the beginning. In a linear state space  model, step-by-step minimization results in an evolution of a matrix of the quadratic form. This can be expressed in the form of an equation known as the (discrete) Riccati equation.

A survey of standard results

In most texts linear quadratic control is presented in the following form.

The system is defined by discrete state space model
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(6.6)

where vectors  x(k), y(k), u(k)   represent state, output and input vectors, and have dimensions n, m and r. Matrices F, G, C and D are the state, input, output and feedforward matrices, and their dimensions correspond to those of the relevant vector.

The aim is to find the sequence of control laws Li which  minimize criterion
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(6.7)

i.e. optimize the transfer function of given state x(0) to zero state. Qx and  Qu are penalty matrices for state and input, and we assume that Qx ( 0, and Qu ( 0 is valid. The discrete Riccati equation  which represents the minimization  takes the form
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(6.8)

where index i should be taken to be iteration 
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. The sequence of the matrices defines the sequence of control laws
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(6.9)

These control laws are applied in reverse order of iteration, i.e.
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and optimal control is calculated from relation
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The whole value of the criterion at the interval under consideration [1, N] is given by the expression
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Using relation (6.9), the Riccati equation (6.8) can alternatively be written as
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(6.10)
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(6.11)

The value of 

 has a special significance in control theory. In fact when we talk about the LQ problem we are almost always referring to this particular situation. Its importance lies in that the minimization of this criterion with an infinite horizon results in stationary control law 

, which is, therefore, time invariable. It has a stabilizing effect under standard conditions. These conditions affect the controllability (ability to stabilize) of pair (F, G) and the observability (detectability) of pair 

. In addition to this, if the Riccati equation has several solutions we must choose the highest rank positively semidefinite solution.

This stationary solution has a number of other interesting properties which will be treated in another section. The most significant of these is the stabilizing effect, not only on the system it was designed for, but also on systems where the amplitude and phase frequency characteristics lie at a certain distance from the nominal. We describe this kind of control as being robust at stability. The difficulty is that the state must be accessible for the purposes of control.

Access to state is rare in technological processes, so we will formulate LQ optimum control on the assumption that we only have access to the system output. The properties of the two types of control can differ greatly because another dynamic enters into the loop.  Either as a transfer function of a dynamic controller if we are relying on the system transfer function ,  or  as a dynamics of an observer used to  reconstruct an unmeasurable state. The guarantee of robustness and other qualities is lost if we cannot access the state.

In our solution we use a state composed of delayed input and output. Although this state is made up of measurable signals, it is not itself measurable (to obtain these variables at time k, the previous measured values must be preserved, (in shift registers perhaps, thus creating an observer). Therefore
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(6.12)

Here, the regressor of the model used is composed of the true input and the state vector
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The state matrix of this type of state model is now made up of the parameters of the regression model; zeros and ones. The state used is not minimal. It can, however, be shown that the complexity of calculation involved here, especially in the square root form, is comparable to the complexity of the algorithm used to solve the minimal state problem.

Section 6.7 gives a detailed derivation of the minimization, including the square root algorithm. With regards to the state used, the calculated steady control law contains the  coefficients of polynomials R and S, or Cld and Clw, or the transfer  function of controller (6.5)

Note 1: Must we really use the state formulation in the LQ problem if we are starting from the formulation of input/output and finally return to it? It is not entirely necessary but does carry certain advantages:

· The alternative, the polynomial approach, only provides a solution for the infinite horizon. However, in the adaptive approach, it is useful to imagine a steady solution as the limits of the  finite horizon when the calculation method cannot find the steady solution.

· The state formulation allows us to formulate a cautious strategy and put it into practice - see the section on adaptive controllers.

· The nonminimum state approach permits the formulation of a strategy using a data-dependent penalty variable - see the section on adaptive controllers.

Note 2: It is also possible to neglect the formulation of the state. An algorithm has been developed for the step-by-step minimization of the quadratic criterion which does not require the introduction of the state and state description. Unlike the classic approach, where the state is used to express the cost to go loss of the criterion using quadratic form 
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, the new approach exploits a list of those variables contributing to the loss. This list updates the minimization by individual steps. This update, however, can be far more generalized than merely relating to the state alone. This approach can be used on models where the structure changes along the criterion horizon, as well as to evaluate non-synchronous sampling for several variables [6.1], [6.2]. The pseudo-state algorithms described here can be regarded as practicable due to their relative simplicity, transparency and reliability.

6.2 Using LQ Controllers; Examples and Simulation

In the previous section we introduced the basic characteristics of controllers designed using the minimization of the quadratic criterion method. We are aware that we must select a criterion and a penalty for those variables included in the quadratic criterion, and determine the model which describes the behaviour of the controlled process. This is the  system transfer function, the disturbance transfer function, and any other transfer functions from measurable variables.

Having performed these two tasks, we use a computer program to generate the appropriate control law (see section 6.8) which can then represent also several transfer functions.

It now remains to put the design into practice and discover what kind of control behaviour we have achieved. To make a good control law which meets our requirements, we must not only have a good process model, but we must also know how to select the  penalty in the criterion which will lead to good control behaviour.

The aim of this section is to acquaint the reader with the typical behaviour of an LQ controller working under different regimes and with various systems. The advantage of an LQ controller is that, mathematically speaking, the control behaviour is optimal with regards to the chosen criterion, at least when system and model match and are both linear. But not even these „ideal“ conditions necessarily mean that behaviour is „user optimum“. Better quality control behaviour almost always requires an input signal which consumes more energy, has a greater amplitude and a higher frequency. The user may be unable to permit such a signal. The user expresses the compromise between quality and the limitations on the input signal using penalty values on input Qu (or more exactly the ratio Qu/Qy). This variable therefore becomes the basic tuning element. Shortly we will see that this tuning „button“ is insufficient to adjust the control behaviour so that it meets desired performance. In practice, other methods of modifying the control behaviour are required, such as dynamic penalties, modification of the transfer function of an open loop or filtering. We will deal with these alternatives in a later section.

We will familiarize ourselves with the typical characteristics of LQ controllers using examples from the MATLAB and SIMULINK environments and the functions and simulations in the LQ toolbox. This part will simultaneously introduce us to working with this toolbox and the possibilities it offers. The toolbox functions are fully listed and described in section 6.8.

The control layout used for our simulation example features a system, controller, loops affected by disturbance, a setpoint generator and other auxiliary blocks. Each block must be defined before simulation starts; various procedures and programs are available in the toolbox to do this.

The basic simulation procedure is represented in file schema1.m and is illustrated in fig. 6.4. This is similar to the scheme given in fig. 6.2.

Note: There was a procedure identical to fig. 6.3 called schema1o.m. However, experience showed that this controller results in unstable control behaviour in the presence of unstable polynomial 
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There are two further modifications of schema1.m: schema1p.m to demonstrate disturbance compensation, and schema1w.m to demonstrate control during setpoint transitions.

The diagram shows a system created by the System block using discrete transfer function and random disturbance generated by the Discrete Noise and Disturbance block. The saturation block, which usually represents the limit on the controller output, is placed before the system. The controller is created by blocks Filter - Filter 3. Filter and Filter 1 deal with feedback, Filter 2 with the influence of the setpoint, and Filter 3 with the effect of auxiliary signal u0, though this is not used in the standard approach and therefore disconnected from the diagram. The setpoint is generated by the SIMULINK block Signal Generator. Other blocks are used to illustrate the input and output variables and calculate  the sum of squares of the output error.
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The modely.m file contains a number of pre-defined systems which can be selected interactively. The file will also set the corresponding sampling period T0 and several other parameters in the SIMULINK diagram, as well as the option of the controller calculation.

Fig. 6.4  The basic simulation diagram

The quality of control behaviour depends to a large degree on the properties of the system. We know that the so-called non-minimum phase system is among those where the quality of control behaviour is sometimes severely limited. These are systems where the transfer function has an unstable zero. Whilst continuous non-minimum phase systems are not common, we meet with them rather more often in a discrete description. In this case the property of non-minimal phase does not only depend on the physical properties of the system but also on the sampling period.

As examples we have chosen several simple systems which are, nevertheless, well suited to demonstrating the chosen properties. Here we give their short characteristic.

S1  A simple second-order system described by continuous transfer function
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In the main we will use the discrete version obtained by sampling at period T0  = 0.1s, which has discrete transfer function



[image: image27.wmf](

)

2

1

1

1

8187

.

0

81

.

1

1

00438

.

0

00468

.

0

-

-

-

-

+

-

+

=

z

z

z

z

G

 
(6.14)

This is a simple process for achieving good quality control behaviour, it is minimal phase, and we will use it to demonstrate standard behaviour.

S3 is one of the three discrete transfer functions representing one mechanical system which was introduced in [6.3] as a benchmark. The system transfer function, which has significantly elevated resonance, takes the form
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(6.15)

S5 is a simple discrete model of a Pelton turbine with long feed pipes, where the transfer function works out as non-minimum phase and has the form
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The next three systems are synthetic. Discrete transfer function S1 was used and the numerator altered to give:

S6, where the S1 system has two time delay periods and so assumes the form
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S7, where the system numerator contains one unstable root
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S8, where the system numerator contains two unstable roots
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and S9, where the system is unstable and has the numerator from system S1
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We will use the basic optimization procedure lqex1.m in the optimal control calculation. We will separate the examples into disturbance compensation and control to demonstrate the properties of a step responce. The systems best suited to demonstrating these properties were selected from those above and used in the following simulations.

6.2.1 Stochastic Disturbance Compensation

The optimal control law will be composed purely of feedback component 
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. The compensation behaviour and size of the controller output for „well-behaved“ system S1 and for two other penalty values is captured in Fig. 6.5. The graphs show the behaviour of disturbance (Sx-y, v) and controller output (Sx-u).
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Fig. 6.5  Disturbance compensation  for system S1 with various penalties

Fig. 6.6  Disturbance compensation  for different systems and with penalties Qu = 0.001

The next four graphs (Fig. 6.6) show the error  of disturbance compensation for oscillating system (S3), time delay system (S6), non-minimal phase system (S7), and unstable system (S9), where the penalty is relatively small Qu = 0.001.

Notes:

1. The disturbance behaviour for systems S1, S6, S7, and S9 are the same because they were created by the same filter. In order to obtain a stable signal, the roots of the filter for unstable system S9 are reciprocal to its unstable roots. Its auto-correlation function, however, also corresponds to the denominator of the original unstable system.

2. If we want to experiment with the control of system S1 by changing the penalties, introducing an effective limitation on the controller output in the saturation block, or by using just a short horizon in the optimization criterion, most of the results will be obtained when disturbance is more or less compensated for. At the same time, penalty Qu greatly affects the quality of the disturbance compensation.

3. Nothing like this, of course, applies to the other systems, which are either unstable, non-minimal phase or have time delay. For unstable system S9 the limitation of the input signal is critical. In the simulation shown in fig. 6.6d the controller output remains mostly within the boundary 
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 leads to instability. It helps to increase penalty 
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 so that the limitation cannot come into effect. The length of the criterion horizon used in this case makes little difference to the quality of compensation.

4. We can see from fig. 6.6c that there is very little compensation for the disturbance in non-minimal phase system S7. Further experiments show that it is almost independent of penalty 
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. The amplitude of the controller output is small and its limitation in the saturation block results in a further deterioration in disturbance compensation, but in such a way as to approach disturbance without control. Here, the length of the horizon in the criterion used is significant. If a short horizon is used (hor = 3), the control behaviour is worse than if there were no control at all. Unless we consider the use of an extra penalty on the finite state, behaviour will be unstable (see section 6.4.1 - Stability).

5. Systems S6 and S1 differ in that S6 has two time delay intervals. Compensation is similar to that in S1 and is illustrated in fig. 6.6b. Even when the horizon used in this system is short there is a penalty which can be applied to produce good disturbance compensation.

6. Fig. 6.7 shows two disturbance compensation  for system S5. The first series shows the behaviour resulting from a single step strategy (hor = 1). On one side we can see a noticeable disturbance compensation, but on the other there is an unstable input signal. This is a typical feature in the control of a non-minimal phase system where satisfactory short-term control behaviour can be achieved with an unstable input signal. Optimal, stable behaviour can be seen in the second pair of illustrations. The noise compensation is minor and requires just a very small input signal.

The compensation of disturbance represented  by a regression model is truly optimal. In a minimal phase system, disturbance can  be then compensated  until its source, white noise, which will be left over from the compensation process. Compensation in non-minimal phase systems is limited. The advantage of an optimal controller here, of course, is that only small controller output is required.

6.2.2 Setpoint  Control

We will first consider a step response. Fig. 6.8 shows the step responces for system S1 and controller outputs using two different penalties. A similar situation is pictured in fig. 6.9, this time for non-minimal phase system S7.
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Fig. 6.7  The disturbance compensation behaviour of system S5 for various criterion horizons
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Fig. 6.8  The step response  and controller output for system S1 using various penalties

Fig. 6.10 illustrates the control behaviour of system S3 and unstable system S9. In fig. 6.11 we can see the control behaviour of systems S3 and S1 with a limited control output. Although S3 shows a poor result, limitation u has a positive effect on system S1. Experimenting with these systems under various conditions yields the following conclusions:

1. The standard optimization of the criterion results in a steady state control error. The size of this depends on the  penalty of  controller output, and system gain. This is why penalty 
[image: image39.wmf]u
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 = 0.001 is not noticeable. An integral term must be included in the open loop or we must employ signal u0 to eliminate this error.

2. There are systems, S3 for example, where the response overshoot to the transition cannot be eliminated by any type of penalty (see Fig. 6.10a).

3. Like in disturbance compensation, a limitation of the controller output is acceptable for a minimal phase system. However, it can cause instability in an unstable system and have a very negative effect in a non-minimal phase system.

4. It can be seen that the conditions for good control behaviour in  the setpoint change are the same as for disturbance compensation.

5.  The steady state control error may increase ramp-like, if the setpoint change is also ramp-like. (fig. 6.12).
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Fig. 6.9 The step response  and controller output for system S7 using various penalties

In the examples so far, the simulation of the systems has been discrete. It remains to test if the controller under consideration behaves in the same way in a continuous system. To do this we use simulation diagram schema2.m, where the system is simulated in continuous form. Fig. 6.13 illustrates combined control for step response  and disturbance compensation for systems S1 and S1 with time delay (in a discrete representation of S6). Since a suitable sampling period was used, all have the same type of behaviour.

In this section we have shown the typical behaviour of LQ controllers on selected examples. All behaviour was optimal, but we did not always obtain the type of behaviour required by the user. The main shortcomings were identified as being:

· a steady state control error

· oscillation in the transfer function process

· unstable behaviour when the criterion horizon is short

· instability when the system input signal is limited

The next section gives a more detailed analysis of the solution to these problems, the questions raised by the sampling period, the issue of robustness, and general control properties where the controller 
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Fig. 6.10 The step response  and controller output for systems S3 and S9 for Qu = 0.001

was originally developed for a different system.
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Fig. 6.11  The step response  and controller output for  systems S1 and S3 when the controller output is limited
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Fig. 6.13  The response behaviour of continuous systems S1 and S6 to a step setpoint change and noise compensation

6.3 Adaptive Control

In the previous section we looked at the typical behaviour of an LQ controller when the controller was designed for a known system. However, in many systems the properties (transfer function) of the system are either unknown, known only in part, or else the system is really so complicated that the design must rely on a rough approximation. In this case the design is not based on a true system but on a model. We define the model structure and its parameters using information from the process itself (the mathematical model - a priori information), as well as from information on the process gained during trials and experimentation. When using a controller under these conditions we must first consider the issues of adaptability and robustness. These issues can be seen to be mutually antagonistic, but in practice they must be taken into account simultaneously. In modelling the controlled process we are always limited by just how complicated we can allow the model to be, as well as by our ability to obtain information on the model parameters from the measured data. The closer the model to the true system, the greater the significance of adaptation, whereas when the contrary is true, the quality of the control behaviour depends on robustness (i.e. the ability to achieve an acceptable quality of control behaviour even when the model differs greatly from the system). It is clear that when adaptation takes precedence we achieve better control behaviour, so this part will be devoted to this question. Identification plays a dominant role in adaptation. This is the process by which we learn about the properties of the system from measured data. The data can, for the time being, be regarded as random processes. We will first try to formulate the task of LQ control as a stochastic example. We will demonstrate how the identification process and control synthesis fit into the adaptive approach and the resulting specification for these processes. In conclusion we will again show the typical behaviour of an LQ controller using the LQ toolbox.

6.3.1 The Stochastic Approach to LQ Controller Design

So far we have examined the characteristics of LQ design with regards to deterministic signals. LQ synthesis, however, lends itself to working with random signals. We need only recall the Wiener synthesis which made it possible to design optimal control which minimized quadratic loss for familiar stochastic disturbance.

If the system has random output or contains a random component, criterion 6.2 cannot be directly minimized. Instead we must use a deterministic function of random variables. Experience shows that the mean value of a random variable or process is an acceptable function. The criterion appears as follows:
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The introduction of mean value E does not involve any great complications. To minimize the criterion we will need a model which defines the required mean value. This is regression model 6.4, which has already been introduced, where the deterministic part of the signal
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is simultaneously subordinate to the mean value of output y(k) This can be written as
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where x(k – 1) contains the previous inputs and outputs, and signal y(k) is modelled as
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Since es(k) is white noise with zero mean value, 
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, the terms with es(k) do not appear in the criterion. However, because 
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, the value of the criterion will increase with each new mean value of 
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. This increment does not depend on u(k). and cannot be influenced in any way. It can therefore be ignored when the criterion is minimized.

All this leads to the „Certainty Equivalence Principle“, which states that when we do not know the true parameters we use the mean value of their estimates. These mean values are not necessarily acceptable as parameters. The start of adaptation is a typical situation where the parameter estimates are wildly off the correct values.

When this principle is used, synthesis is not based on information on the state (precision) of the estimated parameters contained in the covariance matrix. Attempts have been made to modify the synthesis so as to give a role to the quality of identification. Because the resulting control algorithm takes account of the identification state, this control strategy is referred to as being „cautious“. Reference [6.4] is an example of this. Similar results can be obtained from generalizing the regression model so that the dispersion  variance of the error prediction is a function of the covariance matrix of the parameters. This model has been given the name linear stochastic transform [6.5]. Whereas equation (6.24) yields 
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 for the regression model, the stochastic linear transform uses
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where 
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, and z(k)  is the data used in prediction y(k).  Here we see that noise dispersion is dependent on the value of u(k)., which is a part of  z(k).
This model forms the basis for the so-called cautious strategy [4.5], [4.6]. Despite partial success in practical application, it is not often used in adaptive control due to two serious failings:

1. The start-up covariance matrix C must be chosen very carefully if the strategy is to yield good results.

2. The strategy very often chooses u(k) to minimize 

, and never its own criterion. The sequence of u(k) is particularly ill-suited to the identification of parameters, with the result that the covariance matrix does not grow smaller. This means that the entire process cannot avoid bad control.

6.3.2 The Synthesis of Quadratic Control in Real Time

The use of LQ synthesis in adaptive controllers is governed by the fact that the synthesis of the controller must be constantly repeated as the parameters alter. Generally speaking therefore, parameter estimation and synthesis are updated at each sampling period. The restriction placed on the final permissible calculation time is also important. On the one hand this is dependent on the sampling period and speed of the calculation technology, and on the other it depends on the complexity of the calculation. A calculation method which requires a constant and, if possible, short calculation time is the best suited to adaptive control. Since this is an iterative process where the calculation time depends on a number of factors, there is no guarantee that the optimal control corresponding to the infinite horizon can be calculated in one control period. There are two alternatives:

a) We can minimize the criterion with a finite horizon at each control period. The length of the horizon must allow enough space for the iterations to complete the Riccati equation in the time available. A test on convergence of the control law may be added to this approach and the calculation aborted if there is little change before the iterations are completed. Where the iterations are few in number, the start-up conditions for solving the Riccati equation play a vital role in stability and quality (the roots of a closed loop) - see section 6.4.1. This is the matrix which acts as the tuning „button“. This approach, where we shift the horizon further and further away during the control process, is know as the receding horizon strategy.

b) If we require control with an infinite horizon we must spread the iterations of the Riccati equation in time. This means that we perform a fixed number of iterations in each control period based on the previously attained state, and not on the start-up conditions. The effect of doing this is that the criterion horizon increases by the chosen number at each control period (NSTEP). After a certain time the control law will approach a static solution. This assumes, of course, that we used the same model parameters for the calculation in each control period. This is not necessarily true in adaptive control. It is impossible to tell what the control law will be when the parameters are apt to change. Experience shows that this strategy, known as iteration spread in time (IST), yields good results even when just one iteration is used during the control period, this being the shortest possible calculation time.

The IST strategy has another positive effect. It is both a one-step and a stabilizing strategy. When a strategy has just one step, the future input and output values are easy to determine and compare with the restriction requirement, so, for example, penalty Qu can be directly modified to maintain the restriction. This algorithm is known as the MIST (modified iteration spread in time), and is described in [6.7] and [6.8]. An example of how it may be applied is given in the diagram mist.m.

6.4 The Properties of a Control Loop Containing an LQ Controller

Before exploiting the possibilities offered by controllers based on the optimization of the quadratic criterion we must be more familiar with their properties. These can be considered from several angles. We can start with stability. The issue of stability in the control loop using a given controller is vital: if behaviour becomes unstable none of the other properties are relevant. The stability requirement is met by the classic PID type controller and is often used as the basis for design. A main factor here is the gain of the open loop (see Ziegler-Nichols), and, on further analysis, also the gain at various frequencies i.e. the frequency characteristic. The difficulties in maintaining stability when using an LQ controller, however, are very different.

We will then consider the properties of a control loop using an LQ controller with regard to time. This is also vital in LQ control because its design is based on the minimization of the criterion, which itself evaluates the time behaviour of the signals.

As we consider the time aspect we will observe the behaviour of the loop in the two usual cases: disturbance compensation and setpoint  change.

Although in a linear system there is an indisputable relationship between the frequency characteristic and behaviour in time, there are a number of properties which are better observed from the aspect of frequency. Robustness is a major example of these, since by this we mean observing the stability and quality of the control behaviour in cases where the model featured in the controller design differs from the true system.

6.4.1 Stability

Stability is probably the most important requirement made of a control loop. The advantage of LQ design is that the stability requirement is, to a certain extent, automatically built into the controller design. This statement must include the qualifier „to a certain extent“, because stability can only be theoretically guaranteed if the model used is a precise match to reality. In practice, the problem of stability is more complicated. Stability must be ensured even when reality differs from the mathematical model. This issue will be dealt with in the section on the robustness of the design.

The theoretical problems with stability  has been published in several articles and there is summary of conclusions in, for example, reference [6.7], the basic results of which we will give here. The minimization of quadratic criterion (6.2) results in the solution of the Riccati equation (6.8), the properties of which can then be used to manipulate stability. Stability is only naturally guaranteed for infinite horizon 
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Theorem 1. We will consider (6.26) corresponding to minimization (6.2) for 
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 is the only stabilizing solution, and the matrix of closed loop 
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The matrix relation type A > B can be seen as the definiteness of the matrix. Therefore matrix A is greater than B (A > B), provided that A - B > 0, so A - B is a positively definite matrix.

Stability where the horizon is finite can easily be solved by transferring it to an infinite horizon using the following trick. Let the solution to the Riccati equation corresponding to the horizon of criterion (6.2) N be SN. This simultaneously relates to ARE solution (6.20) for other state penalties 
[image: image59.wmf]x

Q

.


[image: image60.wmf]x

N

T

u

N

T

N

T

N

T

N

Q

F

S

G

Q

G

S

G

G

S

F

F

S

F

S

+

+

-

=

-

1

)

(


(6.27)

where 
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. Equation (6.27) is called the fake algebraic Riccati equation (FARE).

Stability when the minimization of the criterion is used is then solved by the following theorem:

Theorem 2. We will consider equation (6.27) which defines 
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It is clear from the definition of 
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 will be negatively semi-definite. There is a very strong relationship between monotonicity and stability in the Riccati equation. This can be used as the basis for formulating the conditions which guarantee that the solution to the Riccati equation will have a stabilizing effect from a given iteration k < N. on k = 1, i.e. the very start, is a special situation.

The theoretical basis creates theorem on the monotonicity of the solution to the Riccati equation and the relationship between monotonicity and stability. The following theorem evaluates the monotonicity of the Riccati equation:

Theorem on monotonicity: If the Riccati equation has a non-negative solution in iterations i,  i + 1 

, 
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Theorem on stability - a: We will consider difference Riccati equation (6.8). If

· [F,G]  is stabilizable
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then the closed loop defined by 
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It holds  similarly:

Theorem on stability - b:  We will consider difference Riccati equation (6.8). If
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then the closed loop defined by 
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Before discussing the practical significance of these theorems, we should recall the physical effect of the individual iterations of the Riccati equation in the development of losses. These properties are most obvious when the aim of control is to transfer  the system from initial conditions x0 to zero (
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 = 0). Here the Riccati matrix (the R.R. solution) represents the development of a matrix of quadratic form to indicate the loss (the value of the criterion). If we have constant Qy Qu, the loss will grow  from the initial value of S0 to value 
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If we take the iterations from the initial condition S0 = 0, as corresponds to the formulation of criterion (6.2), the quadratic form must increase and so we never have the situation where  
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If we want to ensure stability we must find such


[image: image85.wmf]u

y

Q

Q

S

,

,

0

 such  that 
[image: image86.wmf]1

0

S

S

>

, or 
[image: image87.wmf]0

2

0

1

2

£

+

-

S

S

S

,  regardless of the number of iterations (length of the horizon). This is not at all possible with basic criterion (6.2) because it corresponds to S0 = 0.  S must increase in some way as it results from the principle of cumulative loss which S represents.

When dealing with the question of the stability of a quadratic criterion with a finite horizon, the criterion must be changed to include a penalty on the final state represented by matrix S0. The new criterion takes the form
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 must be true if the sequence of Si is to decrease monotonically. The penalty on the final state   
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 must be greater than the entire cumulative loss of the whole compensation process of the initial state. Then cumulative loss may decrease, since the loss of each individual step in the minimization process is compensated for by a decrease of  the value of the final state, and therefore a decrease in its contribution to the overall loss. The following example explains how it is possible for the cumulative loss to decrease. If we consider 0-step control, loss is 
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 (the finite state is now x1), and this value may be less than J0 because value x1 is already smaller than x0 due to control. This process may be continued.

As stated in reference [6.9] and as can be seen in the example above, not even the choice of 

 can guarantee that 
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 can ensure stability in feedback from the very beginning of the solution of the Riccati equation. One way of finding S0 to satisfy 
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 is given in reference [9]. However, this involves inversion of the system matrix F-1. This cannot be applied to our example because the state matrix we use  is always singular. Initial value 
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 means an extra penalty on the finite state. If N is large, it will have no  effect on the quality of control. However, if the horizon is small, the choice of  
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can significantly alter control behaviour.

These remarks lead to the conclusion that it is relatively difficult to guarantee stability in a closed loop for finite horizon N. Still, the situation is not entirely hopeless.

1. The stability requirements described above are desirable, but not absolutely necessary; the examples given here are very strict.

2. Stability need not be guaranteed right from the very first iteration. An analysis of selected examples will guide us in our choice of horizon length.

3. We will look at cases where we can exploit knowledge previously obtained on stabilizing control or a priori knowledge of S gained from the minimization of a similar criterion (perhaps for a different value of Qu or N, e.t.c.).

In order to ensure the stability of an LQ controller it is wise to:

· select a sufficiently long horizon for an off-line calculation and then check that some of the sufficient stability conditions are met.

· use the IST strategy in an adaptive environment as this will help us achieve an asymptotic infinite horizon.

The Examples

The evolution of the Riccati equation iteration understandably differs from system to system, and from penalty to penalty. We will use our chosen examples to demonstrate at least a few typical situations. The following illustrations will show the position of the roots of a closed loop which we would obtain using a controller derived from the i-th iteration of the Riccati equation. They will also illustrate the first and second differences of this equation (or more precisely, the eigenvalues of the matrix of the first and second difference of the Riccati equation for individual iterations i = 1, 2, 3, ..., N).

We can influence the number of iterations of the Riccati equation required to achieve stability using penalty Qu and the penalty on the finite state S0. We will take 
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. This will be demonstrated on stable minimum phase system S1, unstable system S6 and non-minimum phase system S8.

Figs. 6.14 - 6.17 show various examples for the stable minimum phase system. Here we can see that stabilizing control can be achieved regardless of the size of the penalty or the initial penalty on state S0. We should note from the illustrations of the behaviour of the first and second differences of the Riccati equation how conservative the sufficiency condition of negative definiteness is for both differences. For example, in fig. 6.15b) there is no stability at all according to the first difference, stability is achieved from the tenth iteration according to the second difference. And yet the root locus of the roots in fig. 6.15a) indicate that control remains in the area of stability for all iterations.

Evidently  the  convergence  of  the  Riccati  equation for penalty Qu = 1 is somewhat slower than for

Qu = 0.001. This is because the roots of the closed loop are considerably closer to the unit circle.

Figs. 6.16 and 6.17 illustrate the start of iterations of the Riccati equation with non-zero initial matrix S0 = 1,000I for two different penalties. We can see from fig. 6.16 how S0 speeded up convergence of the Riccati equation. The sufficiency conditions for stability were also achieved sooner.

The next series of illustrations (figs. 6.18 - 6.21) gives similar examples for an unstable system. We should note that the start from S0 = 0 took place in the area of instability and, where higher penalty Qu = 1 is used, more steps are required to attain stabilizing  control. As before, the penalty on the finite state S0 = 1,000 speeded up convergence. In addition to this, the iterations took place in the stable area right from the start.

The last series of illustrations (figs. 6.22 - 6.25) shows the same examples performed on non-minimum phase system S8. A larger penalty of Qu = 1 used in this system produces more satisfactory iteration behaviour, where all the iterations lead to stabilizing control. The root locus corresponding to each iteration was dramatically changed by adding an initial penalty. The behaviour illustrated in fig. 6.25 is especially noteworthy. It can be seen from the root locus that iteration started in the area of stability, soon left it, and then finally returned after step 36. The behaviour of the eigevalues of the second difference of the Riccati equation is also interesting. In fig.6.25b) it appears to be an indefinite matrix as far as step 36. In this  case,  the sufficient conditions of stability give the correct region for stability. 
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Fig. 6.14a) Closed loop pole placement  

[image: image250.png]Fig. 6.14b) The first and second differencess of the Riccati equation

Fig. 6.14  System S1: Qu =0.001, SO = 0, horizon N = [1, ..., 100]
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Fig. 6.15a) Closed loop pole placement
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Fig. 6.15b) The first and second differences of the Riccati equation

Fig. 6.15  System S1: Qu = 1, SO = 0, horizon N = [1, ..., 100]
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Fig. 6.16a) Closed loop pole placement [image: image255.png]50
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Fig. 6.16b) The first and second differences of the Riccati equation

Fig. 6.16  System S1: Qu = 1, SO = 1,000, horizon N = [1, ..., 100]
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Fig. 6.17a) Closed loop pole placement 
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Fig. 6.17b) The first and second differences of the Riccati equation

Fig. 6.17  System S1: Qu = 0.001, SO = 1,000, horizon N = [1, ..., 100]
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Fig. 6.18a) Closed loop pole placement

Fig. 6.18b) The first and second differences of the Riccati equation

Fig. 6.18  System S6: Qu = 0.001, SO = 0, horizon N = [1, ..., 100]
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Fig. 6.19a) Closed loop pole placement 
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Fig. 6.19b) The first and second differences of the Riccati equation

Fig. 6.19  System S6: Qu = 1, SO = 0, horizon N = [1, ..., 100]
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Fig. 6.20a) Closed loop pole placement 
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Fig. 6.20b) The first and second differences of the Riccati equation

Fig 6.20  System S6: Qu = 1, SO = 1,000, horizon N = [1, ..., 100]
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Fig. 6.21a) Closed loop pole placement 
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Fig. 6.21b) The first and second differences of the Riccati equation

Fig. 6.21  System S6: Qu = 0.001, SO = 1,000, horizon N = [1, ..., 100]
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Fig. 6.22a) Closed loop pole placement 
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Fig. 6.22b) The first and second differences of the Riccati equation

Fig. 6.22  System S8: Qu = 0.001, SO = 0, horizon N = [1, ..., 100]
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Fig. 6.23a) Closed loop pole placement 

Fig. 6.23b) The first and second differences of the Riccati equation

Fig. 6.23  System S8: Qu = 0.001, S0 = 0, horizon N = [1, ..., 100]
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Fig. 6.24a) Closed loop pole placement
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Fig. 6.24b) The first and second differences of the Riccati equation

Fig. 6.24  System S8: Qu = 1, SO = 1,000, horizon N = [1, ..., 100]
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Fig. 6.25a) Closed loop pole placement 
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Fig. 6.25b) The first and second differences of the Riccati equation

Fig. 6.25  System S1: Qu = 0.001, SO = 1,000, horizon N = [1, ..., 100]

6.4.2 The Characteristics of LQ Control in Time Domain

The previous section dealt with stability as  the most vital property of control. Users, however, are more interested in the behaviour of closed loop responces. The system output not only depends on input but is also affected by various disturbances. In this section we will show in greater depth how to influence disturbance compensation, and how an adaptive controller reacts to a situation where the type of acting disturbance does not correspond to the regression model’s definition of disturbance. Later, we will discuss compensation for measurable disturbance where we can make use of a feedforward process. Finally, we will concentrate in more detail on the problems of setpoint control and observe the transitions to setpoint changes. The resulting behaviour of the closed loop is  then the superposition of  the cases previously mentioned.

Compensation of Disturbance

There are many types of disturbance which act on the output of the controlled process. It may be a random process or perhaps the response of some filter to a step. If we cannot measure the source of the disturbance, the disturbance must be modeled. In chapter 3 we showed that the regression model models both system and disturbance, and its characteristics are modeled by filter 
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. Here we will consider stochastic disturbance. The characteristics of control behaviour in compensating  deterministic disturbance are similar to those of the  setpoint control, which is dealt with in the concluding part of this section.

Quadratic criterion synthesis of the controller can only ensure optimal compensation for disturbance modeled by the regression model. It is therefore important that the model represent the characteristics of both system and disturbance. First we will look at a situation where the disturbance is characterized by the regression model. We described typical behaviour in section 6.2, together with the influence of basic parameter Qu.

In this part we will concentrate on two issues:

· how does the sampling period affect the quality of compensation?

· what will the control behaviour be when the system is affected by disturbance which differs from that modeled by the regression model?

In our evaluation of the effect of the sampling period we will use a continuous system with transfer function 
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 and random disturbance obtained as white noise passes through a filter with transfer function 
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(6.29)

If we consider a discrete controller using a discrete process model in a continuous process, then a single continuous process is characterized by a set of discrete models, depending on the sampling period chosen. Disturbance dispersion does not change with sampling. However, dispersion of  the generating white noise does. This enables us to obtain a relation for the dispersion of actuating noise in the form
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(6.30)

We can now show how its size is affected by the sampling period. As our example we will take system (filter) F(s) = 1/(s + 1)2. Table 6.1 gives the discrete transfer functions of the filter which correspond to the value of the integral, and resulting dispersion 
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Filter transfer function
Integral value
Integral value

0,1



305,3
0,0033

0,2



46,614
0,0215

0,5



5,4156
0,1847

1



1,7562
0,5694

Tab. 6.1  The values for white noise dispersion in relation to the  sampling period

Result 1.: When continuous random disturbance is represented by discrete models for various sampling periods, dispersion 
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, which generates white noise, will fall as the frequency of sampling increases (T0 gets shorter).

Result 2.: Since 
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 is the lower boundary of attainable values for the control criteria, better disturbance compensation can be achieved by increasing the sampling period.

These results will be tested in simulation according to the  diagram given in fig. 6.26.

The two continuous systems seen here are modelled by the usual method involving integrators and feedback. The aim of „subsystem1“ is to generate disturbance. Suitable random disturbance is obtained by feeding a random signal into the system input.

We have used a „limited spectrum random signal“ which is, in effect, the realization of discrete white noise. The output displays a certain behaviour. We can attain the kind of behaviour which imitates reality by manipulating the band width of random noise, the scale, and the length of the graph records. This signal is added to the system output, where it simultaneously represents uncontrolled output. „Subsystem2“ represents the controlled process itself, which is, again, continuous - as it is in reality.

Since we are using an LQ controller based on a regression model of the process, the filter and system must be set so as to meet the conditions for representing the process as a regression model. This is why both „subsystem1“ and „subsystem2“ have the same denominator.

A further condition, which is that the filter numerator should equal 1, cannot be met in all sampling periods. In fact, it is difficult to derive its discrete transfer function because the input and output are generally sampled at different periods. It helps if we obtain the discrete (regression) model directly from the identification data, rather than by making a transform from the Laplace to the  z -image. This is how it would normally be done in practice.

The discrete blocks, representing the controller (i.e. identification), LQ synthesis, and the controller itself, will all have an optional sampling period. Each image also illustrates the dispersion of the model’s prediction error and this represents the minimum possible value of the dispersion of disturbance compensation.
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Fig. 6.26  Diagram of the simulation of noise compensation
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Fig. 6.27  A detail of the subsystem

Conclusions:

1. It is clear from the behaviour seen in figs. 6.28 - 6.30 that the quality of disturbance compensation depends on the sampling period. A small penalty on u, Qu = 0.001 was used throughout the design of the controller. The relationship between the quality of compensation and the sampling period is especially obvious when this value is chosen.

2. The size of the controller output is independent of the sampling period. More frequent sampling gives better compensation without increasing the amplitude of the input. Naturally, however, the input frequency spectrum is larger.

Let us turn now to the problem of compensation of disturbance where the properties are not characterized by the regression model. Two possibilities must be taken into account:

· a fixed LQ controller

· an adaptive controller

The case of fixed LQ controller is relatively easy to deal with. Simply, it will not provide optimal compensation of disturbance. The way of compensation is governed by the properties of the closed loop created by the system and controller.  The stability is not affected.

Adaptive LQ control case is more complicated. The mismatch between the characteristics of the disturbance and those represented by filter  forces the identification process to find coefficients 
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 that it predicts the disturbance as efficiently as possible. This, of course, also modifies the transfer function of the system model. The behaviour of a controller based on such parameters cannot be determined. It can only be estimated through an analysis of the robustness of the controller.

We can now demonstrate this kind of situation on some simple examples. Disturbance will be generated by a filter which has a transfer function other than  
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We have chosen two extreme cases for system S1 to demonstrate behaviour.

1. Factor 1 – z-1 has been added to the dynamic of the noise filter

2. Factor 1 - 0.98z-1 has been added to the filter numerator.

In the series illustrated by fig. 6.31 we can see a standard example of noise compensation where the conditions for the regression model are satisfied. This is followed by three examples where noise is generated according to point 1. Clearly this noise is „slower“. In fig. 6.31b) it is compensated  by an adaptive controller using a second-order model. The estimated parameters differ significantly from those of the system itself. Fig. 6.31c) features compensation performed by a third-order controller, where the structure of the model permits the inclusion of the entire dynamic of the filter. Compensation is perfect. In the final figure, a fixed controller designed using the system parameters is used in compensation. Compensation here is rather worse than for the adaptive controller using the same structure. These results are given in numeric form in table 6.2.

[image: image276.png]04

System S8, Qu

closed loop

poles for N

03p

02

01k

S0k

S03f

S04





Fig. 6.28a)  Output (solid line) and disturbance (dotted line)
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Fig. 6.28b)  Input

Fig. 6.28  System S1: T0 = 0.5s, Euler, 
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Fig. 6.29a)  Output (solid line) and disturbance (dotted line)
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Fig. 6.29b)  Input

Fig. 6.29  System S1: T0 = 0.1, Euler, 
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Fig. 6.30a)  Output (solid line) and disturbance (dotted line)
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b) Input

Fig. 6.30  System S1: T0 = 0.01, Euler, 
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Fig. 6.31 Compensation for disturbance where the filter denominator is expanded by 1 – z-1.

Figure
Identified parameters 


Loss



6.31b)



0.049

6.31c)



0.0366

6.31d)
fixed parameters


0.0519

Table 6.2  The results of simulation testing

The second situation  is documented in the series of illustrations in Fig. 6.32. Figs. 6.32a) and 6.32c) show disturbance and system output. Disturbance here is clearly „fast“ and the system is unable to compensate  it adequately. The failure of the regression model to meet the assumption of noise results in estimated parameters which differ from those of the system. A controller designed using these parameters is still better than one designed using the parameters of the system. The character of compensation is roughly the same, but the controller which uses estimated parameters has a noticeably smaller controller output (fig. 6.32b)) compared to the one which was designed using the system’s parameters (fig. 6.32d)). The simulation results are given in Table 6.3.
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Fig. 6.32  Compensation of disturbance where the filter numerator has been expanded by 1 - 0.98 z-1
.

Figure
Identified parameters 


Loss
Noise u2



6.32a)



1.67
3 830

6.32c)
fixed parameters
1,58
35 900

Table 6.3  The results of simulation testing

Shifting the parameters alters the model of the system, with the potential danger that instability will arise due to the difference between the model used in the design and the true system. We will discuss this point in the section dealing with robustness. So as to avoid potential loss of stability we must:

· use a model structure which permits more complex disturbance to be modeled (a higher order model);

· filter the data. This, of course, assumes a knowledge of the character of the disturbance in order to determine the filter.

A combination of both approaches can be employed.
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Fig. 6.34  Simulink  diagram of the compensation for measurable disturbance

Fig. 6.33 illustrates a simulink  diagram where the signals are filtered for identification. The use of the filters ensures that the identified parameters represent only some of the characteristics of the process. For example: an integration factor is often added to the open loop to ensure zero steady state error. However, if the disturbance is also characterized by this factor, this factor will appear in the estimated parameters. This means the open loop would then contain the same factor twice. In this situation, therefore, the identification signal is processed through a filter with transfer function 
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Fig. 6.34  Simulink  diagram of the compensation for measurable disturbance

The External Measured Variable

If we can measure the source of disturbance  v , which generates  the disturbance at the output (Fig. 3.1) ,
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 it is a very good idea to use this knowledge in compensation. In practice, disturbance can commonly be measured, since it need not be true disturbance. We can use any signal connected in some way with the system output if its influence can be described by filter 
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Coefficients  avi of this filter now represent the dynamic of the measurable disturbance. We either know these, or can identify them in the same way as we identify the system parameters.

The simulink  diagram in fig. 6.34 will be used to demonstrate the compensation of  measurable disturbance. In this diagram the measurable disturbance is generated as random by filter Fv, shown above. The value is measured and used in the next feedforward component of the controller with transfer function
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. The disturbance in the output is governed by the regression model as it passes through filter 
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Non-measurable disturbance is suppressed in the first three responses shown in fig. 6.35 so as to highlight the compensation of measurable disturbance. Fig. 6.35a) shows the process where disturbance is not being measured, fig. 6.35b) where the disturbance is measured but we are unfamiliar with its properties (with the model which generates it), fig. 6.35c) shows the situation where the disturbance is fully understood, and fig. 6.35d) shows the overall behaviour with measured and unmeasured disturbance and setpoint transition.

Setpoint Tracking

Setpoint tracking is one of the most important functions of the control loop. The quality of control is often judged on the form of response to the typical changes of the setpoint (steps - the step responce). When we are designing a controller to track the setpoint we find the following differences  with disturbance compensation:

· The transfer function from disturbance to output differs from the transfer function from the setpoint  to output.

· A further signal must be taken into account in the minimization criterion and, in addition, we must know its future values.

Unlike most of the other signals in the loop, a knowledge of the future behaviour of the setpoint is, in practice, very common and natural. Moreover it can almost always be applied simply by delaying the true change in the setpoint over several (tens of) sampling periods.

We can, of course, always use the standard approach in optimization, where the unknown values of the signals in the criterion are predicted using a model. This approach can also be applied to setpoint control. The model used to predict the future constant setpoint is


w(k) =  w(k-1)
(6.31)

Let us discuss the situation where we know the future control value in greater depth. If we look at the diagram of the controller (Fig. 6.2), we can see that optimization  generates both  the feedback and feedforward part of the controller. It is important to remember that, in an adaptive controller, the feedforward component is an integral part of the control transfer function, and any discrepancy between model and reality may be reflected in an error in setpoint tracking. The filter transfer function in the feedforward component is



[image: image122.wmf])

(

)

(

1

-

=

z

R

z

F

w

u


(6.32)

when  
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Fig. 6.35  Different forms of compensation for external disturbance

Transfer function (6.32) is evidently non-causal, which is what we want. The coefficients for the transfer function are obtained using the optimization process (see section 6.7).

If the control signal is constant, the transfer function can be simplified to make 
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 is obtained by the optimization process by accumulating all future setpoints into one column of matrix S. It is simpler to use filter (6.32) immediately if the other future behaviours are known, even though it is possible to obtain specific results for each given signal. We will try to demonstrate this on a ramp example. When the ramp has initial value w0 and increment 
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In the optimization procedure this is done by giving the Riccati matrix an extra column which corresponds to the increment on the ramp.

Fig. 6.36 shows the simulation plan of experiments on setpoint transitions, including pre-programming. Since Simulink is unable to generate a vector of future values, it must work with delayed real values and compare the system output with the delayed setpoint. The delay is effected in the oldval block. The product 
[image: image128.wmf](

)

å

=

+

nw

ii

i

k

w

f

0

1

 is performed in the block trail1. The remaining blocks are standard. The controller parameters with pre-programming are calculated by the lqex3.m procedure which consists of calculating steady optimal control, and subsequently the pre-programming component. Otherwise the form of the pre-programming filter would be affected by the initial conditions for the Riccati equation. Let us now look at the typical behaviour of a simple S1 system.

In Fig. 6.37 is a step responce. The corresponding reaction of the controller output can be seen in fig. 6.38. The values of the coefficients of pre-programming filter are plotted in fig. 6.39, where we see that fi = 0 for i > 16. Therefore, if the length of pre-programming is made to be 10 (see fig. 6.40), the steady value will be greater than the setpoint because we neglected the negative coefficients for i > 10. Similarly, when the length of pre-programming is 5 (fig. 6.41), the output does not reach the required value. In the remaining figures 6.42 - 6.44 we illustrate output, input and coefficients fi for a controller using a different penalty on the input. The next figures show control of non-minimal phase systems.
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Fig. 6.36  Simulation with pre-programming
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Fig. 6.37  S1: output after 20 steps

[image: image289.png]Fig. 6.38  S1: output after 20 steps
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Fig. 6.39 S1: coefficients after 20 steps

[image: image291.png]Fig. 6.40 S1: output after 10 steps
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Fig. 6.41  S1: output after 5 steps


Fig. 6.42


Fig. 6.43  S1: output after 20 steps


Fig. 6.44  S1: coefficients after 20 steps


Fig. 6.45  Non-minimal phase system S6: output


Fig. 6.46  Non-minimal phase system S6: input

Fig. 6.47  Non-minimal phase system S6: coefficients

Conclusions:

Pre-programming thoroughly uses information on future control and so achieves optimal response both from the point of view of output quality and demands placed on the input.

Zero Steady State Error

A typical failing of LQ design using minimization criterion (6.2) is the non-zero steady state error in the step response  when the system contains no integral term. This offset is particularly obvious when, for whatever reason, a higher penalty Qu must be used. We have already met with this feature in section 6.2.

The standard solution to this problem is to add an integrator to the open loop. However this changes the transfer function of the disturbance filter as well and, by doing so, also changes its assumed character. Though the response to the transition improves, the compensation of disturbance may deteriorate. We must use an ARMAX model and assume that C = z - 1 so that the addition of an integrator does not change the compensation of disturbance.

We can sometimes limit the steady state error (offset) by penalizing the increment on u, i.e. penalizing (u itself. This penalty does not limit the size of the controller output, only the changes in it.

Another solution can be derived from criterion (6.3) where we take account of another signal: the reference input. In reality it is more natural not to penalize the entire controller output, only the part remaining after subtraction of the value of u needed to achieve the required output level. The required size of u0 can be obtained in two ways:

· u0 can be taken as another variable to be used in the minimization criterion (see [6.12]).

· u0 is a signal which is proportional to the setpoint and must be added to u(k) to compensate for the offset.

The second method is easier to interpret and is used, for example, in simulink diagram schema1p.m, illustrated in fig. 6.48. Signal u0 will be used for other purposes in the following section.

Fig. 6.48

6.4.3 The Characteristics of LQ Control in the Frequency Domain

We know that in a linear system the properties of a control loop with regards to time (transfer function characteristic) and frequency are two sides of the same coin. Until now we have concentrated on the time aspect. The regression model describes the system over time, the minimization criterion was performed in the  time domain, and we have demonstrated the typical characteristics of compensation of disturbance and setpoint tracking. These are of primary importance in adaptive control. We will now deal will the other side of the question which is LQ control with regard to frequency. It is particularly important to observe these properties so as to be able to evaluate the stability of the loop and the robustness of the design. This involves an analysis of the behaviour of a system which is radically different from the model used in the control design. With reference to frequency, it will also be simpler to demonstrate the effect of the sampling period on stability and the quality of control behaviour. When illustrating the frequency characteristic of discrete systems obtained from sampling a continuous system, attention must be paid to the correct transformation  of frequency. The discrete transfer function only represents the continuous frequency over half the sampling frequency. This means that sampling period 
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(6.33)

This frequency is tranformed by sampling to discrete angular frequency 
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. Therefore, if we are dealing with a control loop where the discrete transfer function was obtained through sampling, we cannot avoid the relation between the discrete and continuous transfer functions arising out of (6.33)
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Sometime   the discrete frequency is expressed as a ratio to the Nyquist frequency, which is half the sampling frequency. In this case the highest frequency has a value of 1. The continuous frequency is obtained using  
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, and the discrete angular frequency using  
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The frequency characteristics of LQ controller loops display several typical properties:

· the frequency characteristic of an LQ controller has a tendency to amplify  signals at higher frequencies.

· the frequency characteristic of an open loop in the complex plane (the Nyquist diagram) displays typical behaviour around points (-1, 0) of the complex plane

· The LQ controller attempts to maintain the frequency characteristic of a closed loop  transfer function between output and setpoint  in the logarithmic coordinates flat to the highest frequency.


Fig. 6.49  The frequency characteristic of a discretely modeled continuous system  at various sampling periods

The Frequency Characteristics in the Logarithmic Coordinates

The frequency characteristics in the logarithmic coordinates are useful for demonstrating the effects of the sampling period and penalization. We can show the typical behaviour of a controller on an example of a control of a continuous system with transfer function





When the sampling periods are 0.1, 0.2, 0.5 and 1 second, the discrete transfer functions are marked as S10, S12, S15 and S20 in the modely.m file. Fig. 6.49 illustrates the frequency characteristics of those continuous and discrete transfer functions corresponding to each individual sampling period. We have purposely emphasized the maximum frequency where the discrete model still represents the continuous system at different sampling periods. We achieve a match with the continuous frequency characteristic up to frequency 
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; at higher frequencies the value of the characteristic periodically repeats itself. Due to the logarithmic coordinates used and the paucity of points at high frequency, the periodicity, and particularly symmetry, of the solution are only approximate.


Fig. 6.50  The frequency characteristic of a closed loop with various penalties

Fig. 6.51  The sensitivity function for various penalties

Fig. 6.52  Open loop gain for various penalties


Fig. 6.53  The sensitivity function for various sampling periods

Fig. 6.50 shows the system’s closed loop transfer function frequency characteristic from the setpoint for different penalties where sampling period T0 = 0.1s.

Fig. 6.51 illustrates the sensitivity function (transfer function from disturbance) of the same system, but with sampling period T0 = 0.5s.

Penalty Qu shifts the controller’s vertical frequency characteristic and so significantly alters the total gain of the open loop (see Fig. 6.52).

In other types of system, for example non-minimal phase, the shift in the controller’s frequency characteristic is markedly smaller.

Fig. 6.53 illustrates the changing character of the sensitivity function where the system uses an LQ controller obtained from the optimization of the same criterion, but different sampling periods.

The Frequency Characteristic in the Complex Plane

The frequency characteristics of an open loop transfer function  with an LQ controller show typical behaviour in surrounding point (-1, 0) in the complex plane.

The form of the frequency characteristic can be deduced from the frequency interpretation of the Riccati equation and, as a matter of interest, we will give this procedure in detail.

Our starting point is the standard form of the algebraic (steady state)  Riccati equation (6.8). Frequency interpretations almost always apply to the steady state. Omitting index i, we use relation (6.9) to obtain



[image: image136.wmf]L

SG

G

Q

L

Q

SF

F

S

T

u

T

x

T

)

(

+

-

+

=

 
(6.34)

We then move the term
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The equation is then multiplied from the left by 
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The final term of the right hand side is moved to the left, both sides are multiplied by GT from the left and G from the right, and Qu is added to both sides. We use relation 
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(6.35)

For a single-input single-output case  this can be written as
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(6.36)

Therefore
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(6.37)

Inequality (6.36) can be interpreted simply: the distance of the frequency characteristic points from point (-1, 0) in the complex plane is always greater than the constant which appears on the left side of the inequality.

These relations required relatively complicated manipulation of the Riccati equation. Similar relations which also include the case of dynamic output controller can be obtained far more easily from the system transfer function and the polynomial synthesis of an LQ controller [6.13]. We will demonstrate this on a simplified example in which synthesis is performed in two stages:

1. First the polynomial of the closed loop (  is calculate from the factorization equation
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 2. The polynomial equation is solved

           AR+BS = (




, 

  in the equation denote the conjugated polynomial for numerator B and denominator A of the system transfer function, and (0   is the normalization coefficient which yields (  = 1 + p1 z-1 + ... + pn z-n . If we divide (6.38) by terms 
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 , where R is the denominator of the controller transfer function, we obtain equation
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(6.39)

or
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The inverse of the module of the sensitivity function  is on the right side. On the left side we are principally interested in the first expression. It follows from the algorithm of the solution to the Riccati equation (section 6.7) that
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and that this value equal to the Huu element of minimized matrix Hn (see section 6.7). Unlike the state space example (6.36), where the minimum distance of the frequency characteristic from point (-1, 0) in the complex plane is limited by the first term on the left side of equation (6.30), in equation (6.39) the minimum distance is also a function of 
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Robustness in LQ Controllers

Robustness has gained popularity in recent years but, more importantly, it is a vital attribute of all controllers for practical applications. The reason for this is simple. The perfect match between model and true system, assumed in controller design, cannot be guaranteed in practice. We do have methods to design a so-called robust controller, but these usually result in a controller set to maintain a certain quality of control for a whole class of systems which differ from the model in a defined way. Quality, however, is often only average. Here we overcome the problems of insufficient knowledge of the real system using an adaptive approach. Notwithstanding, the properties which determine robustness must be taken into account because adaptation relying on the identification of model parameters can never ensure a perfect match. We use results taken from our analysis of frequency response  to observe robustness.

Treating  robustness properties, we will mainly consider the stability of the closed loop of a system for which the controller was not originally designed.

The size of changes in the system which can occur without destabilizing the loop is easily determined from the shortest distance between the frequency characteristic of an open loop and point (-1, 0). This is illustrated in fig. 6.54.


Fig. 6.54  Evaluating robustness from the frequency characteristic

Here we see the open loop frequency characteristic. Point P of the frequency characteristic is the closest to point K which marks point (-1, 0). The following vector relation applies in the complex plane
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(6.40)   or
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Since the final expression is the inverse of the sensitivity function, inverse of  |P(j()|  yields the module of the sensitivity function. In the previous section we showed how the minimum distance between the frequency characteristic of an open loop and critical point (-1, 0) on the complex plane can be found through optimization. Therefore the result of optimization can guarantee a certain level of robustness.

Notes

In other words: the frequency characteristic does not intersect with the circle centered on point (-1, 0) of the complex plane with radius 
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 , where |Rm|  is the maximum value of the frequency characteristic module of the controller transfer function denominator.

Unlike similar results for continuous systems, the term omitted from equation (6.36) can have a very positive effect on the radius of the circle since, depending on the chosen sampling period, the module of the frequency characteristic may be sufficiently large at a  point 
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The tolerance of a steady state LQ controller to a change in gain  in the range (1/2 - - () and to a change in phase of 60* is well known. This, however, DOES NOT APPLY to discrete systems where the state controller is derived from (6.36). In our example, which is characterized by feedback from the system output and not from the state, the robust stability is characterized by equation (6.39). This equation affects robustness using penalty Qu both directly and via controller denominator R. The form of the frequency characteristic is also influenced by the sampling period. We can demonstrate the typical effect of these variables by analyzing a simple example.

Fig. 6.55 illustrates the frequency characteristic of the open loop of system 

, sampled at period T0 = 0.1s (system S10), with LQ controller for Qu = 0.0001.


Fig. 6.55  The frequency characteristic of an open loop, T0 = 0.1s, Qu = 0.0001

Fig. 6.56  The frequency characteristic of an open loop, T0 = 0.5s, Qu = 0.0001

The dotted line marks the circle with which the frequency characteristic cannot intersect. Fig. 6.56 illustrates a similar example where the sampling period has been changed to 0.5s.

We will now look at a case where we use an identified model and models of lower  order than the actual system in the design of the controller. We again take system 

. We use identification experiments to obtain third-, second- and first-order models, the parameters of which are given in the table below.

Table 6.4  Discrete model parameters

Order
Numerator 

Denominator



Ideal


0.0001574 + 0.000574 z-1 + 0.0001331 z-2 + 0  


1 - 2.7145 z-1 + 2.4562 z-2 - 0.74080 z-3   

3rd

0.00037136 + 0.00015823 z-1 + 0.00006041 z-2 - 0.0001348  z-3


1 - 2.7926 z-1 + 2.6130 z-2 - 0.8181 z-3

2nd

-0.0000536 + 0.0001094 z-1 + 0.0006688 z-2


1 - 1.987 z-1 + 0.9954 z-2

1st

0.000869 + 0.000799 z-1


1 - 0.9963 z-1

Fig. 6.57  The frequency characteristic of an idealized system and 3rd, 2nd and 1st order models


Fig. 6.58  The frequency characteristic of an open loop using various controllers

Fig. 6.57 illustrates the amplitude and phase characteristics of these transfer functions. Fig. 6.58 shows the frequency characteristics of the open loop of a third-order system using a controller designed on the basis of identified first-, second- and third-order models for penalty Qu = 0.0001. It is clear that a second-order model can still result in a stable loop, but a first-order model already shows signs of instability. If we increase the penalty in this case the loop will stabilize.


Fig. 6.59  The frequency characteristic of an idealized and identified system


Fig. 6.60  The frequency characteristic of an open loop in an idealized and identified system

In the section on  noise  compensation we  saw that,  where  the filter  generating  disturbance  contained 

C(z -1) = 1 - 0.98 z-1. in the numerator, the parameter estimates differed radically from the true parameters of the system. Looking at this with regards to frequency, we will show what effect this has on stability.

Fig. 6.59 illustrates the frequency characteristics of a system with idealized and identified parameters. Although the two characteristics differ, those of the open loop are almost identical, especially at high frequencies. This is illustrated in fig. 6.60.

To a large extent, the stability and quality of control behaviour when the model differs from reality depend upon how close the frequency characteristics are at higher frequencies. In the first instance we saw that a first-order model corresponds quite closely to the idealized system at lower frequencies but differs greatly at higher ones, resulting in instability. Contrary to this, in the second instance the differences between system and model were greatest at low frequencies.

Monograph [6.14] gives a relation which may modify the frequency characteristic so that the process remains stable. In the introduction to this section we showed the conditions which apply to possible changes in the transfer function of an open loop. These are given by the inequality
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where G(z), G0(z) are the frequency characteristics of the open loop of a true and idealized system. Since
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is valid we can write
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and, after shortening R, we obtain


[image: image169.wmf]AS

BS

AR

A

B

A

B

+

á

-

0

0


If we modify this expression in the way described in [6.14], where, in our example   
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we still obtain
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6.5 Tuning an LQ Controller

In the previous sections we became acquainted with the relevant properties of a control loop using an LQ controller. This section deals with the issue of adjusting an LQ controller so as to meet the demands the user makes on control behaviour as fully as possible. In the following passages we will recall useful rules for adjusting and starting up an adaptive controller in a real system. 

6.5.1.  Tuning a Controller

At first glance it might seem rather curious  to tune an LQ optimal controller when the optimization process itself should generate the best control behaviour. Quite simply, although the optimization process really does guarantee optimal control behaviour, provided certain conditions are satisfied, this does not necessarily mean that it is optimal from the user’s viewpoint. The behaviour obtained from an optimization criterion with a large penalty will probably not satisfy the user in terms of speed of response and steady state error. The principal on which the tuning of an LQ controller is based consists primarily in choosing the criterion (penalty) which results in the type of control the user wants. We have seen that there are other influences acting on the control loop, particularly the sampling period. The next section is devoted to ways of modifying the criterion.

Adjustable Criterion Parameters

In our previous discussion of LQ controllers we have referred to one of the tuning elements - penalty Qu or Q(u. It has been shown, however, that, all by itself, it is insufficient to ensure full adjustment of behaviour. This can be shown on an example. The root locus of the closed loop roots of system S3, with reference to the size of penalty Qu, is illustrated in Fig. 6.61. We can see that, regardless of the penalty, the dominant roots are formed by a complex conjugated pair. Simulation shows that there is always an overshoot in the  step response . Penalty Qu cannot, therefore, be used to achieve the required response without overshoot. Fig. 6.62 illustrates the geometric position of the roots of the same system, but a further penalty on the output difference 
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 was added to the criterion.


Fig. 6.61  The roots of a closed loop for  
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Fig. 6.62  The roots of a closed loop for  

and  Qdy = 0, 1, 10

If penalty Qdy has been well chosen we can achieve a nonoscilatory transient to an input step change. This example indicates the necessity of expanding the set of adjustable criterion parameters. Here we should note that the classic state space formulation of LQ control permits the poles of a closed loop to be placed anywhere, providing the controllability conditions have been satisfied. Superficially it may appear that we have got rid of this possibility when using  the input/output  formulation of LQ control. When we use input/output penalties, the roots of the closed loop lie on a specific single parametric curve, the parameters of which are Qu/Qy.. We know that choosing the roots from this set does not necessarily represent the behaviour required of the loop. However, this is simple to correct both principally and algorithmically.

Generalized Penalization

The pseudo-state solution to the minimization of the quadratic criteria (see sections 6.1 and 6.7) allows the problem-free expansion of the penalty to include a general penalization on the pseudo-state. Until now we have used penalty matrix
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to penalize input and output; we can use a general  Q matrix in its place.

It is fairly difficult to find a generalized matrix which would result in the required modification to the control behaviour. It is easier to regard such a matrix as the sum of several penalties, each with a simpler matrix. It is a good idea to express each square symmetric matrix as the sum of rank 1 matrices, which are the product of the vector and its transpose. Each component of the penalty then has the form



[image: image178.wmf]i

T

i

i

f

f

a


where a  is the weighting of the penalty and fi is the numeric vector. Each term of the criterion will have the form





Vectors fi can be selected such that they have non-zero elements in the positions corresponding to either inputs or outputs in the z(k). If we introduce 
[image: image179.wmf])

(

)

(

~

k

z

f

k

y

i

=

 or 
[image: image180.wmf])

(

)

(

~

k

z

f

k

u

i

=

, this type of penalty can be regarded as a penalization on filtered variables where the filter has an FIR character. The criterion can contain more than one type of filter, in fact any linear combination of these filters can be used without difficulty. If 
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 represents our pseudo-state made up of delayed inputs and outputs, we can use criterion
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(6.40)

Designing and choosing individual filters seems simpler than selecting an entire matrix so, in our example, we have chosen to penalize the output difference because this is where the oscillation of the response  is  most apparent.  The  filter  used  was  the  simple  f(z) = [1 - z-1],  the  vector of which was 

f1=[0 ... 0 1 -1 ... 0], resulting in criterion matrix
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Qu, Qz, and Qdy are the parameters used to modify the criterion. The LQ toolbox contains the lqexuni.m procedure  which  is  used  to  apply  these  modifications, as well as to penalize the increments on input 

u(k)  - u(k-1).  The structure of this procedure can serve as a model for developing other types of penalization.

Modifying the Transfer function of an Open Loop

This dynamic penalization creates a greater space  to tune control behaviour to suit the user but does not guarantee that all conditions are satisfied. A typical example is the requirement for zero steady state error in the step response. We have demonstrated that one approach is to add an integral factor into the transfer function of the open loop. This can be generalized in that it is possible to introduce any transfer function to the loop. Synthesis for a new system must then be performed consisting of a serial combination of the original systems plus the new transfer functions. The algorithmic solution is straightforward. If we wish to include an integrator we proceed as follows:

1.  Before starting the optimization process we create a new denominator for the system.
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(in Matlab: a = conv([1 -1]), a);). By doing this we state that there will be an integrator in the loop.

2.  Once optimization has been completed we expand controller polynomial R in a similar fashion. This action actually adds the integrator to the loop.

Fig. 6.63  A flow diagram of an adaptive LQ controller with parallel and serial filters

If a general transfer function is added to the system, the system’s numerator and denominator must be modified in the same way. R and S in the controller must also be altered after optimization.

This approach can be combined with LQ or any of the classic designs for correction terms. If the filter design results in control behaviour which approaches optimal, the synthesis will suggest an LQ controller which only corrects the loop slightly. We can take this to extremes. If we design a filter to be LQ optimal, the controller transfer function will equal one.

We have given an example of adjusting an LQ controller in series with a correcting filter. A similar approach can be taken towards designing an LQ controller working in parallel with a filter. Here the controller must be designed for a system which already has another R1 controller in feedback. The design here is not based on the original system, but on a system with transfer function Sn.
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This is a common method which is often unwittingly used in controlling processes containing internal feedback. It is a standard approach to unstable processes where the stabilizing feedback is found first, allowing a further controller to implement the required characteristics of the loop.

The advantage of this connection is that, when Qu is used as a tuning device, the transfer function of the closed loop is changed from the primary controller to the optimal LQ loop. In addition to this, parallel connection creates a natural  back up. The disadvantage is a more complicated recalculation of the system during the LQ design process. This failing is overcome when an adaptive form of the controller is used, since the consideration of different signals for  input during identification can be used in identifying either  system  itself or a closed loop connection of system with primary controller.

Generally, two LQ controllers can be connected in parallel and it has been found that their adaptive version works reliably.

6.5.2.  Implementing LQ Controllers

There is a whole range of problems to be solved before applying LQ adaptive controllers to a chosen system, certainly more and of greater complexity than for the classic types of controller. The result may be (significantly) improved control quality and an ability to meet specific technological requirements, fast step response  with small (or even without) overshoot, for example.

It therefore makes sense to try to apply an LQ controller in those cases where a classic controller, however well adjusted, cannot provide the required quality of control, even though we suspect there is room for improvement. No controller can increase the speed of  step response if the system input is saturated for a long period of  transient with  PI controller. We can hardly expect recursive identification to provide a good model for the synthesis of optimal control if the measured variables were heavily affected by noise, contain significant drift or systematic error.

Once we decide to apply an LQ controller, the following preparations must be made:

1.  We must decide which model to use (structure, order). This involves determining input and output, and perhaps additional measured variables, and the number of delayed terms to be considered in the model regressor (order).

2.  The size of the forgetting factor must be selected according to the nature of the changes in the parameters.

3.  We must check that the parameter estimates of the regression model result in unbiased estimates.

4.  We must decide whether to use an incremental model (include the integral component in the control loop).

5.  Generate the start-up conditions for recursive identification using a priori knowledge.

The process of connecting up and tuning the controller can be speeded up by using a computer program to detect problems and provide the means to solve them before the controller is actually activated. The ABET programming system for MATLAB [6.15], [6.16] is one such program and can perform the following operations:

1.  Collect and filter measured data on the process.

2.  Determine the structure on the basis of the data measured, together with the ability to include a priori knowledge of the process in various forms.

3.  Identify parameters from the measured data. There is a choice of several forms and levels of forgetting. We can evaluate the authenticity of the parameters obtained, and therefore the entire model, from the resulting covariance matrix of the parameters.

4.  Design a controller for the model we have obtained and test it on simulation. Provided the model is sufficiently precise, this module can be used to adjust and test the controller so that the transfer to a real plant is as smooth as possible. If a model obtained from identification and used for synthesis is also used in simulation, the testing can only be limited because the complexity and non-linearity of the system will not be represented.

Introducing the Controller into the Control Loop

The synthesis process is reliable and represents the deterministic transformation of model to controller parameters. This transformation is modified by the criterion. The one uncertain variable is the length of the horizon, whichmust be selected so  to obtain stabilizing control.

There are two reasons why an adaptive controller might fail:

1.  The model of the system was ill-chosen

2.  The identification lead to parameters which do not accurately reflect the controlled process, causing insufficient robustness and unacceptable behaviour.

The Start

Usually an adaptive controller is activated so that the process is controlled by another controller (or manually) and adaptive controller is switched on  at a given moment. Bumpless conditions must be ensured at the moment of switching  so that the data register in the adaptive controller receives the true values of signals measured previously. This can be done by allowing the controller to act as an observer over a certain period of time. It can thus measure individual variables, perform identification and synthesis, but is not allowed to applying the results. At a suitable moment, when the process is at its quietest, the system input is switched to the adaptive controller output. The result can be broken down into three categories:

1.  Behaviour is good or acceptable. In this case all is well and fine tuning can be carried out by changing the penalty, provided the application permits this.

2.  After the switch was made the system reacted with a large, unwanted excitement, but the process settled down again in time and the control behaviour was then good. This is a typical reaction to badly-chosen initial estimates for the model parameters and can be avoided by improving the estimates. This can be done by increasing the length of the identification period, using additional data for identification, and by supplying whatever a priori knowledge is available. The fact that the process returned to normal and the controller functioned satisfactorily shows that the structure of the process model is adequate and that identification provides parameter estimates which give a good representation of the system.

3.  The worst case is where control is so poor that the adaptive controller must be disconnected. This may be caused by:

a)  bad model structure (order too low) unable to represent the real process,

b)  the identification process giving biased parameter estimates, perhaps because the conditions for the character of the disturbance were not satisfied,

c)  the criterion chosen could not produce a controller with sufficient robustness,

d)  the process is markedly non-linear and cannot be represented by linear model.

Fig. 6.64  The progressive transfer of control from PID to LQ controller

(input u, u0,  number of samples)

When this occurs we can try to increase the order of the model, thus creating more freedom for identification to respect the properties of the disturbance and the system. We can also modify the criterion to result in a more robust controller. In the previous section we saw that increasing penalty Qu and lengthening the sampling period improve robustness, though this is accompanied by a deterioration of quality which can be achieved. Non-linearity in the process is usually such that it is impossible to obtain a more precise linear model. Neither raising the order nor more thorough identification will lead to any improvement. The only thing that can be done is to try to improve the robustness of the controller. The tuning process is not a one-shot event and often the whole  procedure must be repeated several times.

We have already shown how to use input reference signal u0 in combining an LQ adaptive controller with another type. As can be seen from fig. 6.64, the selection of just one parameter suffices to move from a reliable standard controller to a fully operational adaptive controller. This figure illustrates the input of a controlled system, which was a heat exchanger to make hot service water [4.17]. The output of a standard PID controller was used as signal u0. In the initial stage of adaptation, where the adaptive controller is apt to give inappropriate controller output, a high value was assigned to penalty Qu This resulted in the adaptive controller, in effect, following  signal u0 so that the process was, to all intents and purposes, controlled in the standard way. Gradually, penalty Qu was decreased to levels suitable for LQ control. The penalty was chosen on the basis of earlier experimentation. The LQ control algorithm progressively gained in effectiveness as the penalty was lowered.

6.6  Multidimensional Control

The multidimensional version of LQ control, that is where there are several system inputs and outputs, creates no complications either theoretically or algorithmically. Individual variable vectors will appear in regression model (6.4) and criterion (6.2). LQ control is solved in the state space, where the vectors and matrices are also used for systems with one input and output. Equally, there are few algorithmic difficulties to be solved for multidimensional examples, other than the extra dimensions of the vectors and matrices and the consequent growth in the number of operations and increased calculation time.

There is, however, a complication in the analysis of the behaviour of multidimensional controllers and how it is tuned. In our one-dimensional example penalty Qy = 1 was sufficient, but in a multidimensional process we must deal with the Qy matrix and, at the same time, it is difficult to give precise instructions. An indication of the procedure is given in [6.6]. On the other hand, multidimensional controllers have been applied in practical experiments [6.18].

Unless the nature of the process requires a truly multidimensional approach, it is more sensible to approximate this need using a series of one-dimensional controllers with external disturbance created by the components leftover from the output. A fundamental difference is that each output is directly determined by one input. Yet the controller output is also determined by the other outputs. This modification has one advantage: the sampling period for the controller used in diferent loop can differ.  

Closer analysis and programming support falls outside the scope of this chapter.

6.7   The Minimization of the Quadratic Criterion

In this section we will be dealing with a detailed approach to minimizing the quadratic criterion using the principle of dynamic programming, both in standard form and in a square root form, which will form the basis for our own calculation algorithm.

6.7.1 The Standard Minimization of the Quadratic Criterion

We will take the form of quadratic criterion
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(6.42)

which is the most generalized form appearing in this chapter. When minimizing criterion (6.2), it is formally appropriate to use the state form to describe the system. This need not be a state space model in the classic sense of the term, the state space form alone is sufficient. The condition is that the vector on the left side of the equation in time k is a function of the same vector in time k - 1. If we take the form of regression vector (6.12) we will obtain the following notation:
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where
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We assume that disturbance v(k) is generated by filter 1/Av(z-1). We obtain the individual matrices from the definitions of the vectors
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State matrix Px also respects any autoregression model of the development of measurable noise. Matrix P = [Pu, Px]   is composed of a row containing the parameters of the regression model, the parameters for the models of the development of external disturbance (avi) and the appropriate number of 1s. We will now use vector 
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, which also contains other variables upon which the value of the criterion depends. So quadratic criterion (6.2) can be written
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where 
[image: image193.wmf](

)

(

)

(

)

(

)

[

]

0

,

,

~

u

k

w

k

x

k

z

T

=

, and the standard penalty is drawn from
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In dynamic penalization, Q can be any symmetrical positive semi-definite matrix.

The minimization process now proceeds as follows: 
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 as  a  function  of the preceding y(k) and  we  can then find 

u(k0 + T).  to minimize y(k0 + T). Matrix P from (6.43) is used in the new calculation.

Since the vector 
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contains further elements which do not change we can write
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The size of the losses we wish to minimize using 
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The minimum version of this quadratic form is obtained in the standard way (derivation of 
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, with the condition that the derivation equals zero). We obtain
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where 
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, and H.. are the corresponding submatrices of matrix H. Because H represents loss in time k0 + T, we coordinate it with this index.

Loss was minimized in the final step so we can now turn to minimizing the penultimate step. This component of the criterion depends on 
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where matrix H*  is 
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. We must also expand H*   and Q by a column of zeros at the appropriate position. We can now continue formally as in the preceding step. We express 
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We can see that matrix  ( acquired an extra column which corresponds to variable 
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The result of minimization is similar to the previous step.
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This procedure is continued until all the terms of the criterion have been processed.

Commentary

We have shown that the control law can be split into several parts according to which variable is used to multiply their elements. The basic component is Hux,  which is multiplied by variables u and y. This component defines the feedback properties and represents controller transfer function 
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. The relationship between polynomials S and  R and vector Hux is given by the relation
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The Huv part represents the feedforward (filter) of external disturbance. There may be several of these components, depending on how many external disturbances have been modeled. Part Huw represents the influence of the setpoint. We have seen how each value for w(k) is given by single element Huw. If the criterion contains many terms (a long horizon), the dimension of Huw will be large. It is, however, possible to accumulate these values in one column. If we assume that the setpoint does not change along the horizon, then all the elements of vector Huw can simply be added and the result used as the numerator of the controller transfer function from setpoint 
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 will then contain 1s for w(k).  Any  setpoint change can then be accumulated in one column using this layout.

Similarly, Huu0 represents the influence of the reference input variables and the same rules apply as for Huw.

6.7.2 The Minimization of the Quadratic Criterion in square root form

The procedure given above is unsuitable for practical calculations. The difference which appears in relation (6.50) can cause the matrix of the quadratic form Hxx to cease to be positively definite (semi-definite). This means that the calculated value no longer makes any sense. The so-called square root approach, where we work with the square root  (factor) of the symmetrical matrix, is a useful tool for avoiding this. All the algorithms in this part are based on this principle.

The square root of  matrix is defined as follows. Matrix F is the square root of symmetrical, positively definite matrix A, when


A = FTF 

is valid. FT is the matrix transposed to F. There is an infinite number of  matrices which satisfy the condition above. However, there exists an unambiguous factorization on a triangular matrix. Therefore:


[image: image228.wmf]Ñ

Ñ

=

=

T

T

A

D

D


yet 
[image: image229.wmf]Ñ

¹

T

D

, whilst 
[image: image230.wmf]D

 and 
[image: image231.wmf]Ñ

 mark the lower and upper triangular matrix respectively.

The guiding principle of the square root is to replace the symmetrical matrix by its square root (factor of the matrix) for the purposes of calculation. In the minimization of criterion (6.42) we used matrix multiplication, addition of matrices, and the relation for minimizing quadratic form (6.50). In the same way, when we take the square root approach, we will require specific operations to manipulate the square root matrix.

Matrix multiplication remains, but we will need to define the operations which correspond to the addition of the matrices and minimization of the quadratic criterion. It soon becomes clear that the factor of the matrix addition corresponds to the expansion of the matrix of one factor by another. If A=FTF, B= GTG, and C= HTH.  then it follows from the definition of the multiplication of the compiled matrices that:
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The minimization of the quadratic form: according to relation (6.49), minimization of the quadratic form is used to find the u(k) which minimizes
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If we use factor S instead of S, (6.40) can be written as 
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If F is the upper triangle, u(k) can only influence the value of the first element of the vector under consideration. We obtain minimization by selecting
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where Fuu and Fux. are submatrices of  F corresponding to the multiplication of u(k) or x(k-1). The minimum achieved is given by the relation
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In the square root approach a further operation must be added to those above. Both the multiplication operation and the expansion of the matrix disturb the triangular shape of the square root of the quadratic form. Yet we still need the triangular shape both for its inambiguity and in order to find the optimal u(k). The operation we require is the orthogonal transformation which we can use to move any factor to the top or the bottom of the triangular matrix. The orthogonal transformation is represented by regular square matrix T, where T—1 = TT , i.e. TTT = 1. In reality, the multiplication of the matrix square root using the orthogonal matrix from the left does not change the value of the quadratic form.
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Algorithms for the T transformation, which transforms F into (, are known under the names: the Householder transformation, the Givenson transformation, or elementary rotation.

6.7.3 The Minimization Algorithm

The minimization algorithm comprises the above relations with the proviso that:

· Instead of using the square root matrix, it operates with the factorization of the symmetrical matrix on S = U'DU where U is the triangular matrix with a unit diagonal, and D is the diagonal matrix.

· The orthogonal transformation employs the method of elementary rotations which are performed by the RTREFOR and RTREDUC procedures

The operations described in table 6.5 are performed in each step of the minimization of the quadratic criterion (one iteration of the Riccati equation).

Table 6.5  A survey of the operations in the minimization of the quadratic criterion

Order     Formula     

Description                                     
 Program

1.        H = HxxP 

Expresses recursive losses using

multp(S,P,dv1,dv2)

                               
 
The previous state

2.          Hn = TH            
Transforms the product to the upper
rtrefor(Hn,Dn,H,D)

                                
 
Part of the triangle 

3.         Hy = QyP           
Expresses current losses using

xx=theta

                                

The previous state

4.
Hn =T [HnT, HyT]T  
Reduces current losses to

rtreduc(Hn,Dn,theta,Qy)

                                

Recursive losses

5. 
Hn = T[HnT,  QuT]T        Reduces penalty  u


rtreduc(Hn, Dn, qu, Qu)

 


6.         S=Hnxx

                     The minimum current loss is the

rtdecom(Hn,Dn,Huu,Hux,





Submatrix of the resulting losses.

           cl=Hnux                
Control is in the first row of Hn

6.7.4 Realization of  Minimization Procedure

The file of programs and simulation schemes in the LQ toolbox, which were created for the Matlab - Simulink environment to support the adoption and use of LQ controllers, contain a whole range of modifications of  the minimization of the quadratic criterion. We will take a detailed look at the basic version contained in file lqex2.m.

The input parameters are:

· polynomial B(z-1)   of the system transfer function numerator

· polynomial A(z-1)  of the system transfer function denominator

· the constant term of the transfer function representing offset K (usually zero)

· the NSTEP control horizon

· the penalty on controller output QUR (QR always equals one)

Other parameters may include field D of two-row matrix Di, which contains the disturbance transfer function numerator in the first row, and the autoregression model of developing disturbance in the second. The order of the model must not be higher than that of the relevant numerator. If we wish to disregard the autoregression disturbance model, this row will contain zeros.

The output parameters are:

· polynomials R and S which represent the feedback part of the controller

· the KON term which corresponds to constant K in the regression model

· the feedforward  from setpoint Clw

· the feedforward from  reference input Clu0

· the factors of Riccati matrix Hxx and Ds

· diagonal element Du

The first five values define the controller, whereas the remaining three characterize the results of optimizing the criterion.

The procedure has two parts. In the preparation part, matrix P, here marked PR, is composed together with vector STR which contains the various necessary dimensions for further calculation. Matrix PR has dimensions NA + NB +3, which means that one column is reserved for the constant term of the system: one for setpoint w(k) and one for variable u0, which represents the offset compensation. MEX function ABD2PREI creates matrices PS and STR. Because matrix PR is sparse, the MAKEDV(PR) finds the position of non-zero elements and 1s for the effective multiplication of the matrix. Multiplication is performed by the RTMULTP procedure. The MAKES forms the initial value of the Riccati matrix represented by matrices S and DS (the triangular matrix and diagonal). Vector QU (the penalty on the controller output) and auxiliary vector XX are defined, and vector TH of the regression model parameters is formed. Matrices HN and DN and auxiliary matrices H and DH are then created. In the DECOMIE procedure we obtain the individual submatrices from the decomposition of matrix HN: Hux contains the control law, and DS and S are moved on to a further iteration. Variable DU gives an information about the robustness of the design.

The formation of all these variables is important for increasing the efficiency of calculation in the following iteration loop. The procedures used here are in the real-time version, meaning they operate on existing fields. The iteration loop is controlled by the length of the horizon. It performs the following operations:

· the multiplication of S*PR rtmultp(h,s,pr,dnz,don)
· the transformation of the resulting non-triangular matrix into triangular form rtrefor(h,ds,hn,dn)

· the reduction of the vector for the penalty on output (Qy * TH). The setpoint is respected by value -1 in the penultimate column xx=th;xx(npr-1)=-1; rtreduc(hn,dn,xx,qux)

· the reduction of penalty QU. The compensation for offset using u0 is respected by value -1 in the penultimate column, xx=qu; qux=qur; rtreduc(hn,dn,xx,qux)
· the decomposition of HN into individual submatrices rtdecom(hn,dn,hu,hux,s,du,ds)
The output vectors are filled in at the end of the procedure.

A modification of this procedure with different input parameters has been created in Simulink for the adaptive version of the controller and the LQ synthesis module. The vector of the model parameters TH and its structure STRU are entered instead of the coefficients of the model transfer function. The structure contains data [NB NA MV [Di]], where NB is the number of elements in vector TH corresponding to variable u. Similarly, NA gives the number of parameters corresponding to y, MV is the number of disturbances, and field Di contains a pair of data: (the number of parameters corresponding to disturbance Vi and the number of coefficients in the autoregression model of disturbance Vi(.

Masking creates a special synthesis module in Simulink, the parameters of which are:

· Input parameters: Ts, STRU, NSTEP, QUR, where Ts is the sampling period

· Simulink input u: [TH AV]

· Simulink output: Hux

The procedure stores most of the variables as global variables. Some are stored in a vector of discrete states.

The list of lqex2.m functions

function [rr,ss,kon,clw,clu0,cld,s,ds,du]=lqex2(b,a,k,nstep,qur,d)

%

% [rr,ss,kon,clw,clu0,cld,s,ds,du]=lqex2(b,a,k,nstep,qur,d)

%

%  LQ optimal controller with external disturbance

%

% b(z^-1)/(a(z^-1) system discrete transfer function function

% k/(a(z^-1)  system offset

% nstep number of iterations of the Riccati equation (horizon)

% qur input penalization

% d(z^-1)/(a(z^-1) disturbance discrete transfer function function

%

% ss(z^-1)/rr(z^-1) controller feedback part transfer function function

% kon/rr(z^-1) offset term of the controller

% clw/rr(z^-1) transfer function function of the output reference  filter

% clu0/rr(z^-1)transfer function function  of the input refrence  filter

% cld(z^-1)/rr(z^-1)transfer function function  of the disturbance  filter

% s,ds Riccati matrix factors s'* ds * s

% du weight of the control law

%

 if (nargin<6) d=[]; end 

 [pr,str]= abd2prei(b,a,k,d);

 [prm,prn]= size(pr);

 [s,ds] = makese(str,1000);

  [dnz,don]= makedv(pr);

  th=pr(str(2),:); 

  m=str(8);

  qu=zeros(size(th)); qu(1)=1;qu(m)=-1;

  h=s*pr;

  [mm,nn]= size(h);

  hn= zeros(mm+1,nn); dn=eye(mm+1);

  [hu,hux,hxx,du,dx]= decomie(str,hn,dn);

  for i=1:nstep

  rtmultp(h,s,pr,dnz,don); 

  rtrefor(h,ds,hn,dn);

  xx=th; xx(m-1)=-1;

  rtreduc(hn,dn,xx,1.);

  xx=qu;qux=qur;

  rtreduc(hn,dn,xx,qux);

  rtdecom(hn,dn,hu,hux,s,du,ds);

  end 

  nb=str(2);na=str(4);m=str(8);nd=str(6);

  rr=hux(1:nb);ss=hux(nb:na +nb);kon=hux(m-2);ss(1)=0;

  if (nargin<6) cld=[]; else cld=hux(na +nb+1:na +nb+ nd); end

  clw=hux(m-1);clu0=hux(m);

6.8.  The LQ Toolbox

The toolbox given here has arisen out of the need to demonstrate the characteristics and application of 

· LQ controllers which require knowledge of the discrete transfer function of the system ...

· adaptive LQ controllers

The current toolbox for Matlab, in conjunction with Simulink 1.3 (or Simulink 3), provides:

· A Simulink  scheme for a

· fixed controller (various schemes to demonstrate various characteristics)

· adaptive controller (standard regression model, model with integrator factor)

· m files for LQ optimization - the function to calculate the optimal control law. The Simulink schemes  employ the calculated controller transfer function. There are several of these to deal with: a regression model, an incremental model, preprogramming the setpoint, and penalty increments y and u. The aim of this variation is to try to show the user how to work with the algorithm so that he or she might eventually be able to develop his or her own .m file for a specific controller, a multidimensional one, of example.

· A group of .mex and .m files (including their source modules written in C language) which creates a core of mathematical operations, particularly the matrix square root used in the optimization of the quadratic criterion (square root of the Riccati equation).

The adaptive controller is provided by a group of S-functions for identification, optimization and  controller output generation. The schemes serve as:

1.  Demo files

2.  A typical simulation environment to test adaptive LQ controllers where the user can change the system or controller setting

3.  Sources for the „LQ adaptive controller“ block for other simulation scheme created by the user.

In the toolbox no particular emphasis has been placed on user-friendliness (graphics) in the procedures for setting parameters or other selections. The user is expected to have had some previous experience of Matlab and Simulink.

Simulink schemes

Sch_a.m - The basic simulation scheme for a fixed controller which omits reference u0 and external disturbance.

sch_aw.m - A simulation scheme for a fixed controller which demonstrates the effect of preprogramming the setpoint. The controller is generated using the lquex3.m procedure.

schema1.m - The basic simulation scheme for a fixed controller using reference u0 to compensate for offset.

schema2.m - The basic simulation scheme for a fixed controller using reference u0 to compensate for offset. The simulated system is continuous.

Ides3.m - The basic simulation scheme for an adaptive controller. sw is used to switch between fixed and adaptive controller.

sch_an.m - The simulation scheme demonstrating an adaptive controller compensating for noise. The simulated continuous system allows the effect of the sampling period to be observed.

adlqi.m - The simulation scheme showing the use of an adaptive controller with an in-built integral term. The filters for identification data are shown in this scheme.

adlqs.m - The simulation scheme demonstrating an adaptive controller using signal u0.

adpid1.m - The simulation scheme showing the use of an adaptive controller in combination with a fixed controller.

Functions to Calculate an LQ Optimal Controller and Simulink Procedures

lqex1.m - The basic optimization procedure.

lqex2.m - The optimization procedure plus external disturbance.

lqex3.m - The optimization procedure with preprogramming.

lqex4.m - The optimization procedure with in-built integral term.

lqex5.m - The optimization procedure where the parameters are in the form of the vector of identified parameters.

lqexuni.m - The optimization procedure allowing dynamic penalization (on increments, inputs and outputs).

jbslide.m - The identification S-function.

jbslideo.m - The identification S-function plus estimated covariance of noise.

lqswjbg.m - An old version of the S-function for LQ optimization.

lqjbse.m - A new version of the S-function for LQ optimization.

ctrl.m - The S-function to calculate controller output - old version.

ctrle.m - The S-function to calculate controller output - new version

The procedures given below are the building blocks of the functions and simulation scheme.
abd2prei.mex - Generates the pseudo-state matrix of a system based on the polynomials of numerator (b), denominator (a), the system transfer function of offset (k), and the external disturbance numerator (d).

abd2pøi.mex - An old version of the above.

decomie.m - Performs the decomposition of the triangular matrix into the appropriate submatrices.

decomi.m - An old version of the above.

makedv.mex - Identifies the non-zero elements in the state matrix for fast multiplication.

makese.m - Generates the initial Riccati matrix.

makes.m - An old version of the above.

rtabd2pr.mex - Modifies the parameters of the state matrix using new polynomials a, b, d and k.
rtdecom.mex - Updates the decomposition of the triangular matrix.

rtmultp.mex - Multiplies quickly using knowledge of the position of non-zero elements in the state matrix.

rtreduc.mex - Reduces the triangular matrix and rows to a triangular matrix.

rtrefor.mex - Transforms a rectangular matrix into a triangular one.

rtth2pre.mex - Updates the system’s state matrix using new parameters according to the parameter vector.

rtth2pr.mex - An old version of the above.

th2abd.mex - Factorizes the vector of the parameters into polynomials a, b, and d.

th2prei.mex - Generates the system’s pseudo-state matrix on the basis of the parameter and structure vectors.

th2prei.mex - An old version of the above.

integr1.m - An S-function to include an integrator in part of the parameter vector.

integr2.m - An S-function to include an integrator in the control law.

trial1.m - An S-function to perform the scalar multiplication of preprogramming coefficients with a future setpoint.

oldval.m - An S-function to delay the setpoint. This is useful for preprogramming as it allows the future value to be estimated.

The modely file allows the user to choose one of the prepared systems and calculate the control law using lqexuni.m.

Notes:

· The identification procedures used here assume that the structure of the parameters are the same as in the regression model in this order:[b0,.b1, ..., bn, a1, a2, ..., an, k].

· The lqswjbg optimization procedure and controller ctrl and ctrle presume the parameter structure mentioned above and the consequent structure of the control law.

· The lqjbse optimization procedure can manage any length  of polynomial (a, b, d).

· The setpoint must also be entered in lqswjbg.

The following mathematical operations will be programmed in C and appear in Matlab as MEX functions as the basis for the algorithm which minimizes the quadratic criterion and all its modifications. Other operations in this part of the calculations, which can be referred to as initializing, and which runs only once during simulation or activating the algorithm in real time, are created by other Matlab commands and m-functions. Some MEX procedures are in rt form, i.e. as functions without output parameters. When these are used, no new field is created and the time needed by these functions is reduced to a minimum. This arrangement of programs allows algorithms to be written in a form which corresponds fairly closely to their theoretical derivation. Algorithms are easily modified for various special cases and yet retain a high level of effectiveness in calculations which depend on reliable and well developed procedures to solve those mathematical operations specific to the task of extracting the minimization of the quadratic criterion.
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