Automated Adaptive Controller Design

M. Kárný, J. Böhm, J. Bůcha(, N. Khailova, P. Nedoma
Institute of Information Theory and Automation, Pod vodárenskou věží 4,

182 08 Prague, Czech Republic

14 December 2000

Abstract

The potential of the adaptive controllers based on Bayesian theory is far from being properly exploited in practice. The lack of adequate computer aided support of their implementation can be blamed for it to a significant extent. This support has been recently developed as a MATLAB toolbox. The toolbox covers the design of Single Input Single Output (SISO) Linear Quadratic Gaussian (LQG) adaptive controllers for most of industrial problems. The design is based on system measurements and prior knowledge about the system, employs the expert knowledge, control aim, and results in a C-encoded program module - controller. The controller internal functions cover data sampling and scaling, model identification with forgetting, control synthesis and generation of control signal.

Keywords

Computer aided design; Adaptive control; Bayesian approach; LQG control method; Knowledge-based system

1. Introduction

The digital control of complex industrial processes is nowadays a standard for achieving high efficiency and reliability of production. In spite of the increasing sophistication of relevant theory, the use of simple three-term controllers (PID) still dominates the practice. The challenge of advanced adaptive control is rarely responded. This is caused by an objective complexity of the design procedures and by a risk of failure arising whenever the design is not put into service in a sufficiently qualified way. This state is perfectly observable on theoretically well-grounded adaptive controllers. Their use is justified for complex control situations that inhibit an efficient installation by a standard trial and error procedure. Such controllers have been successfully used on a range of full-scale applications, e.g. in paper making industry, on cold rolling-mill systems, on large rotary kilns, etc. (Kárný, Halousková, Böhm, Kulhavý & Nedoma, 1985). They were reported in the past but a repetitive and wider use has been restricted by high demands on user’s qualification and commission time. An adequate computer support for their implementation is the only viable way from this deadlock. The purpose of the paper is to describe a framework that provides this support.

The underlying theory of the discussed support and its various aspects has been published in papers (Kárný, Jeníček & Ottenheimer, 1990; Kárný & Halousková, 1991b and 1994, here see other references; Bůcha, Kárný, Nedoma, Böhm & Rojíček, 1998b, here see other references too). These papers address mostly the expert user. However, a concise target-user oriented description has been missing. This paper tries to fill the gap. It tries to inform a target user about the system demands, outputs generated and limitations of the system.
The paper focuses on single-input single-output case for which the overall design of adaptive controllers is now available. Some blocks of multiple-input multiple-output (MIMO) counterparts are still under the development. The knowledge-based layer of the system guides the user through to the final results. The support guiding through intermediate results is being developed, too. The corresponding software system is called DESIGNER 2000 (here shortly DESIGNER).

Layout of the paper is following. The second section presents an overview of the framework. The third section outlines knowledge-based layer that supports an interactive use of DESIGNER. The fourth section illustrates the overall design on a well-known laboratory example. Conclusions are complemented by the view of future development of the system. Implemented and planned parts will be distinguished (by verb tenses).

2. Adaptive Controller Design Overview

In the section, there is the design overview stressing a user’s role and interest.

Overall description

The overall context of the design and DESIGNER is shown in Figure 1.
 The design is supposed to be preceded by data acquisition on the controlled system. The user selects a loop for which the design should be performed by specifying controlled output and input signals. The user is responsible for information content of the data.

DESIGNER is implemented as a MATLAB toolbox. The design is fully automatic in a sense that the user provides his/her input, i.e. designs specification, then calls single function of the toolbox, and obtains results. The user specifies control aim, data, constraints, wishes, and prior knowledge about the system. Practically, all these parts are optional and default values can be used. There are the other even more optional parts of specification; some will be introduced later. The control aim specifies a desired stabilisation of the controlled output at fixed set point (regulation task) or at varying set point (joint servo and regulation task). Constraints (like input range, range of input changes, allowed overshoot) restrict closed loop behaviour. It is also possible to specify wishes on the closed loop behaviour: output range, range of output changes. Prior knowledge can be represented e.g. a guess of static gain, cut-off frequency, etc.

The design results and the output of DESIGNER are a final fully described adaptive LQG controller, predicted closed loop behaviour, and encoded adaptive controller. (Adaptive LQG) controller is a controller continually making design, i.e. continually making e.g. model estimation, closed loop optimisation including LQ controller design, and controller implementation. The encoded controller is C-coded and encapsulated so that it can be used in a real environment. The controller is well pre-tuned: its structure, control period, internal parameter estimator and other optional tuning knobs are given “reasonable” values guaranteeing smooth start up and good long term properties. The part of predicted closed loop behaviour is design quality. It is the probability of constraints and wishes fulfilment.

DESIGNER optimises the loss function (see later) so that the constraints are fulfilled at least with some pre-specified probability. As DESIGNER uses an incomplete knowledge about the system, it projects uncertainties of the specification into the uncertainties of the controller. DESIGNER adopts an integrated, algorithmic and numerically robust approach. These features make DESIGNER a unique tool. They allow the user to consider the design quality and, if needed, modify or complement the specification.

DESINER supports the adaptive LQG controller and models the controlled system by recursively estimated Gaussian ARX (autoregressive with exogenous variables) model. This has limitations. The controlled system has to be - at least approximately - linear, measurement noise has to be suppressed and process noise should be outlier free. Moreover, the real optimisation objective should not deviate too much from a properly chosen quadratic performance criterion.

Even with DESIGNER available it is wise to judge whether the adaptive LQG controller should be used in particular case. The following recommendations reflect common practical experience. Adaptive LQG controller is to be used mainly when the classical control tools have reached their limits and further improvement of control quality is desirable. Typically, this is the case when there are long or variable delays within the controlled system, when stochastic nature of the controlled system manifests itself significantly, when feed-forward or other MIMO control is needed, etc.

The design may fail due to lack of information and/or unrealistic specification of constraints. Also, the complexity of the optimisation under incomplete knowledge makes the danger of reaching of a local optimum more a rule than exception. The authors' experience shows that these dangers are suppressed by providing DESIGNER with informative data that reflect behaviour of the system that is sufficiently excited at expected working conditions. Moreover, prior knowledge about the system is to be extensively exploited for complementing the data. Even then, the design leads to a "locally best" controller. Interaction with the user is the only possible remedy if the “best” is not good enough. This stimulated us to use a knowledge-based layer. It orients the inexperienced user in results provided by DESIGNER and guides his/her corrective actions if he/she finds them useful. It has to guide and, at the same time, to provide the user with exactly that information he needs. This layer is being developed further on in order to guide the user even through intermediate stages, for example model structure estimation, where sources of insufficient design quality can be better recognised but their recognition must be paid by higher expertise involved.

Successful implementation of LQG adaptive controllers is far from being trivial even if the conditions named above are met. The number of user’s options, e.g. initialisation values for estimations, is rather high and a tailored choice requires skilled experts. For instance, if the second order system is controlled, the controller offers 44 such options. Many of them can be chosen relatively universally without substantial harm. Some of them are, however, critical both for transient and permanent phases of use. This also did motivate the creation of DESIGNER that sets these options in a systematic way.

Model

 The supported adaptive LQG controller estimates recursively ARX model

[image: image1.wmf]Q

)

 (1)

where yt and ut are the system output and input at time t, ai, bi, c are unknown model parameters, for ai i={1, 2, … m}, for bi i={i0, i0+1, … n}, i0(0 is delay, and et is zero mean white normal noise with unknown variance r. The parameters are collected into the row vector (=[a1 … am b i0 …bn c] and similarly the corresponding data into the regression vector Ψt=[yt-1 … yt-m ut-i0 … ut-n 1]. The symbol ‘ denotes transposition. If
[image: image13.png]is a point estimate of the model parameters, then
[image: image2.wmf]Q

)

´Ψt is a predictor of yt that serves for minimisation of the expected value of quadratic criterion, i.e. loss function

[image: image7.wmf]DESIGNER

User

specification

Design

is product of

Controller

is part of

System

data

control

(2)

where
[image: image3.wmf]1

N

>

denotes the design horizon, the positive semi-definite penalisation matrix Q penalises the deviation of regression vectors Ψτ from their desired values Ψτ,0. It is assumed that the corresponding previous outputs are available. y0,(is a user-specified set point. Its constant value corresponds with regulation task; predefined curves specify the combined regulation and servo task. Often, (Ψτ-Ψ0,τ)´Q(Ψτ-Ψ0,τ)=qu (u – u0)2 where qu(0 penalises control effort and u0,(specifies desired level of inputs. The user may provide the values u0,(or they are optimised, too.

The design is composed from several steps that are briefly characterised below. All steps, with the exception of the closed loop optimisation, are ready for MIMO design. The above model is for the sake of simplicity presented as a SISO one.

Data pre-processing
The processed signals are sampled and/or grouped according to the expected range of control periods, scaled to similar numerical level, outlying data are removed, and high frequency noise is suppressed. These simple standard signal-processing steps are vital for numeric treatment and potential validity of the model. The same scaling is applied to the rest of specification and the corresponding reverse scaling to results.
Processing of prior knowledge
The prior knowledge supplied by the user is the main complement to data. It may consist of a bit obsolete data, data acquired on a similar, but not identical, system, for instance, on simulated model. It may also specify particular system properties, typically the static gain, time constants, some points of frequency characteristic, cut-off frequency, etc. These knowledge pieces are of a quite different nature and precision. They have to be converted into a common basis, so-called fictitious data, and merged together even if they repeat or partially contradict each other. A novel theory and algorithmic basis have been created to this purpose (Kárný & Nedoma 2000; Kárný, Khailova, Böhm & Nedoma, 2000) and this step is their software image. The fictitious data is a result of this step. It is used in all subsequent estimation steps. This result can be confronted with estimation results. It provides one way for an extended knowledge-based layer that will be exploited in the future.

Control period estimation
The design quality of the controller strongly depends on a used control period. At present, an algorithm proposed in (Berec, 1996) is adopted. It searches for balance between potential predictive power of the model and influence of inevitable modelling errors. By the grouping of data and by explicit choice, the user provides the range of control-period candidates. An innovation that stems in theory of adaptive hybrid controllers (Guy & Kárný 2000; Guy, Kárný & Böhm, 1999) is being prepared.

Structure estimation

The model structure is a set representing non-zero model parameters. It is restricted by orders m, n and delay i0 in (1), which can be provided by the user It is found in model structure estimation step. This is based on general theory of Bayesian structure estimation (Kulhavý & Kárný, 1988; Kárný, 1983; Kárný, 1996) Essentially, the most probable structure conditioned by the data is searched for within a rich space of model structures. The size of this space is 2M+N+I (where M, N, I are expected maximum values of m, n, i0, respectively). The search is locally guided in a direction of the best structure probability. Using more search starting points reduces the problem of local minima. Significant inputs, and in MIMO context, external measurable disturbances in the regression vector can be chosen. This step is quite sensitive to information content of the processed data. Often, well-grounded prior knowledge is decisive in obtaining meaningful results of this step. Here, a substantial benefit is expected in the intended extension of knowledge-based layer.

Parameter estimation

Collected data and model structure serve in this step for estimating unknown model parameters in (1). Bayesian set up is used to this purpose (Peterka, 1981). It also allows to include relevant prior knowledge and characterising uncertainties of the resulting estimates even after processing of a limited amount of data. This is vital for the whole design that, unlike potential competitive approaches, respects these uncertainties and projects them into uncertainties of the design results, i.e. into the design quality. The user can provide additional information on individual model parameters. Mostly, however, no user’s input is expected in this step. The Bayesian estimation leads to algorithm formally equivalent to recursive least squares. It is known to be numerically sensitive so its numerical robust factorised version is implemented (Kárný & Böhm, 1991).
Forgetting estimation
Forgetting, i.e. suppression of the obsolete model parameter estimates, is the main tool how to implement a really adaptive controller. Forgetting is known to increase the sensitivity of the parameter estimator to informative content of the processed data. This property has caused a problem and inhibited adaptive control and its applications for a long time. The most advanced stabilised forgetting that completely avoids this problem (Kulhavý & Zarrop, 1993) is used within DESIGNER. This forgetting is controlled by optional forgetting factor that is estimated in this step. Essentially, the most probable forgetting factor is searched for. A low forgetting factor, e.g. below 0.9, indicates a bad design. No input is expected from the user. The available choice of forgetting type is for expert use only. It will be used in knowledge-based layer.

Closed loop optimisation

The nested computational iterations are performed in this stage

· closed loop optimisation iterations, containing

· optimisation of penalisation matrix with constraints iterations, in their turn containing

· LQ controller design iterations and

· closed loop simulation iterations.

Predicted closed loop behaviour is obtained at the end. The brute force solution is excluded for non-trivial cases. The whole demanding computation has become practicable by employing sophisticated stopping rules (Rojíček & Kárný, 1998) that have origin in sequential estimation (Wald, 1950). They balance, in an adaptive way, a precision of results and computational cost. With them, the whole design can be efficiently performed even on ordinary personal computers.

Parameter estimation provides us with a whole range of highly probable model parameter Θ values. This is a base of closed loop optimisation iterations. From the range of Θ values, samples of Θ and r are generated and for each of them penalisation matrix Q that meets the user’s constraints, is found. Thus, a range of penalisation matrices is obtained from which one is selected as a result of optimisation that guarantees constraint satisfaction with the high internally specified probability.

For this final penalisation matrix and a representative set of the model parameter samples, various closed loop characteristics like ranges of closed loop data or their changes are evaluated. Predicted closed loop behaviour is obtained in this way. It is presented to the user who can compare it with his/her constraints and wishes and modify them, if need be.

For the generated model parameters, the dependence of closed loop behaviour (for instance, range of inputs) on the selected penalisation matrix Q can be inspected. This leads to the optimisation of penalisation matrix Q in (2). Q can be tuned so that user’s constraints are met. DESIGNER does it through extensive closed loop simulations as analytic or numerical dependencies are available for a limited range of closed loop behaviour. Thus, through simulations a large variety of constraints can be potentially respected. This solution is satisfactory for the considered SISO case. The general solution will open a way to the MIMO version of DESIGNER.

For known model parameters Θ and chosen penalisation matrix Q, the optimal controller results from a standard LQ controller design (Kárný, Halousková, Böhm, Kulhavý & Nedoma, 1985). Both the described approach and real use call for an efficient and numerically robust solution. Factorised approach (Böhm, Kárný & Halousková, 1994) is implemented to this purpose.

A few comments are appropriate to this most demanding design step:

· It is assumed that the adaptive controller will estimate more correct model parameters during its use on real system as it will have better (more) data.

· Q is selected so that constraints are respected for the majority of a priori probable systems. Thus, a user’s finer tuning of Q during the controller use might be possible - small changes are expected.

· The obtained results fully reflect the quality of the information on which they are based. Without informative data complemented by prior knowledge they may easily become useless. With reasonable data, they can provide prediction of closed loop behaviour (without closing the loop), which is normally very hard to obtain.

Knowledge-based feedback

In this step, predicted closed loop behaviour is compared with the specified constraints and wishes. For this comparison expert knowledge is used. This knowledge is stored in knowledge base. The results of comparison are recommendations how to proceed with the design. For example, it might be possible to repeat the whole design with a changed specification.

Verification

The use of the controller in closed loop is the final test of the design success. The controller verification step is an evaluation of closed loop formed by the controller and realistic model or real system. It should be carried out when appropriate conditions are fulfilled. Discrepancies between expected and real design results should be carefully considered and if need be the whole design repeated with a changed specification. Problems in verification or comparison of predicted and expected results are caused either by unrealistic constraints and wishes or by a bad model quality. The latter one is caused by the lack of informative data that was not substituted by sufficient prior knowledge.

3. Interactive knowledge-based design

The expected difficulties in design may require iterative use of basic steps with modified inputs. Modifications require a sufficient expertise that is rarely available. This situation is addressed by an interactive version of DESIGNER (Bůcha, Kárný, Nedoma, Böhm & Rojíček, 1998a-c; Bůcha, Kárný, Nedoma & Böhm, 1999). It offers the required knowledge in automated way. The expert knowledge about the design process is elicited, formalised and put in the knowledge base that is then available to support DESIGNER 's decisions. The goal of this section is to provide a brief overview of that solution.

Interactive DESIGNER is composed of three main components shown in Figure 2. The first, ABET, is an algorithmic one. It is a MATLAB toolbox that forms basis of batch mode and provides algorithmic functionality necessary for carrying out the computations of DESIGNER steps. It serves for the other components (denoted by arrow lines). ABET is described in previous section. The second component is GUI (Graphical User Interface). It provides a user-friendly interface and gives the user information that he/she exactly needs. It meets one of the main requirements in this way. GUI asks services from the other components (arrow lines). The third component is a knowledge base subsystem, KB. It contains both the knowledge itself and the necessary reasoning engine too. It asks services from ABET and provides services to GUI components. KB hides the information unnecessary to the user and focuses his attention on a vital knowledge and data.

In ABET a substantial expert knowledge is built in the code. The additional knowledge is spread in the documentation, examples and help. It covers both technical and problem-oriented knowledge. The technical knowledge specifies how to use ABET functions and objects, what are relations among them, etc. Technical knowledge should be hidden to the target user. This is reached by integrating used software tools into single comprehensible and reliable system whose details are hidden in GUI. Detailed knowledge is accessible to the expert users that take active part in DESIGNER development. For example, specific characteristics of m-functions like their input and output parameter names, their utilisation in other functions, hierarchical relations, characteristics of computational complexity and characteristics of information processed by these functions like location, extent and form are important for such user. This knowledge is now gathered with the help of Rational Rose tool (Quatrani, 1998). It is planned to connect the knowledge engine with this knowledge/data repository.

The second part of knowledge, the problem-oriented knowledge specifies how to manage the whole design in order to reach reliably a successful solution. It has mainly a heuristic character. This knowledge is already, at least partially, identified. The yet unidentified knowledge will be revealed by experiments that are currently carried out with the DESIGNER. The problem-oriented knowledge is accessible to the target user. In this part of KB, there will be allowed even “contradictory” knowledge, dependent on expert who has provided it. This knowledge will be refined further in order to allow more sophisticated use of DESIGNER to users that are sufficiently skilled in adaptive control.

Figure 3 shows the main window of GUI. The top-level control of the design is done from here. There is a recommended path through the design steps, there are colours showing stages of steps, e.g. allowed processing, not allowed processing, being processed, and processed. There are many other ways to control the design. Practically each step has its control window. Via this window, the user provides input information and obtains output from the corresponding step. These windows can be seen after downloading DESIGNER from Web
. GUI is implemented with MATLAB GUIDE.

Let us shortly illustrate the knowledge base on the example dealing with the overall design control. After predicted closed loop behaviour is obtained, the results are evaluated and compared with specified constraints or wishes. A small knowledge base containing about 10 fairly complex rules carries out these comparisons and guides the user. It is implemented in MATLAB and will be re-implemented within expert systems technology. Knowledge base works in the knowledge-based feedback step and will work with information provided by all steps.
4. Processing example

"Beam and ball" system

In the example described here, a real system is a "beam and ball" plant. Its control design is considered here. This system has been selected because it is both sufficiently simple and, at the same time, nontrivial. It is rather difficult to control it by ordinary PID controller. The plant is shown at Figure 4. The beam has its bearing point in the middle, around which it can tilt. A ball moves on the beam and its measured position is output of this controlled system. The middle of the beam is denoted as the zero position of the ball. The two extreme ball positions are denoted as -1 (left edge) and 1 (right edge). Input of the system is the command to change the beam's angle, its normalized range is within the interval [-1 1].

Data

It is difficult to collect reasonable data, as the system is unstable. While collecting data in an open loop two dangerous situations are possible. First, the ball can reach the edge of the beam. Then, the data correspond to the system in the region of strongly non-linear behaviour where the final controller should not be used. Second, the amplitude of input signal can be too small. Then, measurement noise, non-linearity caused by friction, dead-zone of the actuator, etc. hide useful information in data. No reasonable model can be gained from these data. Thus, it is reasonable to collect data in a closed loop with a stabilising controller excited by set point variations. The data were sampled with period 0.1 sec. The data used in the design and depicted in Figure 5 were obtained in this way.

Control aim

Combined servo and regulation problem was considered. The output should follow the set point that jumps between values 0 and 0.5, cf. Figure 6. Switching time moments were unknown in design stage.

Constraints and wishes

The maximum of input values was required to be in physically available interval [-1,1]. (This is an application of design standpoint approximating the non-linear reality.)

Prior knowledge

It is hardly possible to specify usual global characteristics like value of static gain, points on frequency response, dominant time constants, etc. for the considered unstable system. At the same time, the simple physical nature of beam and ball system makes it possible to create a SIMULINK model. This model was constructed for first trails with the objective to minimise harm to the physical system. The SIMULINK model in Figure 7 consists of:

· the second order transfer function for servo used to change the beam's angle ,

· two integrators, which represent the ball motion,

· the group of relation operators with resetting integrals for the ball motion restricted to a finite length of the beam.

The nature and structure of the constructed SIMULINK model differs substantially from ARX model used by DESIGNER and controller. The simulation model neglects many important aspects like friction or actuator dead-zone. It has been compared with the real system and its model parameters were tuned so that responses of SIMULINK model and real plant were close to each other. The obtained SIMULINK model is able to generate large amounts of data that resemble behaviour of the real system. The sequence of 200 data samples sampled with the same period as real ones was used as a prior knowledge item. The transfer of the knowledge built in the simulation model is made through the simulated data set. It avoids a hard problem of model simplification.

For comparison, a test was performed without exploiting this prior knowledge. Control period was allowed to be triple of sampling period. In both cases, the upper bound of expected maximum values of m, n, i0 of the model (1) was 10. DESIGNER was run in batch mode. Then, verification step was performed.
Results and discussion

Without prior knowledge, the designed controller led to unsatisfactory closed loop behaviour in the verification step. A closer inspection of intermediate results shown that insufficient structure of the model (1) was found, namely, with regression vector Ψt = [y t–1 y t-5 u t-7].

With prior knowledge, the design was successful. The found structure of the regression vector Ψt = [y t–1 y t-4 y t-8 y t-9 y t-10 u t u t-2 u t-3 u t-4 u t-5 u t-7] was the main change. Table 1 lists various closed loop characteristics predicted by DESIGNER and compares them with their counterparts obtained in verification step.

Results in Table 1 show success of the control design. Ranges of input signals, control error and maximum value of input obtained in verification are fully covered by predicted intervals of corresponding values. Control error in verification step lies even below lower bond of the predicted interval. The only unsatisfactory item is overshoot. Its verified value is 1.696 that is bigger than upper bound of the predicted interval 1.459. In this situation user has to make a decision based on his/her own experience: either accept this result or reject it. In this particular case authors assumed it acceptable.

Quality of these predictions is also confirmed by good verification run shown on Figure 6.

 Table 1. Comparison of prediction and verification results.

Value tested
DESIGNER’s prediction(
Verification(

Input range
 [-0.530 0.947]
[-0.112 0.106]

Output range
[-0.199 0.615]
[-0.012 0.515]

Control error
[-0.688 0.122]
[-0.028 0.032]

Control error variance
[0.204 0.468]
0.080

Overshoot
[0.786 1.459]
1.696

Maximum value of input
[0.584 1.631]
1.037

5. Conclusions

The paper provides the target user with information about algorithmic and knowledge-based tool called DESIGNER. It converts in an automatic way the user’s control aim, wishes, constraints, and prior expert knowledge into completely pre-tuned adaptive LQG controller. At the same time, it predicts in an off line mode properties of the closed loop. DESIGNER should shorten the commission time of advanced controllers drastically while demands on extent of user’s knowledge are significantly reduced.

DESIGNER is based on a unified theory and many innovative algorithmic solutions that were described in a sequence of specialised papers. Here, the result is described from user’s viewpoint and its behaviour illustrated on a difficult pilot plant.

Throughout the text, limitations of both LQG controllers as well as of DESIGNER have been repeatedly pointed to in order to avoid unrealistic expectations. These limitations leave still a wide application range. It was practically and repeatedly shown in full-scale LQG controller applications running for decade. For DESIGNER, this space still waits for its exploration. This paper should help in this direction and there are reasons to be optimistic in this respect.

Acknowledgements

The work has been partially supported by the grant GA AV ČR No. 102/99/1564.

References

Berec L. (1996). On model structure identification (a unifying view and a particular example). Pre-prints of the 2nd European IEEE Workshop on Computer Intensive Methods in Control and Signal Processing, CMP96, Berec L., Rojíček J., Kárný M., & Warwick K., Eds. (pp. 121—127). UTIA AVCR, Prague.

1. Booch, G., Rumbaugh J., & Jacobson I. (1998). Unified Modeling Language User Guide, Addison Wesley, 482 pp.

Böhm J., & Kárný M. (1992). Merging of users knowledge into self-tuning controllers. Pre-prints of 4th IFAC Symposium Adaptive Control and Signal Processing ACASP92, I.D. Landau, L. Dugard, and M. MSaad, Eds., vol. 2 (pp. 427—432). Academic Press, Grenoble.

2. Böhm J., Kárný M., & Halousková A. (1994). LQ optimization with irregular input-output sampling: Algorithmic and complexity aspects. Pre-prints of the European IEEE Workshop CMP94, L. Kulhavá, Kárný M., & Warwick K., Eds. (pp. 265—268). UTIA AVCR, Prague.

Böhm J., & Kárný M. (1995). Transformation of users knowledge into initial values for identification. Pre-prints of the DYCOMANS workshop Industrial control and management methods: theory and practice, Součková M., & Böhm J., Eds. (pp. 17—24). UTIA AVCR, Prague.

Bůcha J., Nedoma P., Kárný M., & Böhm J. (1999). Knowledge-based approach applied in the design of adaptive controller. Proceedings of 12th Conference Process Control'99, Tatranské Matliare (pp.19 – 23).

Bůcha J., Kárný M., Nedoma P., Böhm J., & Rojíček J. (1998a). Overview of DESIGNER 2000 Project. Pre-prints of Process Control 98 Conference, ŘÍP 1998, University of Pardubice, Kouty nad Desnou (pp. 65-70).

Bůcha J., Kárný M., Nedoma P., Böhm J., & Rojíček J. (1998b). DESIGNER 2000 Project. International Conference on Control’98, (1998). Conference Publication no. 455 (pp. 1450-1455). University of Wales Swansea, Swansea.

3. Bůcha J., Kárný M., Nedoma P., Böhm J., & Rojíček J. (1998c). DESIGNER 2000, Feasibility Study, Research Report no. 1918, UTIA AV CR, Prague.

Guy T.V. & Kárný M. (2000). Design of an adaptive controller of LQG type: spline-based approach. Kybernetika 36, (2), 255-262.

4. Guy T.V., Kárný M., & Böhm J., (1999). Linear Adaptive Controller based on smoothing noisy data algorithm. Proceedings of European Control Conference ECC'99, Karlsruhe, Germany.
5. http://www.utia.cas.cz/user_data/scientific/AS_dept/RECIAS/allceexa.htm.

6. Kárný M., Halousková A., Böhm J., Kulhavý R., & Nedoma P. (1985). Design of linear quadratic adaptive control: Theory and algorithms for practice. Kybernetika 21, Supplement to No. 3, 4, 5, 6.

7. Kárný M., & Böhm J. (1991). Probabilistic modelling of imprecisely known systems for robust linear-quadratic design. Proceedings of the 1st European Control Conference (pp. 426-431). Hermes, Paris, Grenoble.

8. Kárný M., & Halousková A. (1991a). Experience with off-line identification for preliminary tuning of linear quadratic Gaussian self-tuners. Pre-prints of the 9th IFAC/IFORS Symposium on Identification and System Parameter Estimation (pp. 164—169). AKA PRINT Nyomdaipari, Budapest.

9. Kárný M., & Halousková A. (1991b). Implementing LQG adaptive control: a CAD approach. Pre-prints of the 9th IFAC/IFORS Symposium on Identification and System Parameter Estimation (pp. 1585-1590). AKA PRINT Nyomdaipari, Budapest.

10. Kárný M., & Halousková A. (1992). User supplied information in the design of linear quadratic Gaussian controllers. Pre-prints of 4th IFAC Symposium Adaptive Control and Signal Processing ACASP92, I.D. Landau, L. Dugard, and M. MSaad, Eds., vol. 2 (pp. 451—456). Academic Press, Grenoble.

11. Kárný M., Böhm J., & Halousková A. (1993). MIMO - a set of SISO? multivariate system adaptively controlled as a set of single-input single-output models. Mutual Impact of Computing Power and Control Theory, Kárný M., & Warwick K., Eds. (pp. 121—126). Plenum Press, New York, London.

12. Kárný M., & Halousková A. (1994). Pre-tuning of self-tuners. Advances in Model-Based Predictive Control, D. Clarke, Ed. (pp. 333--343. Oxford University Press, Oxford.

13. Kárný M., Halousková A., & Nedoma P. (1995). Recursive approximation by ARX model: a tool for Grey Box modelling, International Journal of Adaptive Control and Signal Processing, vol. 9 (pp. 525—546).

Kárný M., Berec L., & Nedoma P. (1995). Bayesian structure estimation: State and progress. Pre-prints of the Summer School Course, Böhm J., & Rojíček J., Eds. (pp. 13—27). UTIA AVCR, Prague.

14. Kárný M., & Nedoma P. (2000). Automatic processing of prior information with application to identification of regression model, Kybernetika, submitted.

Kárný M., Khailova N., Böhm J., & Nedoma P. (2000). Quantification of prior information revised, International Journal of Adaptive Control and Signal Processing, 2000, in print.

Kárný M., (1991). Estimation of control period for selftuners, Automatica 27 (2), 339-348. Extended version of the paper presented at 11th IFAC World Congress, Tallinn.

15. Kárný M., Jeníček T., & Ottenheimer W. (1990). Contribution to prior tuning of LQG selftuners, Kybernetika. 26 (2), 107-121.

Kárný M., & Kulhavý R. (1988). Structure determination of regression-type models for adaptive prediction and control. Bayesian Analysis of Time Series and Dynamic Models, Spall J.C., Ed. Marcel Dekker, New York, chapter 12.

16. Kárný M. (1983). Algorithms for determining the model structure of a controlled system, Kybernetika. 19 (2), 164-178.

17. Kárný M. (1996). Challenges of adaptive control. Proceedings of the Spring school, A. Kuznetsov, Ed. (pp. 79—90). Department of Engineering Sciences, Oxford University, Oxford, deliverable of the project PREDCON.

18. Kulhavý R., & Kárný M. (1984). Tracking of slowly varying parameters by directional forgetting. Pre-prints of the 9th IFAC World Congress, vol. X (pp. 178—183). Budapest.

19. Kulhavý R., & Zarrop M. B. (1993). On a General Concept of Forgetting. International Journal of Control, 58 (4), 905-924.

20. Nedoma P., Kárný M., & Böhm J. (1996). Project DESIGNER. Adaptive and Predictive Control, Proceedings of the Spring school, A. Kuznetsov, Ed. (pp. 91—93). Oxford University, UK.

21. Nedoma P., Kárný M., & Böhm J. (1998). Software tools for use of prior knowledge in design of LQG adaptive controllers. Pre-prints of the IFAC Workshop on Adaptive Systems in Control and Signal Processing, Glasgow, August 1998 (pp. 425—429). IFAC.

22. Peterka V. (1981). Bayesian system identification.: P. Eykhoff (Ed.), Trends and Progress in System Identification, Pergamon Press, Oxford (pp. 239-304).
23. Pont M. J. (1998). Control System Design Using Design Real-Time Patterns. International Conference on Control’98, (1998). Conference Publication no. 455, University of Wales Swansea, Swansea.

Quatrani, T. (1998). Visual Modeling with Rational Rose and UML, Addison-Wesley, Reading, 222 pp.
24. Rojíček J., & Kárný M. (1998). A sequential stopping rule for extensive simulations. Pre-prints of the 3rd European IEEE Workshop on Computer-Intensive Methods in Control and Data Processing, Rojíček J., M. Valečková, Kárný M., & Warwick K., Eds., Praha, September 1998 (pp. 145—150), UTIA AVCR.

25. Wald A. (1950). Statistical Decision Functions, John Wiley & Sons, New York, London.
Figures and figure captions

Figure 1: Context of DESIGNER
[image: image8.wmf]å

=

Y

-

Y

Y

-

Y

+

-

=

N

Q

y

y

L

1

0

0

2

0

t

t

t

t

t

t

t

)]

(

)'

(

)

[(

,

,

,

[image: image9.wmf]t

t

t

n

i0

i

-i

t

i

-i

t

i

m

1

i

t

e

e

c

u

b

y

a

y

+

Y

Q

=

+

+

+

=

å

å

=

=

'

Figure 2: Components of DESIGNER 2000. ABET contains algorithmic kernel, GUI provides interface to user,

 KB contains both knowledge and inference engine
[image: image4.png]
[image: image10.wmf]t

t

t

n

i0

i

-i

t

i

-i

t

i

m

1

i

t

e

e

c

u

b

y

a

y

+

Y

Q

=

+

+

+

=

å

å

=

=

'

[image: image11.wmf]å

=

Y

-

Y

Y

-

Y

+

-

=

N

Q

y

y

L

1

0

0

2

0

t

t

t

t

t

t

t

)]

(

)'

(

)

[(

,

,

,

Figure 3: The main window of on-line DESIGNER reflects main steps and state of interactive design. User’s inputs and outputs are fed through windows hidden under each main block.

[image: image12.wmf]DESIGNER

User

specification

Design

is product of

Controller

is part of

System

data

control

Figure 4: Beam and ball system. Position of the ball from the middle is system output y, the command on the desired angle α of the beam forms system input u.
[image: image5.png]
Figure 5: (Collected) data processed by DESIGNER. The discrete sampling time is on x-axis.
[image: image6.png]
Figure 6: Verification results. The system output follows the set point (periodic rectangular pulses). It is driven by the system input generated by controller designed by DESIGNER with prior information.

Figure 7: SIMULINK model of beam and ball system. System input enters the block In1 and system output is available on the block Out1.

� EMBED Word.Picture.8 ���

0

1

-1

KB

ABET

GUI

� EMBED Equation.3 ���

� EMBED Equation.3 ���

(e-mail: � HYPERLINK mailto:bucha@utia.cas.cz ��bucha�@utia.cas.cz

� UML (Universal Modeling Language) (Booch, Rumbaugh, & Jacobson, 1998) graphical language is used in following figures. The short explanation of used language symbols follows: Named rectangle means a class, e.g. DESIGNER. Named man icon means an active (external) class, e.g. User. (Named) line connecting two classes means an association relation, e.g. Interaction. It is used for a data flow, event and other relations. (Named) arrow with a diamond head means that a class is a part of another class. For example, Design is part of DESIGNER.

� � HYPERLINK "http://www.utia.cas.cz/user_data/scientific/AS_dept/ACTIVITY/maiprod.html" \l "Designer" ��http://www.utia.cas.cz/user_data/scientific/AS_dept/ACTIVITY/maiprod.html - Designer�

(Ranges of all signals and statistics are performed using 90% confident interval.

2
7

_1037016336.unknown

_1037185175.doc

DESIGNER

User

specification

Design

is product of

Controller

is part of

System

data

control

_1038226612.unknown

_1038226578.unknown

_1037016371.unknown

_1023098434.unknown

