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Chapter 1

Introduction

One of the ways to treat diseases of thyroid gland is use of nuclear medicine. During the treat-
ment, a lot of various biophysical data can be measured. Potential improvement of the treatment
results can be reached, among others, by application of such a data processing methodology that
corresponds to nature and properties of these data. Valid information extracted from the data can
support medical decisions.

Bayesian methodology was found as a suitable tool for this purpose.
Application of the Bayesian theory to data processing includes both theoretical analysis and

practical implementation. Work described in this thesis focuses mostly on practical (numerical
and algorithmical) realization of Bayesian estimates derived before.

Meaningful results can be analyzed statistically. The conclusions could contribute to further
improvement of the treatment.

This chapter guides through the specific problems addressed in this thesis. In section 1.1,
general problem of information and decision in medicine is introduced. Section 1.2 specifies these
general ideas to a frame of the Clinics of Nuclear Medicine, Motol Hospital, Prague (KNM ), and
to the treatment of thyroid gland diseases. In section 1.3, the situation of information processing
at the KNM is outlined using some terms that are defined later in this thesis in detail. It is shown
on several examples that the methods of computations on the data, that are used so far at the
KNM , yield results that are not suitable for subsequent responsible medical decision. In section
1.4, Bayesian methodology is proposed as a tool for the solutions and both its advantages and
disadvantages are mentioned. In the last section 1.5, the thesis layout is described by chapters.

1.1 Decision Support in Medicine

Every rational decision requires sufficient amount of relevant information.
In medical treatment, there are two main steps of information processing and decision making:

diagnosis and therapy.
In the diagnostic step, information as complex as necessary about health state and its causes is

gathered and medical conclusions formulated. In the therapeutic step, decision about some actions
according to the previous conclusion is made and the appropriate actions are carried out.

Biophysical Examination as a Source of Data

To collect the facts of interest, various examination methods are used including biophysical ones.
Biophysical methods rely on interaction of physical fields with biological matter. Quantitative
results of direct measurements yield some data that directly or indirectly serve as information
source and support for further medical decisions.

15
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Data Processing Is a Part of Medical Decision

Mostly, the biophysical data cannot be used directly and some processing is necessary to transform
the data to a desired form. This processing then becomes a part of examination and it can influence
the medical decisions, consequently the therapeutic action and its result (success).

This influence, of course, depends on the importance of the given examination or measurement
for the medical decision.

Reality — Data Quality Is Given

The term “data” (see part 1.3) denotes outputs of some biophysical examinations (see Chapter 3,
page 27). As biophysical examination is a measurement of some physical quantity, it is loaded by
uncertainty given e.g. by measurement error or other reasons.

The effort should be made to eliminate or decrease the data uncertainty as much as possible. If
it is not possible, either principially or practically, such methods of data processing must be used
that can treat the data uncertainty so that
• the uncertainty is not increased, preferably it is decreased,
• the uncertainty is quantified so that reliability of the result is known.

This thesis deals with processing of limited amount of noise-polluted data that serve as one of
information sources for medical decisions in the treatment procedure.

1.2 Treatment of Thyroid Gland Diseases Using 131I

Here, the adopted practice of the KNM is reviewed that should be supported by the work described
in this thesis.

1.2.1 Clinics of Nuclear Medicine (KNM )

Clinics of Nuclear Medicine, Faculty Hospital Motol, Prague (KNM ), is the world famous center
for treatment of thyroid gland diseases using 131I. For more than 30 years it treats successfully
thyroid gland carcinoma, thyreo-toxicoses and other illnesses.

Few years ago, a team of engineers and researchers from the KNM and Institute of Information
Theory and Automation, Academy of Sciences of the Czech Republic (ÚTIA), started to focus
on data, obtained by measurement of various quantities during patients’ examinations, and on
the results given by traditional way of these data processing. They concentrated on quantifica-
tion of uncertainty of the data and the results. They addressed relevance of using appropriate
mathematical tools for data processing [13] and their influence on validity of the results [14].

Several projects dedicated to application of suitable mathematical methods in data process-
ing were successfully defended, supported by Grant Agency of the Czech Republic (GA ČR
312/94/0679) and European Union (EU COST OL B2.20) in years 1994–96. Currently, a project
for influence of biophysical factors on thyroid gland cancer treatment, supported by Internal Grant
Agency of Ministry of Health, Czech Republic (IGA MZ ČR 4581-3), is running.

1.2.2 Procedure of the Treatment

Thyroid gland tumor belongs to diseases treated at the KNM .
One of the ways to diagnose and cure thyroid gland tumor is an internal administration of

unsealed radioactive iodine [27], [36], mostly 131I [11]. This element is selectively accumulated in
thyroid gland where, if radioactive, it produces ionizing radiation. This radiation can be used for
diagnosis of the organ state (e.g. using scintigraphy) or for therapy — destruction of the affected
tissue.

If a tumor of thyroid gland is diagnosed, it is usually removed invasively by surgery. The role
of radiation treatment is to destroy any tumor remnants that were not possible to be removed by
surgery.
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The procedure of radiation treatment consists of two steps.

Diagnosis. In this step, the patient is supplied orally 131I as sodium iodide or potassium iodide of
certain low activity, usually about 70–100MBq. Then several biophysical measurements and
medical examinations follow, yielding information about accumulation of 131I in the area of
thyroid gland, 131I distribution in the organism etc.

Therapy. The diagnosis can indicate tumor tissue or its remnants that must be destroyed by
radiation. This destruction is called therapy. If therapy is necessary, the therapeutic activity
is individually determined for the patient. 131I of this activity is supplied to the patient.
In the thyroid gland, where this activity is accumulated, the tumor tissue is destroyed by
the radiation. During therapy, biophysical measurements are also performed. Data collected
during this step are processed for checking and hygienic purposes.

Therapeutic activity is usually approximately by two orders higher than diagnostic one, in
the range 2–7 GBq.

The therapeutic activity of iodine must be high enough so that radiation is able to destroy the
target tissue. Because of radiation influence to other tissues, the therapeutic activity must be, on
the other hand, sufficiently low to decrease the radiation risk, i.e. damage of other tissues (e.g.
bone marrow). In other words, the supplied therapeutic activity must be as low as possible with
the effect of therapy guaranteed at the same time.

The determination of the therapeutic activity is given by two points of view: objective (dosi-
metric and other values estimation) and subjective (subsequent medical decision). In the first step,
the values of some dosimetric quantities based on the measurements during the diagnostic phase
are estimated. These values then significantly support the ultimate physician’s decision, taking
into account also the patient’s state, disease stage etc.

The values of quantities influencing the physician’s decision must be therefore calculated in the
way so that imprecisions and errors do not increase or decrease them artificially, or, in other words,
as precise as possible.

In clinics of nuclear medicine all over the world that deal with thyroid gland diseases, no
standardized approach to therapeutic activity estimation is adopted. There are discussions if
therapeutic activity should be individualized or not. One way is to individualize the therapeutic
activity using various criteria (mass of thyroid gland, mass of the patient, kinetics of iodine in
the organism etc.) [8], [34], [9], another way is to apply constant activity to each patient [41] or
constant activity to mass unit of thyroid gland [4]. Generally, therapeutical activities applied in
the world vary from 0.85 GBq to 11 GBq.

At the KNM , therapeutic activity is individualized just roughly. Practically, there are few
values used as possible therapeutic activity (80mCi, 100mCi, 120mCi etc.) and one of them is
chosen to be supplied to a patient, according to medical decision. Finer variation of individual
therapeutic activities has not been taken into account so far.

Use of relevant mathematical methods yields meaningful results in computation of estimates of
important quantities on clinical and biophysical data. These estimates can be statistically analyzed
because a large set of patients’ data, collected for many years, is available. Output of this analysis
can indicate ways of finer individualization of therapeutic activity and further improvement of the
treatment.

1.3 Motivation — How to Process the Data

To illustrate the relationships between biophysical data and results of interest together with com-
plexity of the data processing and its pitfalls, this section shows simplified schemes of quantities
and computations defined in detail in Chapter 3, page 27.
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1.3.1 What Is Dealt with?

The following figures show connections and relationships between measured data and biophysical
or dosimetric results.

The graphical notation keeps these conventions:

• biophysical data (results of direct measurements of biophysical quantities) are framed by thin
solid-dashed lines,

• intermediate biophysical quantities playing a role of inputs to other computations and car-
rying information that can be used for medical decisions are framed by half-thick solid lines,

• radio-hygienic quantities playing important role in medical decisions are framed by thick
solid lines,

• other quantities are framed by thin solid lines.

The Figure 1.1 shows computational scheme for effective half-life and relative activities of the
organ measured. The magnitude of relative activities can indicate necessity of further examination,
the effective half-life is an important input quantity for doses estimations.

The Figure 1.2 shows computational scheme for so called excretions that are used as input
quantity for blood dose estimation.

The Figure 1.3 shows computational scheme for radio-hygienic quantities that are results of
interest carrying information about the patient’s body reaction to application of radioactive iodine.
This information serves as a direct criterion for further medical decisions.

A brief summary of meaning of the quantities mentioned above is given here:

Data are quantities directly measured, namely, impulse counts of background and signal on back-
ground, thyroid gland mass and patient’s mass.

Radio-hygienic quantities are called the following quantities:

• Specific irradiation of thyroid gland that is a dose absorbed in thyroid gland tissue. The
required destructive dose is 1 200 Gy.

• Specific irradiation of blood that is a dose absorbed in blood. It must be less than 4Gy
and its anorganic fraction must be less than 1Gy to avoid damage of blood and bone
marrow (see part 3.11, page 30).

• Prediction of reaching requested activity by the a patient’s body is important for plan-
ning the patient’s treatment in the KNM .

Other quantities like relative activities, effective half-life, excretions etc. that are also used for
medical decision.

1.3.2 How the Problem Is Solved So Far — Examples

Simple algebraic formulae to estimate biophysical, radio-hygienic and other quantities [21], [22],
[36] are used so far at the KNM . The data measured on patients are substituted into these formulae.

There are two main specific features of these data:

Limited amount. Due to high number of patients, capacity of measurement devices, established
measurement methodology and also economical limits of the KNM , only few measurements
of each patient can be performed. These conditions lead to lack of data in majority of cases.

Uncertainty. Available data are corrupted with uncertainty due to (a) measurement techniques
of low precision (thyroid gland mass), (b) variation of measurement conditions (calibration
coefficient changes along sequence of excretions measurements) or — most frequently —
(c) by the physical nature of the process (counting particles of ionizing radiation in some
fixed time interval).
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Figure 1.1: Computation scheme for effective half-life Tef and relative activities
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The algebraic formulae mentioned above do not respect randomness and uncertainty of the
data and take them as deterministic values. Therefore this algebraic processing is sometimes
called deterministic.

Using the traditional simple deterministic formulae, the data uncertainties are cumulated in
the uncertainty of the result by the mechanism of errors propagation. The uncertainty of the result
obtained in this way is unknown and such values have sometimes even no physical meaning [11].

We will show few examples when traditional deterministic way of data processing can fail and
yield meaningless values. For detailed definitions of the terms, see Chapter 3.

Example 1: Source on the Background

When signal Z of a radioactive source is measured (see parts 3.4 and 3.5, page 29), due to presence
of a background B, what is obtained is the composition of the background and the signal B + Z.
Both B and Z are random quantities. If B + Z � B (case of higher activities), then Z can be
estimated trivially in the deterministic way by subtraction Z = (B+Z)−B. In case of B+Z ≈ B
(case of lower activities), the subtraction is loaded by a great error and, because of fluctuations,
its result can be even negative, which is a physical nonsense [15]. This situation can be often met
during staff contamination measurement [11]. Therefore some more reliable way of Z estimation
is necessary.

Example 2: Excretions

Excretions are relative activities diluted by urine (see part 3.7, page 29). Activity is determined
according to (3.9), page 29. For calibration coefficient c estimation (see part 3.6, page 29), two
signal estimates are necessary: signal of the measured source and of the standard source of ra-
diation. Furthermore, calibration coefficient for excretions changes in an unknown way (see part
6.8.4, page 68).

The computation scheme of excretions is shown on the Figure 1.2.
Fluctuation of signals together with the unknown change of calibration factor can cause the

deterministic relative activity estimate so uncertain, that these cases can occur:

• excretions are greater than 100%,

• excretions are negative,

i.e. the patient seems to drink 131I “secretly” or he seems to be 131I-generator. It is obvious that
these cases are physically meaningless.

Example 3: Effective Half-life

Effective half-life, according to the Figure 1.1, is obtained by fitting the model (6.19), page 65, to
a sequence of activities {Ai} in times {ti}. Problems with activities estimation were mentioned
in excretions description in the previous example. During the deterministic effective half-life es-
timation, a linear regression is used for points given by (ti, lnAi). Position of the regression line
determines the effective half-life.

Due to fluctuations in the data and absence of any constraints (see (3.7), page 28), these cases
can occur:

• effective half-life is greater than physical half-life,

• effective half-life is negative,

These cases have no physical meaning.
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Example 4: Unknown Uncertainty

Even if the results of the estimation tasks mentioned above in the deterministic way seem to be
physically meaningful (Z > 0, excretions and effective half-life values are within their physical
bounds), it is not known how precise they are, i.e. what is the magnitude of their uncertainty.

Considering that excretions and effective half-life enter the estimations of the important radio-
hygienic quantities (see Fig. 1.3), we can find out that the final deterministic estimates can be even
meaningless or at least their precision is unknown. Such estimates can hardly serve as a reliable
source of a responsible medical decision.

1.4 Idea to Use Bayesian Tools for the Solutions

The quantities to be estimated can be understood as results of some processes, both physical and
biophysical. Majority of these processes can be successfully modelled. For some quantities, expert
knowledge (e.g. physical bounds of the values) is available. This situation is suitable for using the
Bayesian methodology.

As for systematic use of Bayesian methodology in this field, no such attempt was so far regis-
tered. This work is a part of effort to use Bayesian approach in nuclear medicine which is a new
application area.

1.4.1 Advantages of Bayesian Methodology

Bayesian methodology has been used in ÚTIA for various purposes for many years. It is described
thoroughly in [29]. It is a principially simple way to combine multiple information sources:

• model of the system we observe, i.e. how would the system behave if the parameters of the
model were known,

• data, i.e. measured quantities, what is known,

• expert knowledge (so called prior information), i.e. what is known in advance about the
model parameters, by analysis or by experience.

Formally, quantities to be estimated are unknown parameters of the model.
These sources of information are combined together in a consistent way. If a nature of the

modelled system is probabilistic, it is described by a probabilistic model. Estimate of the unknown
quantity (parameter) has then a form of a probability density function (pdf ). Therefore it carries
implicitly an information about the estimate uncertainty and any interval estimate can be con-
structed using the pdf . The pdf can be used as an input information for another estimate without
information loss.

The Bayesian methodology is suitable to be used in cases of small uncertain data sets and
existence of expert knowledge. Then more information can be included into the estimation process
and uncertainty of the estimate can be reduced.

At the KNM , amounts of data related to individual patient are usually strongly limited and
data themselves are uncertain, as mentioned above. At the same time a team of experienced
physicians and physicists, whose knowledge can be used as a prior information, is accessible ([17],
[3], [18]).

Some results (e.g. [11], [12], [16], [14]) indicate, that the Bayesian metodology is a suitable tool
to solve the class of tasks formulated in this thesis.

More about the Bayesian tools used in this work can be found in Chapter 4.

1.4.2 Disadvantages of Bayesian Methodology

There are two main groups of disadvantages that occur with using the Bayesian methodology:
analytical and numerical.

Among analytical disadvantages, the most annoying that one can encounter are:
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• Impossibility to find a conjugated system of pdf s (see part 4.1.6, page 35). If such a system
is not found, one cannot take advantage of small-dimensional sufficient statistics which sig-
nificantly technically simplify the estimation. As an example of such a difficulty, see (6.24),
page 66.

• Impossibility to integrate a posterior pdf analytically. This problem causes difficulties to
normalize the posterior pdf (see (4.3), page 33) and also prevents to integrate-out redundant
parameters analytically.

• “Curse of dimensionality” — problem of growing of dimension of the task with increasing
amount of data [32], which fortunately does not occur in this thesis.

The most significant numerical disadvantages are:

• computational obstacles to evaluate non-normalized function (see part (5.1.3), page 48),
connected with analytical integrability,

• great differences in variance with different amount of data included into estimation and
subsequent evaluation problems,

• evaluation problems in some cases even if an explicit formula is given and the posterior pdf
is normalized [6], [10], [24], [5].

Successful estimation using the Bayesian methodology represents a complex task with many kinds
of technical drawbacks and problems that must be solved. The work in this thesis focuses especially
on numerical part of the Bayesian estimation and production of reliable algorithms giving results
with a requested numerical precision.

1.5 Thesis Layout

This thesis is divided into 8 chapters.
Chapter 1, you are just reading, gives a general introduction to problems treated in this thesis

and specifies them to the particular fields — nuclear medicine and Bayesian methodology.
In Chapter 2, the specific tasks are enumerated and the tools used to reach the aim are men-

tioned.
The data and the results of their processing are defined and described in Chapter 3. The

quantities that will be estimated are specified.
The particular tools, both theoretical and mathematical, are described in Chapter 4 with general

numerical algorithms and programming ideas used for the solutions.
For the specific tasks, the general numerical methods and algorithms should have been tailored

to fit the requested purpose. In Chapter 5, the procedures are specified and rules are derived with
emphasis on numerical precision and keeping requested uncertainty limits. Programming approach
is described.

Chapter 6 collects complete description of estimation tasks of the specific quantities, including
theoretical derivation and algorithmical implementation.

In Chapter 7, the results derived in Chapter 5 are tested, together with benchmarks of some
algorithms. Then experiments with selected estimation tasks derived in Chapter 6 and their
results are performed both with single cases and batch data processing. For these experiments,
real patients’ data are used.

In Chapter 8, conclusions are made and ways of further research are outlined.



24 CHAPTER 1. INTRODUCTION



Chapter 2

The Work — Aims and Means

In this chapter, general aims and tasks are specified and tools used for the solution are outlined.

2.1 Aims of the Work

The main aim of this work is to contribute to quality improvement of the treatment of thyroid
gland diseases at the KNM .

Estimation of radiohygienic and other quantities mentioned in Chapter 1 should be improved.
This improvement should yield more reliable values of the estimated quantities, together with their
precisions, as one of the sources of responsible medical decisions.

The consequences of the estimation improvement should result in a contribution to improve
therapy of thyroid gland diseases.

The requested output of this work is a set of numerically stable tested real-time programs for
estimation of the quantities mentioned above.

The specific tasks of the work are:

• to formulate estimation tasks from theoretical point of view,

• to elaborate the algorithms for estimation of various physical, medical and dosimetric quan-
tities used in the field of radio-diagnosis/therapy of thyroid gland diseases,

• to test their numerical precision,

• to test their numerical stability on a large set of real clinical data,

• to implement these algorithms on the level applicable under routine conditions at the KNM
and to substitute them for the methods of data processing used there so far,

• to explore and test the improvement of quality of the estimates,

• according to the estimation results, to propose hints where improvements of data measure-
ment methodology is necessary.

2.2 Means and Tools Used for the Work

The main theoretical tool to be used is the Bayesian methodology.
By using the Bayesian methodology, estimation of radiohygienic and other quantities should be

improved in the sense of physical meaning (physically meaningless estimates avoided) and precision
of the results (more information involved in the estimation process), compared to the deterministic
estimation (see part 1.3.2, page 18) used so far.
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Furthermore, the “improved” values of the estimated quantities can be processed statistically.
Results of this processing could indicate ways of finer individualization of therapeutic activity
supplied to patients.

Specifically, a complex and interdisciplinary area is encountered where the blend of tools and
subtasks is dealt with. Particularly, it is:
• modelling and identification,
• numerical algorithms,
• software and programming,
• dosimetry and radiation protection,
• databases and data management,
• data analysis.

General numerical methods and principles are adopted and tailored to the specific problems.



Chapter 3

Dosimetry and Biophysics

In this chapter, definitions of selected dosimetrical and biophysical quantities (e.g. [27]) are for-
mulated and collected.

3.1 Activity

Activity is a physical unit describing quantitatively a physical phenomenon radioactivity.

Radioactive decay. If we have a sample of atoms with unstable (radioactive) nuclei, then
radioactive change (decay) takes effect. Each decay results in change of the nucleus structure
and consequent emission of one or more ionizing particles.

Consider a sample of atoms with N(t) radioactive nuclei in time t. Due to the radioactivity,
the number N(t) of radioactive (undecayed) nuclei decreases in time. Therefore the number of
undecayed nuclei in time t+ ∆t is

N(t+ ∆t) = N(t)−∆N(t,∆t), (3.1)

where ∆N(t,∆t) ≥ 0 is number of nuclei that decayed within the time interval 〈t, t+ ∆t〉. Value
of ∆t is chosen small.

As the radioactive decay is a random process, ∆N(t,∆t) is a discrete random quantity. Hence
N(t + ∆t) is also a random quantity. Denoting a mean value EN(·) ≡ N(·), the equation (3.1)
can be written for these mean values as N(t + ∆t) = N(t) −∆N(t,∆t). These mean values are
functions continuous in time.

If we assume mutual independence of nuclear decays, we can state that the decrease of the
undecayed atoms is proportional to their number, i.e. dN(t) = −λN(t)dt. Hence N(t) evolves like

N(t) = N0 · e−λt, (3.2)

where N0 = N(t0) is the initial number of the nuclei in time t0.
The coefficient λ > 0 is called decay constant and it is specific for each nuclide (element with

the particular nucleus structure).

Activity. The activity A(t) of a radioactive sample is defined as

A(t) = − dN(t)
dt

, (3.3)

which is a mean number of radioactive changes in a time unit. Then the equation (3.2) can be
written as

A(t) = A0 · e−λt, (3.4)

where A0 is an initial activity in time t0.
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Another possible expression for activity is A(t) = λN(t).
The physical unit of the activity is Bq (becquerel), which is a mean number of nuclear changes

per one second.

(Physical) half-life Tp of the given nuclide is a time interval in which one half of the radioactive
nuclei in the sample takes a change. The half-life is related to the decay constant λ by

Tp =
ln 2
λ
. (3.5)

The physical half-life is always positive.

Decay law. Introducing the physical half-life (3.5) into the equation (3.4) we get

A(t) = A0 · exp
(
− t

Tp
ln 2
)
, (3.6)

which is called decay law.

3.2 Effective Half-life

If some portion of a radioactive element is incorporated into a human body, the element is elimi-
nated by natural mechanisms and its amount decreases in time. In this way the activity contained
in the body decreases. Furthermore, the element decays according to the decay law (3.6). Then
there are two mechanisms of the activity decrease: biological and physical.

The effective half-life Tef of the given element in the body is a time interval, in which the
activity in the body decreases to one half due to the both biological and physical mechanisms. For
the effective half-life, the inequality is valid

0 < Tef ≤ Tp, (3.7)

where Tp is a physical half-life (3.5).
Time dependence of activity in this case is modelled by various ways. The most common and

simple way, used also in this thesis, is the exponential decrease

A(t) = A0 · exp
(
− t

Tef
ln 2
)
. (3.8)

The effective half-life is of the key importance for estimation of some radio-hygienic quantities (see
sections 3.10, page 30, etc.).

3.3 Relative Activity

Relative activity Ar(t) is the instantaneous activity A(t) inside the patient’s body or eliminated
from his body, divided by the applied activity A0 corrected to a physical decay and multiplied by
100%, i.e.

Ar(t) = AR(t) · 100%,

where

AR(t) =
A(t)

A0 exp
(
− t

Tp
ln 2
) .

3.4 Signal

The signal is a count of particles of ionizing radiation emitted by a radioactive source of interest
and detected by the detector. Signal is measured within some fixed time interval. It reflects activity
of the radioactive source. Signal will be usually denoted by s.
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3.5 Background

During the signal measurement, there are usually more radiation sources than the one of our
interest. These sources are mostly cosmic radiation, natural radioactivity and eventually some
random local radioactive pollution. These “additional” sources produce disturbing signal that
usually cannot be removed. Signal from such sources is called radiation background and it is
usually denoted by b.

3.6 Calibration Coefficient

Direct measurement of activity is usually impossible, therefore two signals must be compared: one
from a source of a known (standard) activity and another of the unknown (measured) activity.
The coefficient relating the signal magnitude to the activity is called calibration coefficient and
denoted by c. It is defined as

s = cA, (3.9)

where s is the signal corresponding to the activity A. The calibration coefficient reflects the
geometrical arrangement of the measurement, efficiency of the detection, time interval during
which the measurement was performed etc.

The standard source should be of the same (or at least similar) kind as the measured one
according to kind of radiation, the number of particles emitted after one radioactive change, energy
of the emitted particles etc.

3.7 Excretions

“Excretions” are called relative activities Er1 and Er2 eliminated by urine in time intervals
〈tapl, tapl + 24h〉 and 〈tapl + 24h, tapl + 48h〉, respectively, and related to the applied activity
decreased by radioactive decay in time instants tapl+24h or tapl+48h, respectively. tapl means
time when the radioactive element was applied to the patient (application time). Mathematical
definition can be written as

Eri =
Ai−1,i

Aapl exp
(
− ti−tapl

Tp
ln 2
) · 100%, i = 1, 2, (3.10)

where Ai−1,i means activity outside the body that was eliminated between ti−1 and ti, measured
(hypothetically) in time ti, Aapl is applied activity, Tp is physical half-life. If the calibration
measurement is denoted by the subscript 0, then usually t0 ≈ tapl, t1 ≈ tapl + 24 hours and
t2 ≈ tapl + 48 hours.

These values are important for an estimation of a specific irradiation of blood (see the section
3.11, page 30).

3.8 Dose

Dose is an energy of ionizing radiation absorbed by a unit mass of a body tissue. It is a measure
of radiation effects on tissue. Its unit is Jkg−1 = Gy (gray).

3.9 Radio-hygienic Limits

There are two kinds of radio-hygienic limits that must be respected: dose limits to protect the
patient and activity limits to protect the patient’s neighbourhood.

The dose limits are addressed in the parts 3.10 and 3.10 below together with the quantities
definitions.
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To formulate activity limits, a patient with some activity inside his body is viewed as a source of
ionizing radiation. To keep radio-hygienic safety rules and protect other people from this radiation,
there are several activity limits that determine the patient’s daily life at the KNM .

If the activity is (see [11])

higher than 74 MBq, the patient’s urine is stored in a special safety container, the patient has
a special distinguished pyjamas and he is separated in a single-bed shielded room without
permission to leave it even within the territory of the KNM ,

between 74 MBq and 37MBq, the patient gets ordinary pyjamas, he is permitted to leave the
shielded room and to move within the territory of the KNM ,

between 37 MBq and 7.4 MBq, the patient’s urine need not be separated,

less than 7.4MBq, the patient can be released from the KNM .

Due to the treatment organization, it is important to predict when the given limits will be reached
by the patient.

3.10 Specific Irradiation of Thyroid Gland

Specific irradiation of thyroid gland SIth is a dose absorbed in the thyroid gland. According to
Marinelli’s method ([21], [36]), the formula related to 100 mCi (i.e. 3.7 GBq) of applied 131I is

SIth =
139 Armax

H
Tef , (3.11)

where Armax is maximum relative activity of the thyroid gland [%], H is thyroid gland mass [g]
and Tef is effective half-life [days]. Unit of SIth is Gy (=J/kg).

To obtain its absolute value, the formula must be multipled by the fraction 3 700 MBq/Aapl [MBq].
Required dose to destroy thyroid gland tumor is 1 200 Gy [28].

3.11 Specific Irradiation of Blood

The maximum specific irradiation of blood SIKmax is an upper estimate of a dose absorbed by
blood. There is distinguished anorganic fraction SIKan,max caused by iodine in anorganic chemical
form and organic fraction SIKorg,max caused by iodine in form of thyroxine

SIKmax = SIKan,max + SIKorg,max,

where
SIKan,max = 160 [Er1 + Er2] / M,
SIKorg,max = 13.9 [100−Er1−Ar1] Tef .

(3.12)

Er1, Er2 are excretions [%] (see 3.7), M is the patient’s mass [kg], Ar1 is relative activity in thyroid
gland 24 hours after application [%] and Tef is effective half-life [days] (see part 3.2). The unit of
SIKmax is mGy (=mJ/kg).

Anorganic fraction of irradiation is more dangerous for blood.
The formula (3.12) (according to [36]) is related again to 100 mCi (i.e. 3.7 GBq) of ap-

plied activity. To obtain its absolute value, the formula must be multipled by the fraction
3 700 MBq/Aapl [MBq].

The anorganic fraction must not exceed 1Gy and the total irradiation of blood must be less
than 4 Gy to avoid damage of blood and bone marrow [11].
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3.12 Dose Estimation — the MIRD Method

The MIRD method (Medical Internal Radiation Dose) has been developed for about 25 years [37],
[38]. Aim of this method is to find out a dose to an organ if the activity of this and/or other organs
is known.

If we denote target items by subscript t and source items by s, then a mean dose D̄t in a target
organ from one or several source organs is (Aapl means applied activity)

D̄t = Aapl
∑
s

τs Ss→t.

Quantity τs is called residence time of activity in source organ and it is defined as

τs =

∫
∆t

As(t)dt

Aapl
,

where ∆t is a time interval within which the dose is evaluated and As(t) is the instantaneous
activity of the source organ in time t.

Quantity Ss→t is called S-factor and reflects the radiation influence of the target organ by the
given source organ and the radionuclide of use. Sets of S-factors are published for various radionu-
clides, combinations of source/target organs and body geometries (male/female, age etc.). The
improvement of S-factors measurement methodologies and techniques still proceeds [35]. However,
only point estimates of S-factors are available.

For example, value of S for thyroid gland as both source and target organ for an adult male is
5.64mGy/(MBq hour), value of S for thyroid gland as source organ and bone marrow as a target
for an adult male is 8.5·10−3 mGy/(MBq hour). These S-factors are designed for the standard
thyroid gland mass 20.7 g. To express a dose for a thyroid gland of mass H, the equation (3.12)
must be multiplied by the fraction 20.7 g/H[g].
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Chapter 4

Tools Used for the Solutions

4.1 Particular Bayesian Tools

Choice of Bayesian methodics is determined especially by the following reasons:

• it combines in a consistent way all accessible information sources, specifically theoretical
description of the given system, measured data and expert knowledge and experience,

• it does not rely on an asymptotic behaviour of estimates,

• it yields the information about uncertainty of the estimate.

The following part is only introductory and describes the basic terms, statements and relations
used as a tool. Further information can be found e.g. in [29].

Consider a system characterized by a parameter ϑ. Let D be a symbol for measurable quantities
of the system. Let f be either probability density function (pdf — in continuous case) or probability
(in discrete case), according to the given situation. Argument of this function will indicate the
random quantity in question. The variable, random quantity and its value will have the same
notation, as usual.

4.1.1 Bayes Rule

Let f(D,ϑ) be a joint pdf of the data D and the parameter ϑ. Let f(D|ϑ) be the pdf of the data
D conditioned by the parameter ϑ. Then

f(D,ϑ) = f(D|ϑ)f(ϑ), (4.1)

where f(ϑ) is a marginal pdf of the parameter ϑ. The marginal pdf f(D) of the joint pdf f(D,ϑ)
can be obtained by

f(D) =
∫
f(D,ϑ) dϑ. (4.2)

Combining these two relations, we obtain the Bayes rule

f(ϑ|D) =
f(D|ϑ)f(ϑ)∫
f(D|ϑ)f(ϑ) dϑ

∝ f(D|ϑ)f(ϑ), (4.3)

where the symbol ∝ denotes a proportionality by a term independent of ϑ.
The function f(D|ϑ) is called the parametrized model of the system, f(ϑ) is the prior pdf of

the parameter ϑ and the function f(ϑ|D) is the posterior pdf of the parameter ϑ. The posterior
pdf is the generalized Bayesian estimate of the parameter ϑ conditioned on the data and using all
the accessible information, including the expert knowledge — prior information.

33
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4.1.2 Chain Rule

If we deal with a sequence of n (≥ 1) data D ≡ D(..n) ≡ (D1, . . . , Dn), the equation (4.1), page 33,
can be extended as the chain rule

f(D(..n), ϑ) =
n∏
i=1

f(Di|D(..i− 1), ϑ)f(ϑ), (4.4)

where f( · |D(..0), ϑ) ≡ f( · |ϑ) represents conditioning by the parameter and prior information
only.

4.1.3 Likelihood Function

The chain rule (4.4) can be written as

f(D(..n), ϑ) = L(D;ϑ)f(ϑ),

where the function

L(D;ϑ) =
n∏
i=1

f(Di|D(..i− 1), ϑ)

is called likelihood function. In contrast to the product of pdfs, where D means a random variable
and ϑ is given, the likelihood function is considered as a function of the parameter ϑ while the
data D have the given (e.g. measured) specific values and they are fixed. The Bayes rule then has
a form

f(ϑ|D) =
L(D;ϑ)f(ϑ)∫
L(D;ϑ)f(ϑ) dϑ

∝ L(D;ϑ)f(ϑ). (4.5)

The likelihood function can be multiplied by any non-zero coefficient independent of ϑ without
influencing the posterior pdf .

4.1.4 Conjugated Systems of Prior pdfs

Let P be a set of prior pdfs f(ϑ) and let f(D|ϑ) be a parametrized model. Assume that

0 <
∫ n∏

i=1

f(Di|ϑ)f(ϑ) dϑ < +∞.

If the posterior pdf f(ϑ|D(..n)), obtained from the Bayes rule (4.3), belongs to the set P (i.e. it
is of the same kind as the prior pdf), then the elements in P are called conjugated pdfs with respect
to the parametrized model f(D|ϑ).

In this case, the prior pdf is also called self-reproducing pdf . For practical purposes the system
P is chosen narrow to simplify the estimation.

Examples of some conjugated prior pdfs:

prior parametrized model
gamma Poisson
normal normal, known variance

log-normal log-normal, known variance

More can be found in [2].

4.1.5 Fictitious Data

In a conjugated system of prior pdfs, the posterior pdf has the same form as the prior one. The
difference is that the posterior pdf depends on the data which “adjust” its parameters, in contrast
to the prior pdf that contains no data (yet). We would like to adjust the parameters of prior pdf
of the conjugated system so that it contains the prior information on ϑ.
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One of the ways is to introduce so called fictitious data Df . These “data” are not really
measured, but potentially observable. The prior pdf f(ϑ) is then conditioned by those fictitious
data, i.e. f(ϑ) ≡ f(ϑ|Df ), as the posterior pdf is conditioned by the real data.

The Bayes rule can be applied for estimation of the prior pdf using the fictitious data. Formally
in the same way as (4.5) we can get

f(ϑ) ≡ f(ϑ|Df ) ∝ L(Df ;ϑ)fu(ϑ) ∝ L(Df ;ϑ),

where fu(ϑ) is a flat (often uniform) pdf. Hence we can say that in conjugated systems, the prior
pdf is proportional to the likelihood of the fictitious data.

As fictitious, some data of an imaginative, similar or previously performed experiment can be
used.

Of course, if we are able to determine the prior pdf parameters more or less directly without
deriving them from fictitious data, the mentioned procedure can be skipped. But the term fictitious
data can be still used.

4.1.6 Sufficient Statistics and Conjugated pdfs

Statistics S(D) is called a measurable vector function S ≡ (S1, ..., Sm) of data D ≡ (D1, ..., Dn).
Finite statistics is such a function S, dimension m of which is finite and does not increase with

increasing n. For example, arithmetic mean S = 1
n

∑n
i=1Di is the finite statistics, whereas the

mapping S = D is not.
Sufficient statistics: Let g(s, ϑ) and h(D) be non-negative functions. If a joint pdf f(D,ϑ) can

be written as
f(D,ϑ) = h(D) g(S(D), ϑ), (4.6)

the statistics S is called sufficient. Substituting (4.6) into (4.3), we get formally

f(ϑ|D) ∝ f(D|ϑ) f(ϑ) =
f(D,ϑ)
f(ϑ)

f(ϑ) = h(D) g(S(D), ϑ) ∝ g(S(D), ϑ).

All the information necessary for estimation of ϑ, contained in the data, is carried by the sufficient
statistics.

It can be shown that if finite sufficient statistics exists, then adequately narrow system of
conjugated pdfs exists, too [2]. The prior pdf then has a form f(ϑ) ∝ g(S(Df ), ϑ), where Df are
the fictitious data (see part 4.1.5). The posterior pdf is obtained by the change of the statistics
f(ϑ|D(..n)) ∝ g(S(Df , D(..n)), ϑ).

4.1.7 Symmetric Confidence Intervals

Confidence interval 〈xl, xu〉 is a form of interval estimate of an uncertain quantity. Let f(x) be
pdf of a real scalar quantity x. In case of symmetric confidence interval , its bounds xl and xu are
defined as follows:

xl∫
−∞

f(x) dx =

+∞∫
xu

f(x) dx =
α

2
. (4.7)

Hence
xu∫
xl

f(x) dx = 1− α.

The interval 〈xl, xu〉 then determines a range of the unknown value with the probability 1− α. If
we introduce

x̂ =
xu + xl

2
, δx =

xu − xl
2

,
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the interval estimate of x can be written as

x = x̂± δx, (4.8)

that is appealing even for non-statisticians.
The value of α is usually chosen as 0.1 or 0.05 etc.

4.2 Properties of the Used Probability Density Functions

In several tasks, the logarithmic-normal pdf and Poisson probability distribution are used. This
section describes some general properties of these functions from a point of view of the Bayesian
estimation.

4.2.1 Logarithmic-normal pdf

This pdf represents a random quantity, logarithm of which has normal pdf Nz(µz, r). If new
variable x and parameter µ are introduced, where z = lnx and µz = lnµ, then x has logarithmic-
normal pdf

f(x|ϑ) = Lx(µ, r) ≡ 1
x
√

2πr
· e− (ln x

µ )2
/(2r) (4.9)

with parameter ϑ = (µ, r).
Moments of this pdf are defined as follows:

Ex ≡
+∞∫
0

x Lx(µ, r)dx = µer/2

var x ≡ E[(x− Ex)2] = µ2er(er − 1).

The ratio of standard deviation and mean value is independent of µ

ω =
√

var x

Ex
=
√
er − 1. (4.10)

Let us assume:

1. the data xi, i = 1, ..., n are positive and independent,

2. the pdf of xi, i = 1, ..., n is Lx(µ, r),

3. r is known,

4. µ is to be estimated.

Likelihood as a function of parameter µ with known r and data xi is

L(D;µ) = exp
(
− 1

2r
[
ν(n)(lnµ)2 − 2 lnµ ln µ̃(n)

])
(term

∏n
i=1 1/xi is omitted as it is independent of µ). The sufficient statistics is

µ̃(n) = µ̃(n− 1)xn, µ̃(0) = 1,
ν(n) = ν(n− 1) + 1, ν(0) = 0.

As the likelihood is proportional to the logarithmic-normal pdf, if the term 1/µ is omitted, the
self-reproducing prior pdf is chosen as

f(µ) ∝ 1
µ

exp
(
− 1

2r
[
ν0(lnµ)2 − 2 lnµ ln µ̃0

])
∝ Lµ

(
ν0
√
µ̃0,

r

ν0

)
,
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where initial values µ̃0, ν0 corresponding to fictitious data are positive.
Posterior pdf is Lµ(µ̂(n), r/ν(n)), where

µ̂(n) = ν(n)
√
µ̃(n)

is a geometric mean of the data.
Moments of the posterior pdf are

E[µ|x(..n), r] = µ̃(n) er/(2ν(n)), var [µ|x(..n), r] = µ̃(n)2 er/ν(n) (er/ν(n) − 1). (4.11)

Initial conditions for the statistics µ̃(0) = µ̃0 > 0 and ν(0) = ν0 > 0 guarantee properness of the
chosen prior pdf.

4.2.2 Poisson Probability Function and Gamma-pdf

Poisson probability function is a parametrized model with which the gamma-pdf is conjugated.

Poisson probability function. Poisson probability function is a distribution of a nonnegative
integer random variable x with a univariate parameter ϑ > 0. The form of the Poisson function is

f(x|ϑ) = Pϑ(x) ≡
ϑx

x!
e−ϑ =

ϑx

Γ(x+ 1)
e−ϑ, x ∈ {0, 1, 2, ...}.

The used Euler gamma-function is

Γ(x) =

+∞∫
0

tx−1 e−t dt, Γ(x+ 1) = xΓ(x), x > 0. (4.12)

Moments: Ex = var x = ϑ.

The data {xi}ni=1 are integer, positive and independent.

Likelihood has the form
L(D;ϑ) = ϑx̃n e−ϑν(n),

where the sufficient statistics are

x̃(n) = x̃(n− 1) + xn, x̃(0) = 0,
ν(n) = ν(n− 1) + 1, ν(0) = 0.

Self-reproducing prior pdf:

f(ϑ) =
νx̃0+1
0

Γ(x̃0 + 1)
ϑx̃0 e−ϑν0 ≡ Gϑ(x̃0, ν0),

where
x̃0 ≥ 0, ν0 > 0,

is called gamma-pdf Gϑ(x̃0, ν0).

Posterior pdf is then Gϑ(x̃(n), ν(n)) and its moments are

E[ϑ|x(..n)] =
x̃(n) + 1
ν(n)

, var [ϑ|x(..n)] =
x̃(n) + 1
ν(n)2

=
E[ϑ|x(..n)]
ν(n)

. (4.13)
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4.3 General Numerical Algorithms

One of the drawbacks of the Bayesian computations is numerical difficulty in practical applications.
Therefore various numerical techniques were used, focused on relevance, numerical stability and
reliability. Majority of the methods mentioned here concern univariate real functions.

Some general or special methods are mentioned here. These methods are usually simple. In
the final applications, they are mostly combined together or modified as required.

4.3.1 Extreme and Root Searching

The procedures discussed here are used often for searching both the root and extreme, depending
on accessibility of the pdf ’s derivatives (see part 5.2.1, page 50). In case of univariate pdf s equipped
with first derivative, the extreme searching is in some conditions equivalent to searching the root
of first derivative.

Bracketting.

Before starting to search for the extreme (or root respectively) x0 of univariate function, we should
know the approximate position of this point. The reason is that the methods used here need an
“initial guess” xinit where the searching is started. For some methods, xinit must be “close enough”
to x0, for other there must be known some interval in which x0 can be surely found, otherwise the
method need not converge.

Bracketting is a procedure that yields some xlow and xhigh for which is valid xlow < x0 < xhigh.
Values of xlow and xhigh can but need not fulfill some criterion. Usually xinit ∈ 〈xlow, xhigh〉.

The bracketting is used in these cases:

• Root searching when no derivatives are available. Two “guess” points close to the supposed
root are supplied. These points are adjusted so that the function values in these points have
the opposite signs.

• Root searching when first derivative is available. Two points are found as described in the
previous item. Then these points are trimmed so that the opposite signs of the function
values remain and relative difference of the first derivatives in these points is below requested
limit.

• Extreme searching of univariate function when no derivative is available. Two “guess” points
close to the supposed minimum (resp. maximum) are supplied. These points are adjusted so
that the third one between them gives the minimum (resp. maximum) value. The parabolic
extrapolation and the Golden section method are used ([30]).

Simplex method.

This method [26] is a general local extreme searching method, suitable for n-variate cases. It does
not require derivatives and it is mostly less sensitive to the initial guess xinit than other methods
mentioned below. The disadvantage is that for each step it requires at least two function evaluations
(in the “worst” case, typically in the end of searching, up to n evaluations) and searching is less
effective with increasing n.

For the searching a simplex is used, that is an n-dimensional object with n + 1 vertices (e.g.
for two-variate function it is a triangle, for three-variate a tetraeder etc.). The simplex is placed
around the point xinit. Following some strategy, the simplex “crawls” towards the nearest local
extreme, i.e. changes its geometry and position. Its vertices are projected, expanded or contracted
according to their function values. The search is terminated when differences between the vertices
do not exceed some chosen small value.

It was shown that this algorithm in some situation performs convergence to a non-stationary
point by repeated contraction [23]. However, there exist modifications of the simplex method [33],
[40].
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Convergence order of iteration methods.

Let {xi}+∞i=1 be a sequence of i-th result of an iteration method where lim
i→+i∞

xi = α. Denote

εi = xi − α. Then convergence order of the iteration method in point α is called such minimum
real p ≥ 1 for which holds

lim
i→+∞

|xi+1 − α|
|xi − α|p

= lim
i→+∞

|εi+1|
|εi|p

= C 6≡ 0.

C is called asymptotic constant of error [31].
The higher p is, the faster the method converges.

Newton-Raphson method.

This is a method for root searching in case of univariate functions. If xi is the i-th iteration of the
search, f(xi) the function value, f ′(xi) its derivative and r is multiplicity of the root, then

xi+1 = xi − r
f(xi)
f ′(xi)

.

Convergence order of this method is 2. Nevertheless, the initial guess xinit must be bracket-
ted closely enough, otherwise the method can even diverge. Furthermore, the first derivarive is
required.

For each step, one function and one derivative evaluation is necessary.

Bisection method.

This “classical” method is also used for cases if the univariate function changes its sign in the
neighbourhood of the root. The initial guess is interval with limits of opposite signs. In each
iteration, this interval is halved and that half with opposite limits is chosen as a new interval.

Convergence order of this method is 1.
This method converges slowlier than the Newton-Raphson method, but it does not require

derivatives and close bracketting. For each step, one function evaluation is necessary.

4.3.2 1D-integration

The univariate integration methods used here are based on the closed Newton-Cotes formulae of
n-th order. The integration interval of function f(x) is divided to n subintervals of the same length
separated by n + 1 equidistant points xi, i = 0, . . . , n. On these points a Lagrange interpolation
polynome Ln(x) of degree n

Ln(x) =
n∑
i=0

f(xi) li(x),

li(x) =

n∏
j=0
j 6=i

(x−xj)

n∏
j=0
j 6=i

(xi−xj)

(4.14)

is constructed and analytically integrated. Simple formulae combining the function values f(xi)
are derived, including error term. The integrated function must be continuous up to k-th derivative
and the formulae are exact for polynomes up to order k, where k =

(
2bn2 c+ 1

)
[31].

If finer division of the integration interval is necessary, the integration interval is divided to
several subintervals (in the sense mentioned above) of the same length and the formula is used for
each such subinterval. The overall formula is called composed Newton-Cotes formula.
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Simpson rule.

This method is the Newton-Cotes method of second order. In this work it is used generally when
the size of the integration step is known or given. The formula and its error term estimation is
mentioned here.

Let f be a function continuous up to its 3rd derivative, h > 0 be integration step. Denote

f0 = f(x0),
f1 = f(x0 + h),
f2 = f(x0 + 2h).

Then
x0+2h∫
x0

f(x)dx =
h

3
(f0 + 4f1 + f2) + ε, (4.15)

where the error term

ε = − h5

90
f (4)(ξ), x0 ≤ ξ ≤ x0 + 2h.

Composed Simpson rule for integration interval 〈a, b〉 with m subintervals, m even, fk = f(a+
kh) and h = b−a

m is

b∫
a

f(x)dx ≈ h

3
(f0 + 4f1 + 2f2 + 4f3 + . . .+ 2fm−2 + 4fm−1 + fm) (4.16)

and the error term

ε = − (b− a)h4

180
f (4)(ξ), a ≤ ξ ≤ b. (4.17)

QUANC8.

This algorithm, originally written in FORTRAN, uses Newton-Cotes formula of 8-th order and gives
the integral value with required maximum error, supplied either in absolute or relative value, which
makes it very desirable. Size of the integration step is adaptively changed according to the function
curvature. Furthermore, the result reliability and eventual problem area is reported [7].

As a disadvantage, it requires a function with continuity up to 9th derivative. Eventual points
of discontinuity create the mentioned “problem areas”, they decrease the result precision and
dramatically (by 1–3 orders) delay the program run. But despite that, the algorithm always gives
some result with estimation of its precision.

Except of “problem” situation mentioned above, the actual precision of the result is usually far
above the required one. It takes more function evaluations than for the required precision.

4.4 Programming and Computing Tools

The algorithms and the programs elaborated as results of this work are part of software called
JodNew for use at the KNM . The software JodNew was originally developed by MS FoxPro 2.x for
MS-DOS. Later a version of JodNew for MS-Windows9x/NT was produced using MS Visual Fox-
Pro 6.

Therefore a question of data communication between JodNew and numerical programs must
have been solved since the beginning. First version of JodNew requested standalone EXE-programs
for MS-DOS that directly performed read/write operations on database files. Later, because of
data safety and other reasons, data were transferred between JodNew and numerical programs
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through text files with one value on the line, ordered in a defined way (as FoxPro cannot create
and read general binary files).

Recent version of JodNew works under 32-bit MS-Windows. The numerical programs are still
written for MS-DOS. As error reporting and exception handling mechanisms are not compatible
with MS-Windows programming style, it will require a portion of programming work to put it in
the right way.

The desired state of the numerical programs is a DLL-library with exported estimation functions.
The following software tools were used:

Programming language: C/C++

Development software: Watcom C++ 10.5

Communication with database (obsolete): Sequiter CodeBase 4.5 library translated by Wat-
com C++.

Some data analyses: Statistical package SPSS 8.01 for Windows9x/NT.
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Chapter 5

Solutions of the Numerical Tasks

In this chapter, some specific tailoring or combinations of some numerical methods are mentioned
and then some programming approaches noticed.

5.1 Some Numerical Tasks

Some specific modifications and combinations of several methods for particular cases and functions
are outlined here.

5.1.1 Confidence Interval

In the applications, 95%-confidence intervals (α=0.05, see part 4.1.7, page 35) are computed.
If the integral of the pdf (i.e. distribution function), on which the interval is computed, is

known, the task to find the interval is not difficult. But if the integral is not implemented or
known, numerical integration must be used. The general algorithm described in this part (5.1.1)
deals with pdfs where the analytical expression of the integral is unknown on it is not useful
practically.

The idea of the algorithm has several parts.

Gaussian approximation

All the univariate pdfs treated in this work are unimodal. To formulate some general rules and
criteria for numerical precision, let us assume that their approximation by a Gaussian pdf is valid.

Actually, this assumption of “Gaussian approximation” does not mean that another pdf is
replaced by a normal pdf . It means that some rules for numerical integration (lengths of integration
steps, points where to stop the integration etc.), designed for the normal pdf , are applied to another
pdf which is then integrated according to these rules.

Obviously, approximation by a normal pdf is invalid for logarithmic-normal pdf in the estima-
tion task of thyroid gland mass (see below). This case will be treated in a different way.

Let us denote µ ≡ Ex and σ2 ≡ var x. The Gaussian pdf with these parameters will be denoted
Nx(µ, σ2).

Integration algorithm

If a closed form of pdf integral does not exist or if its computation is practically difficult and time
consuming, the integration to determine the conficence interval must be done numerically. Here,
the algorithm used for this purpose is described.

The main idea of the algorithm is: divide the Gaussian pdf ’s domain to segments od length σ
and apply composed Newton-Cotes formula to each segment. The number of integration steps on
each segment is chosen according to the pdf course and required maximum integration error.

43
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Integration step design. For the numerical integration, the composed Simpson rule (4.16),
page 40, was chosen. The error term has the form (4.17).

Let the Gaussian pdf domain be divided into segments skl = 〈µ + kσ; µ + lσ〉 where k and l
are integers. Let the variable be transformed to N (0, 1) so that µ = 0 and σ = 1, then a segment
skl = 〈k; l〉.

Absolute value of the error term (4.17) for integration of f(x) on a segment sk,l with integration
step hkl is then

ε =
(l − k)h4

kl

180
f (4)(ξ), k ≤ ξ ≤ l. (5.1)

If Mkl = max
x∈〈k;l〉

|f (4)(x)| and number of integration steps mkl = (l − k)/hkl

ε ≤ Mkl
(l − k)h4

kl

180
= Mkl

(l − k)5

180m4
kl

≤ εmax, (5.2)

where εmax is some requested maximum allowed error of integration. Hence, taking into account
that mkl must be an even number,

mkl ≥ 2

⌈
l − k

2

(
Mkl

l − k

180 εmax

)1/4
⌉

(5.3)

is a relation for minimum number of integration steps mkl of Gaussian pdf on the interval 〈k; l〉.
Let us now calculate the coefficients Mkl.

For the expression of Nx(0, 1) as f(x) =
√

1
2π exp

(
−x2

2

)
, the 4th derivative is

f (4)(x) = f(x)
(
x4 − 6x2 + 3

)
and the 5th derivative is

f (5)(x) = −f(x) x
(
x4 − 10x2 + 15

)
.

Roots of the 5th derivative are x1 = 0, x2 =
√

5−
√

10 and x3 =
√

5 +
√

10 (and other two
with the opposite sign). In these points the 4th derivative reaches some extreme as it is an even
polynome. Then Mkl for any k and l can be found.

If we introduce

gkl = (l − k)
(
Mkl

l − k

180

)1/4

, (5.4)

we can write (5.3) as

mkl ≥ 2

⌈
gkl
2

(
1

εmax

)1/4
⌉
. (5.5)

The values for several gkl are mentioned in the Table 5.1.

k l gkl

0 1 0.28555
1 2 0.25321
2 3 0.16674
3 4 0.16486
4 5 0.10492
5 10 0.33331

Table 5.1: Coefficients gkl (see (5.5))

Several comments:
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1. εmax is both absolute and relative error for normalized functions. For non-normalized func-
tions g(x), where f(x) = K · g(x) and f(x) is normalized, it is a relative error. In this case,
the relation (5.3) must be multiplied by the normalizing constant K (mostly unknown), as
f (i)(x) = K · g(i)(x).

2. The integration error estimate εmax and hence the number of steps mkl is pessimistic. One
reason is inequality in (5.2), another one is adjusting mkl up to an even value. This ensures
that the result will be of better precision than requested.

3. Usual value for εmax here is 10−5, so that the total integral over all the segments, number of
which is usually about 10, was computed with error less than 10−4. mkl on one unit-length
segment takes value from 2 to 6 (mostly often 4).

4. The value g5,10 is rather overestimated, as on a relatively long interval 〈5; 10〉 the maximum
value of the 4th derivative is used. This maximum is reached in point x = 5. For x > 5
its value sinks exponentially. Therefore the divisions on the interval 〈5; 10〉 will be rather
pessimistic.

5. This procedure is cheap as for runtime requirements.

Relation between confidence interval shift and domain limitation. If pdf has unbounded
domain (like Nx has), the numerical step-by step integration cannot proceed till infinity. Hence
there is a question where to stop the integration process to find the area below the pdf , i.e. how
to limit the domain of the pdf to meet some requirements. Error of the area determining due to
premature integration stopping will be denoted as εa.

Assume that instead of (−∞; +∞), the interval of integration will be limited to some 〈xεal
; xεau

〉.
Let us assume that f(x) is normalized. Let

∫ xεal

−∞ f(x)dx = εal and
∫ +∞
xεau

f(x)dx = εau. Then
εa = εal + εau and

∫ xεau

xεal

f(x)dx = 1 − εa. Denote F (x) =
∫ x
−∞ f(t)dt. Finally, if “true” α-

confidence interval, obtained by considering the whole domain, is 〈xl; xu〉, denote “distorted”
confidence interval, obtained by limiting the domain, as 〈x̃l; x̃u〉. It is obvious that xl ≤ x̃l and
x̃u ≤ xu.

The task is (i) what εal and εau to choose so that |xl − x̃l| and |xu − x̃u| are kept in some
requested boundaries and (ii) how to correct such shifted points.

We start with lower bound. From the definitions mentioned above results
xl∫

−∞

f(x)dx ≡ F (xl) =
α

2
(5.6)

and
x̃l∫

xεal

f(x)dx

1− εa
=

F (x̃l)− εal
1− εa

=
α

2
. (5.7)

As xl is not known, let us expand F (xl) ≈ F (x̃l) + f(x̃l)(xl − x̃l) assuming that the points xl and
x̃l are close.

Substituting the expansion into (5.6), using (5.7) and considering εa = εal+εau, we can express
xl as

xl ≈ x̃l +
1

f(x̃l)

[
εau

α

2
− εal

(
1− α

2

)]
. (5.8)

This is the expression for the lower (α/2) bound shift.
We can repeat these steps for the upper bound. Then similar relation will be found:

xu ≈ x̃u +
1

f(x̃u)

[
εau

(
1− α

2

)
− εal

α

2

]
. (5.9)

These equations can be used for partial correction of the shift if εal and εau are known.
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If only non-normalized g(x) is available where f(x) = K · g(x) and K is normalizing constant,
the formulae (5.8) and (5.9) must be modified. Assume again the Gaussian approximation f(x) =
Nx(µ; σ). If µ = xmax is mode of g(x) and σ its standard deviation, then K = g(xmax)σ

√
2π.

The formulae are then

xl ≈ x̃l +
K

g(x̃l)

[
εau

α

2
− εal

(
1− α

2

)]
, (5.10)

xu ≈ x̃u +
K

g(x̃u)

[
εau

(
1− α

2

)
− εal

α

2

]
.

If we want to estimate εal and εau to keep some maximum allowed shift, the procedure will be
the same except the expansion that will be F (x̃l) ≈ F (xl)+f(xl)(x̃l−xl). Then we will substitute
for F (x̃l) to get rid of x̃l which is now unknown.

As Nx(0, 1) is symmetric, we will consider only one tail. Denote ∆x = |xl − x̃l| = |x̃u − xu|,
assume f(x̃l) = f(x̃u) and εal = εau = εa/2.

The formula (5.8) modified for xl gives the condition

εa ≈ 2 ∆x
f(xl)
1− α

(5.11)

and the same relation is valid also for the upper bound.
If we choose α=0.05, then 1− α/2 = F (xu), where xu=1.9599 and f(xu)=0.058439. Relation

(5.11) then has a form

εa ≈ 0.123 ∆x ≈ ∆x
10

. (5.12)

The shift can be decreased by using the correction formulae (5.10). If the correction is used,
the shift limit ∆x can be chosen higher (e.g. 10−3). If the correction is not used, ∆x must be
chosen lower (e.g. 10−4). According to chosen ∆x, appropriate εa is found by (5.12). The value
of εa will be needed later.

Half-width searching. The integration algorithm described above requires mean value and
variance of the integrated pdf . If these characteristics are not available, they are substituted by
maximum value (mode) and “half-width”.

If xmax = arg max f(x) for pdf f(x), then the half-width denoted as l 1
2

is here defined as

l 1
2

= max
{
|xmax − x|; f(x) =

1
2
f(xmax)

}
. (5.13)

The specific algorithm for the half-width searching is chosen according to availability of the pdf’s
derivatives.

The integration procedure. Following the idea of Gaussian approximation, the normal pdf
has an unbounded domain. Symbol F (x) means integral of f(x) (i.e. distribution function). The
integration proceeds in these steps:

1. Find u = Ex and v = σ. If they are not available, find u = xmax and v = l 1
2
.

2. Design numbers of integration steps on the pdf ’s segments according to the maximum re-
quested relative error εmax.

3. Find K1 by integrating from u up, save the pairs (x, F (x)) in some array.

4. Find K2 by integrating from u down, save the pairs (x, F (x)) in another array.

5. Add K = K1 + K2, link both the arrays together and find the bounds of the interval by
interpolation.
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The question is where to stop the integration from the point u. This question was treated
above and approximate relation for appropriate εa was derived (see (5.11)).

The error of the area determining due to omitting the domain above some chosen upper bound
should not be greater than a required εa/2 on each side. The Table 5.2 shows some points for the
Gaussian pdf Nx(0, 1). For Nx(0, 1), if the pdf is integrated within the interval 〈0; xεa〉, the error

εa xεa F (xεa) F ′(xεa) = f(xεa)
10−1 1.282 0.900079 1.754·10−1

10−2 2.327 0.990017 2.661·10−2

10−3 3.091 0.999003 3.359·10−3

10−4 3.719 0.999900 3.959·10−4

10−5 4.264 0.999990 4.496·10−5

10−6 4.744 0.999999 5.175·10−6

Table 5.2: Values of Nx(0, 1) with corresponding εa

of determining the area is εa/2. Another form of this condition is approximately (see the Table
5.2)

f(x) ≤ 4 εa
2

for εa ∈ 〈10−3; 10−5〉, as f(xεa) ≈ 4 εa.
For general non-normalized K · Nx(µ, σ2), where K is the integral over all its domain, the

condition for integration from µ to some x with εa ∈ 〈10−3; 10−5〉 takes the form

σ
2f(x)
K

≤ 4 εa
2

i.e. σ
f(x)
K

≤ εa.

During the integration, this condition is tested, whereK/2 is the result of the numerical integration.
If the condition is fullfilled, the integration can be stopped at the point x and the relative error of
the area due to the bounded domain is less than εa

2 .
This formulation of the condition has an advantage that it does not explicitly contain xεa but

εa.

Implementation note. Value ∆x is passed to the constructor of class SymConfInterv (see part
5.2.1, page 50) as the parameter deltaIntervRel. Value of εa is computed in the body of the
constructor using (5.12) and it is stored in a variable epsTolRel. Value of εmax (see (5.5)) is
computed in the body of the constructor using as εa/100 (see 7.1.3, page 74) and it is stored in
a variable epsIntRel.

5.1.2 Simplex Termination Test and Convergence

In the simplex method [26], roughly described in section 4.3.1, page 38, the extremizing simplex
is shifted towards the local extreme and shrunk around it. The important moment is decision of
termination of the search. The original termination test looks like this:

Let us consider n-variate function f(x). The simplex has n+1 vertices with n coordinates. Let
us denote k-th coordinate of i-th vertex as xik. Let ε be a given small number. Then the search is
terminated if

ε2 ≥ 1
n

n+1∑
i=1
i6=j

(
f(xi)− f(xj)

)2
.

To adapt the test to a scale of an optimization task, the modification was done. If f(xj) = 0, keep
the same test. If f(xj) 6= 0, this test is used:

ε2 ≥ 1
n (f(xj))2

n+1∑
i=1
i6=j

(
f(xi)− f(xj)

)2
.
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The number ε then represents some relative bound of the values difference. Value of ε is different
according to the specific task, gradient of a function etc., here usually from 10−4 to 10−10.

It is known that this method need not always converge to a local extreme in some family of
functions [23]. It was shown that in case of bi-variate function, the subsets of domain, where the
function has only up to three derivatives, can be the area of convergence even though the points
are not stationary. The convergence occurs by repeated contraction of other vertices of the simplex
towards the best vertex (in sense of the extreme searching) which is kept fixed in non-stationary
point. The sufficient condition for elimination of this effect is existence of 4th derivative or higher
that is not identically zero.

The bi-variate functions used here in estimation task of effective half-life and radio-hygienic lim-
its prediction have sufficient number of derivatives, therefore convergence in non-stationary point
should not occur. Anyway, a change in the algorithm was made to prevent repeated contraction.

In the algorithm, if count of subsequent contractions reaches some number (e.g. 10) with
the best (lowest or highest, according to the searching task) vertex unchanged, a new simplex is
generated on the place of the old one and the search continues.

Another hint given in [23] is to replace contraction of one vertex by shrinking all the simplex
towards the best vertex after several repeated contractions. This approach was not tried here.

5.1.3 Pseudo-normalization

The majority of functions that should here play a role of pdf of an estimated parameter is not
analytically integrable, thus they are not normalized. Only a function that is proportional to the
pdf is available.

Furthermore, these functions usually contain exponents within orders from ±1 to ±106 and
their evaluation would easily exceed the range of numbers that a computer is able to operate with,
even using a double precision. To evaluate these functions without numerical problems and to keep
their values in a numerically reasonable range, the pseudo-normalization process is applied.

Consider a pdf f(x) = Kg(x), where K > 0 is an unknown normalizing constant and g(x) > 0
is not normalized. Assume the form g(x) = exp(ϕ(x)), where ϕ(x) is some continuous function.

As
d ln g(x)
dx

≡ dϕ(x)
dx

=
1

g(x)
dg(x)
dx

,

then
dϕ(x)
dx

= 0 ⇐⇒ dg(x)
dx

= 0.

Hence both g(x) and ϕ(x) have their local extremes in the same points, as lnx is monotonous.
Let us find mode xmax where ϕ(x) reaches its maximum (the function g(x) is unimodal). As

g(x) can be multiplied by any term independent of x, we will multiply it by exp(−ϕ(xmax)). In
this way we obtain the function

g̃(x) = eϕ(x)−ϕ(xmax).

The values of the exponent are in interval (−∞; 0〉. If we choose some minimum exponent qmin
that does not cause underflow in the operation exp(qmin), we can compare ϕ(x) − ϕ(xmax) with
qmin. If the subtraction is less than qmin, the exponential is not evaluated and zero is returned.
Otherwise, the exponent is in the range 〈qmin; 0〉 and the operation exp(·) can be easily done.

The function g̃(x) is then called pseudo-normalized.
This procedure can be used also for functions that do not have the explicit form g(x) =

exp(ϕ(x)) but contain products or exponents and cause problems with their range or evaluation.
The form g(x) = exp(ln g(x)) can be adopted and ln(·) can simplify the function evaluation. Then
the same algorithm can be used.

5.1.4 Domain Restriction

The pdfs of parameters estimated here have one peak. The width of this peak (variance of the
pdf ) is greater or smaller, depending on the estimation task and uncertainty in the data. In some
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cases, this peak can be narrow and pdf values on the majority of its domain are close to zero. This
situation complicates numerical integration, rough investigation of the pdf ’s shape or searching
maximum. In some situations, the execution time was increased of even numerical failure was
observed.

In the cases discussed here, data of low uncertainty provide narrow peaks. These data also pro-
vide a good deterministic estimate that is very close to the pdf ’s maximum and can be successfully
used as a starting point for the maximum search to find xmax.

Then the domain is narrowed to contain only values greater than some number. This number
can be chosen following the ideas about area error in the section about confidence interval (5.1.1).
In practice, the boundary value was chosen as f(xmax) · 10−7.

5.1.5 Design of the Integration Table

The procedure of confidence interval determining (see part 5.1.1) cannot be used for logarithmic-
normal pdf , i.e. Gaussian approximation cannot be applied for logarithmic-normal pdf . During
some numerical experiments that tested validity of integration step design mentioned above, it
was found out that Gauss-based procedure failed on logarithmic-normal pdf unexpected in the
neighbourhood of the pdf’s maximum. The precision of the integration in this area was by two
orders worse than requested. Therefore it was decided that logarithmic-normal pdf will be treated
in a different way.

The pdf has two parameters µ and r (see (4.9), page 36) and transformation between random
quantity x with parameters µx, rx and quantity y with parameters µy, ry can be easily done by
the formula (

x

µx

)√1/rx

=
(
y

µy

)√1/ry

. (5.14)

The table of integrals of f(x) from 0 to xi (table of distribution function F (x)) was designed for
µ = r = 1.

The idea was: construct the table with non-constant distance of adjacent points so that error
of quadratic interpolation is less than some chosen value.

Interpolation of function f(x) by Lagrange polynome of 2nd order L2(x) (see (4.14), page 39)
given by points x0 < x1 < x2 is

L2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

f(x1) +
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2). (5.15)

Error term for this interpolation is

ε(x) = (x− x0)(x− x1)(x− x2)
f ′′′(ξ(x))

6
, (5.16)

where ξ is some number in 〈x0; x2〉 dependent on x. Introducing usual “pessimistic” εmax, we can
write (5.16) as

ε(x) ≤ max
x∈〈x0;x2〉

|(x− x0)(x− x1)(x− x2)| ·
1
6

max
x∈〈x0;x2〉

|f ′′′(ξ(x))| ≤ εmax. (5.17)

Let us denote p(x) = |(x− x0)(x− x1)(x− x2)| and assume equidistant points x0 = 0, x1 = h
and x2 = 2h. Then points xmax, where p(x) reaches its maximum, and p(xmax) are

xmax1,2 = h

(
1±

√
3

3

)
,

p(xmax) = h3 2
√

3
9
.

The 3rd derivative of logarithmic-normal pdf f(x) ((4.9), page 36) is

f ′′′(x) =
f(x)
x3

[
3
r

(
2 +

1
r

ln
x

µ

)
−
(

1 +
1
r

ln
x

µ

)(
2 +

1
r

ln
x

µ

)(
3 +

1
r

ln
x

µ

)]
. (5.18)
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Let us denote Υ(x) = max
x∈〈x0;x2〉

|f ′′′(ξ(x))| and Υ = max(|f ′′′(x0)|, |f ′′′(x1)|, |f ′′′(x2)|). Let us

assume that h is small, so Υ(x) ≈ Υ. Considering this and rearranging (5.17), we will get formula
for table step h

h ≤
(
9
√

3
εmax
Υ

)1/3

. (5.19)

The algorithm of the table construction is outlined below:

1. x0 = x1 = x2 = 0

2. repeat while 0 ≤ x ≤ 70

3. x0 = x2, Υ = f ′′′(x0), compute h using (5.19)

4. x1 = x0 + h, x2 = x0 + 2h

5. Υ = max(|f ′′′(x0)|, |f ′′′(x1)|, |f ′′′(x2)|) using (5.18), compute ε using (5.17)

6. if ε > εmax, decrease h (e.g. multiply by 2
3 ) and go to 4

7. compute integrals from 0 to x1 (F (x1)) and from 0 to x2 (F (x1)), save the pairs (x1, F (x1))
and (x2, F (x2)) and go to 2.

If we want to find F (x′) with general parameters µ, r using this table, we must first transform
the variable x′ to the variable x with the parameters µ = r = 1 according to (5.14). Then we find
in the table some adjacent points x0 < x1 < x2, where x ∈ 〈x0; x2〉. Then we use formula (5.15)
for interpolation.

The table for quadratic interpolation for x from 0 to 70 has about 80 pairs of (x, F (x)) for
requested εmax = 10−4. If the table is constructed for linear interpolation with L1(x), it has about
twice as many pairs.

5.2 Programming Approach

5.2.1 Numerical Objects

Theoretical analysis of the problems and derivation of Bayesian estimates of the desired quantities
provides relatively complicated formulae. Theory gives origin to various functions with different
properties: some are analytically integrable or differentiable, some not (at least practically), some
are easily computable, some not, some can easily yield mean value, variance, maximum value etc.,
some not. Some estimates are expressed by pdf s (the integral over their variable(s) is equal one),
in some cases only functions proportional to the pdf are easily computable.

Development of numerical programs

Testing numerical properties of the formulae and methods to use can be done in several ways:

• Using some numerically oriented software, e.g. Matlab. Such a software provides a lot of
useful tools and enables a comfortable work with them. One can focus on numerical tasks
and algorithms without paying much attention to questions of programming. Unfortunately,
without special accessories the results obtained by this software are not portable to other
platform. In the beginning of this project, the target platform of the application JodNew was
16-bit DOS. The tools that are available now (Matlab Compiler, Matlab run-time libraries or
ABET [25]) do not support this platform and were not available when this project started.

• Using some standard programming and application building tools like C or C++. Using this
language, standard mathematical functions (or some basic mathematical classes) are avail-
able. Target application can be easily built practically for any platform, but the development
process and numerical experiments can be very time and energy consuming. Programming
also requires some “culture” to avoid mistakes that can be easily overlooked, especially in
case of complex task. Both programming and numerics are tightly bound together.
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• Using specific class support for object-oriented language to represent specific objects (func-
tion, algorithms. . . ) appearing in the work. Such a class library was not available when the
project started.

In the beginning, C++ development environment was available. A class library was developed that
yielded some comfort with numerical work and made possible to create the application on the given
platform. Object-oriented methodology enables to separate numerical tasks and programming, it
solves technical questions of compatibility, specific behaviour of functions or algorithms etc.

The main idea

The main idea follows one of the object property: uniformity due to the inheritance. Each class
is designed so that its object has uniform interface in communication with other objects despite
its internal structure and means it uses. All the variables and/or data structures necessary for
the object are encapsulated inside and their construction and destruction is done in the right way.
Any name or memory conflicts between two objects are avoided. Important object’s variables are
protected by denied access from outside. The validity of parmeters used for the object construction
is tested.

Object-oriented design separates the work into two steps: (i) implement the function or algo-
rithm (design the class), (ii) create the object and use it.

Although object-oriented program performs lower speed and higher memory requirements com-
pared to “classical structure-oriented” program, the computational power available now makes the
difference negligible for the class of tasks solved here. The advantages it brings override the loss
of milliseconds and kilobytes due to using this technique.

Classes

The most important classes are shown on the scheme on Fig. 5.1. The arrow means the inherited

NBase Objectr
?

Group

r
?

Point r
?

SNoder
?

Simplexrr
?

Operationr
?
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?
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HalfWidth

r
?

ZeroNewton

?
other classes. . .
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?
Pdfr
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Pdf thm

r
?

Pdf sig

r
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Pdf tef

r
?

Pdf cal

r
?

Pdf apr

?
other classes. . .

Figure 5.1: Classes hierarchy

class, the inheritance flow is oriented from upper classes to lower classes.
The class NBase is the base class for all classes dealing with numerics. It collects mechanism

of exception handling, in practice mechanism of error handling (e.g. invalid value of parameter,
unsatisfactory result of the solution etc.).

The class Object implements properties of ownership (object is “owned” by another object),
locking/unlocking (object is “locked” by an object and cannot be modified by other objects) and
event handling mechanism, that was not used here.
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The class Group is Object that can contain (own) other Objects.
The class Point represents n-dimensional point with some vector operations (addition, multi-

plication by a scalar), equality and assignment operators etc.
The class SNode is a node (vertex) owned by Simplex. It has some extended properties com-

pared to Point, e.g. it contains also function value etc.
The class Simplex can find local extreme of n-dimensional Function using the simplex method.

It is a container of vertices (SNode).
The class Operation is just the successor of NBase and Object.
The classes Bracket, SymConfInterv etc. represent implementation of various numerical tasks

(bracket the root/extreme, find a symmetric confidence interval for 1-dimensional Pdf etc). They
choose the procedure according to the “equipment” (available derivatives etc.) of the Function
they are operating on.

The class Function covers the basic properties of n-dimensional functions. In carries informa-
tion about its domain, contains the list of singular points and supplies its value if possible (e.g.
singular point of the function (sinx)/x is x = 0, in this case the value 1 is returned), contains ad-
ditional “equipment” (derivatives or integral if available, despite they are evaluated using formula,
table, communication with other Functions or other ways) and gives information about it. It has
a uniform interface.

The class Pdf represents pdf . The features added to Function are normalizing constant, mean
value, variance and mode, if available.

The classes Pdf thm, Pdf sig etc. implement the Bayesian estimates described in the Chapter 6,
page 55. Their properties will be described there.

5.2.2 Communication with Database

The estimates computed by the numerical programs developed here are stored in database files
for further use. The data (often up to 40–50 numbers, their number is not fixed) are also stored
in database files. The communication between the database system and numerical programs is
necessary.

In the previous version of JodNew designed completely for MS-DOS, the numerical programs
performed a direct read/write access to database files. As a command line parameter, a database
file was sent that contained information from which file and from which record the given value
should be read and to which file and record the results should be written. For this access, the
library Sequiter CodeBase 4.5 was used.

This way of communication had some disadvantages. Firstly, before calling the numerical
programs, all the files in the database had to be closed and the FoxPro environment suspended.
Then the numerical program opened the files of need, found the data, computed the result, stored
it in the file and closed all the files. After that, FoxPro environment had to be resumed and all
the necessary files opened. This occured delaying in practice. Also direct acces to the database
brought a risk of corruption its integrity.

The next version of JodNew was written for 32-bit MS-Windows, although the numerical pro-
grams were still in MS-DOS. The new version of MS-FoxPro “upgraded” the format of database
files, so they were not legible anymore by the “old” library CodeBase. The intended form of the
numerical programs was a DLL-library of functions which would take parameters and return values.
As some serious programming modifications of the numerical programs should have been done, the
intermediate stage of data communication through files was chosen.

Unfortunately, MS-Visual FoxPro cannot create or read a general binary file, only data file or
text file. Thus the input data are read from data files, converted into strings and written to the
text file. This file is read by a numerical program, strings converted to binaries and passed to the
algorithms. Results are converted to strings, written to the file. This file is read by FoxPro, strings
converted to binaries and stored in data files.

This procedure is faster, because only one file is opened and closed and no environment is
suspended and resumed. Also database cannot be affected from outside. The greatest advantage is
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that data can be easily checked by simple viewing the text file. The files can be also easily created
which is important in the debugging phase.

The work on DLL-library is in progress, but it is not well accepted by the rest of the develop-
ment team, as any change creates only errors and problems. In this situation, it seems that the
communication through text files will be kept. One reason was already mentioned. Another reason
is that MS-FoxPro does not yield programming tools to control data types of memory variables
and therefore binary format of a number in memory is undefined for the user. Decision of variable
type is made by FoxPro during the run time and type compatibility between data files and memory
variables makes communication through binary representation risky and dangerous. Furthermore,
structured data types created by FoxPro appear to be incompatible with those in C++.

Strings seem to be the only really safe way of transfer, but not absolutely. MS-Windows enable
to define the decimal separator. If it is not a dot (’.’) but comma (’,’), standard conversion
C-functions omit anything behind it. Therefore the decimal separator must be set in FoxPro as
dot.

5.2.3 Software Implementation

The numerical programs are copied in a separate directory. They are called from FoxPro by a batch
file that passes them the name of the text file containing input data. After finishing the run, the
batch file chcecks the status of ERRORLEVEL variable. In case of error, the data are saved. The
text file with the data is appended to a specific file according to the ERRORLEVEL value. In this
way, data causing problems are stored for further analysis and improvements of both the numerical
algorithms and the system JodNew.

The work on the DLL-library is in progress.
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Chapter 6

Solutions of the Estimation Tasks

In this chapter, solutions of the estimation tasks are described from theoretical point of view.
There are two kinds of tasks: those that are solved in the Bayesian way and those that are not.

In the former case, the procedure of the Bayesian estimate [11] is described in details and
remarks about practical realization are attached. The sections concerning this part of tasks have
the following structure:

Measurement. In this part

• in general the method of the data measurement
• the quantity to be estimated

are briefly described.

Model. Here, the model of the investigated process is formulated. The quantity to be estimated
is a part of the unknown parameter of this model. The form includes

• model describing dependence of data, the quantities to be estimated and usually other
parameters,

• the parameter(s) of the model.

Likelihood. If possible, likelihood function and statistics created by the measured data are de-
scribed.

Prior information. In this part, everything that is known before the measurement is mentioned.
The form includes

• expert knowledge, assumptions etc.,
• the corresponding prior pdf ,
• if sufficient statistics exist, their initial conditions.

Estimation. Here, the posterior pdf is derived and, if possible, the mean value and the variance
are evaluated.

Implementation remarks. In this part potential pitfalls of the posterior pdf evaluation are
noted and the methods and/or tricks used in the computations are mentioned.

In the latter case when Bayesian methodology is not applied for the solution, the structure of
the sections is simpler and implementation notes are omitted.

6.1 Thyroid Gland Mass

Thyroid gland mass is the key quantity for estimation of the absorbed radiation dose (see sections
3.10, 3.11 and 3.12, page 31). Unfortunately, its measurement is loaded by the largest error of all
the measurements mentioned in this thesis.

55
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6.1.1 Measurement

Thyroid gland mass measurement at the KNM is performed by two methods:

Palpation (estimation by a touch). This method is very subjective and the assumed relative
precision of this method is about 50% (ωpalp = 0.5).

(Ultra-)Sonography. This method is more objective and the assumed relative precision is about
20% (ωsono = 0.2).

Furthermore both these methods strongly depend on an experience of the physician performing
the examination. Due to the stable staff we can assume personal independence of the mentioned
precisions.

6.1.2 Model

As the absolute measurement error of this quantity depends on the measured magnitude, the
logarithmic-Gaussian model is chosen.

Model: chosen pdf is

f(hi|H, ri) =
1

hi
√

2πri
· e−

(
ln

hi
H

)2
/(2ri) ≡ Lhi(H, ri),

where hi is the result of the i-th measurement and ri depends on its assumed relative precision, as
mentioned in (4.10), page 36. H is the constant estimated mass. The measured values are assumed
conditionally independent.

The relative precision ωi is interpreted as a ratio of standard deviation and mean value of the
logarithmic-Gaussian pdf Lhi

(H, ri). It is connected with ri by the relation (according to (4.10),
page 36)

ωi =
√
eri − 1 ⇐⇒ ri = ln(1 + ω2

i ) (6.1)

and hence

rpalp,i ≈ 0.2
rsono,i ≈ 0.04.

Parameter is the estimated mass H.

6.1.3 Likelihood

in case of n(≥ 1) measurements (see part 4.2.1, page 36)

L(h(..n);H, r) ∝ exp
(
− lnH

2r

(
ν(n) · lnH − 2 ln h̃(n)

))
∝

∝ LH

(
ĥ(n),

r

ν(n)

)
,

where ĥ(n) = h̃(n)1/ν(n) and r is an arbitrary value chosen for a suitable scaling (it is cancelled in
the pdf ).

Sufficient statistics are expressed as follows:

h̃(n) = h̃(n− 1) · hr/rn
n , h̃(0) = 1

ν(n) = ν(n− 1) + r
rn
, ν(0) = 0.

(6.2)
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6.1.4 Prior Information

Expert knowledge is given by this experience:

• the value of H can vary in a broad range, approximately from 0.1g to 500g,

• relative error for the

– palpation method ωpalp,i = 0.5 (rpalp,i = 0.2),

– sonographic method ωsono,i = 0.2 (rsono,i = 0.04).

Prior pdf is chosen as self-reproducing, that is in the same form as (6.1.2) with non-trivial
initial conditions for the statistics ĥ0 and ν0 (6.2).

Having analyzed the available data files, we found 1 022 records with palpation measurements
and 1 657 records with sonographic measurements. As there are more records with sonographic
measurements which have furthermore better accuracy than palpation ones, it was decided to use
sonographic data to find fictitious data for prior the pdf .

The results of sonographic measurements varied from 0.1 g to 470 g. The arithmetic mean of
the sonographic values was h̄ = 5.4 and sample standard deviation s̄ = 29.05. Considering (4.11),
page 37, we find that

ĥ0 = h̄ exp
(
− r

2ν0

)
, ν0 =

r

ln
[(

s̄
h̄

)2 + 1
] .

The resulting fictitious data are

ν0 = r
3.395 , ĥ0 = 0.998, h̃0 = 0.998ν0 . (6.3)

where r is an arbitrary value chosen for a suitable scaling (it will be reduced in the pdf ). The prior
pdf of an unknown mass H is then

f(H) = LH

(
ĥ0 = 0.998,

r

ν0
= 3.395

)
. (6.4)

These fictitious data correspond to a fictitious measurement where hi = 5.4 and ωi = 5.38. Simi-
larity of these two numbers is accidental. The value of r is chosen as geometric mean rn =

∏n
i=1 ri

of values ri corresponding to the data hi.

6.1.5 Estimation

Substituting the data to the statistics (6.2) with the initial conditions (6.3) and denoting ĥ(n) =
ν(n)
√
h̃(n), the posterior pdf of the mass H is

f(H|h(..n)) = LH

(
ĥ(n),

r

ν(n)

)
. (6.5)

with the moments

E[H|h(..n)] = ĥ(n) · exp
r

2ν(n)

var [H|h(..n)] = (E[H|h(..n)])2 ·
(

exp
r

ν(n)
− 1
)
,

where r is the chosen “scaling” value. The expression for mode is x̂ = ĥ(n) exp
(
− r
ν(n)

)
.
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6.1.6 Implementation Remarks

The posterior pdf is represented by the class Pdf thm. The data pairs hi and ωi are passed to the
constructor in an array containing information how many measurements (data pairs) are available.

The value r is chosen as a geometric mean of all ri (see (6.1)) corresponding to hi.
If the exponent of (6.5) is less than logarithm of minimum value representable in double preci-

sion, zero is returned.
The posterior pdf formula (6.5) is numerically stable and reliable in a range far exceeding

common values of thyroid gland mass. The function is normalized. The function value, mean
value, dispersion, mode and integral are implemented. Because of term 1/H, value in point 0 is
defined as 0.

Because logarithmic-normal pdf can be hardly approximated by normal pdf , the confidence
interval was computed in a different way than in case of other estimates. A table of integral values
was generated with floating distance between the discretization points so that error of quadratic
interpolation between these points does not exceed 10−4. For details, see part 5.1.5, page 49.

In the KNM applications, estimates are requested separately using only the palpation or sono-
graphic data and using all the data together. This request is indicated by a bit field carrying
information about the data processing (see Fig. 6.1). However, this mechanism is not a part of

msb lsb

6
(1) process the palpation data

6

(2) process the sonographic data

6

(4) process the γ-camera data

6

(8) process the data obtained by another method

6

(64) process the indicated data separately

6

(128) process the indicated data together

Example:

dec bin what to process returned
3 00000011 nothing nothing

67 01000011 palp. and sono. data separately 2 estimates
131 10000011 palp. and sono. data together 1 estimate
195 11000011 palp. and sono. data both separately and together 3 estimates

Figure 6.1: Bit field to control the estimation of thyroid gland mass

the class but of a function that manages the class construction.

6.2 Activity Kinetics

In thyroid gland diseases radiotherapy, one of the important tasks is to quantify activity kinetics
in the patient’s organism. This kinetics means particularly to estimate

• the effective half-life, in which one half of the activity is eliminated from the organ of interest
(see part 3.2, page 28),

• the prediction of time, when some radiohygienic limit will be reached (see part 3.9, page 29).
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The activity measurement is represented by a detection and counting the impulses (particles)
caused by a radioactive decay. The amount of these impulses is the only directly measurable quan-
tity. To determine the unknown activity, the corresponding impulses amount must be compared
with the one obtained by a measurement performed on a source of known activity. Such a source
is usually called standard source.

The following subsections (Nos. 6.3 – 6.7) are closely related together from the methodological
and measurement point of view [11]. The first three tasks,

• estimation of the amount of particles coming from the source of interest (to exclude the
influence of the background),

• calibration of the measurement device with a source of known activity (to convert particles
amount to activity in given geometric conditions),

• estimation of the unknown activity in the given time.

can be understood as subtasks of one complex task to find out the activity kinetics. Using previous
and so far usual “deterministic” methods of computation and estimation, these subtasks of activity
kinetics estimation were necessary to be performed step by step. Using the Bayesian tools, the
activity kinetics estimation problem is solved as whole at one time, not part by part, as outlined
above. Nevertheless, the problems mentioned as “subtasks” can play an independent role, especially
in these cases:

1. to examine, if simple subtraction of background impulses from impulses of source on back-
ground can yield suitable estimate of the source signal,

2. to check (test), if the geometrical and other conditions of measurement are constant in time
by examining the calibration factor value,

3. to evaluate single-time activity measurement for other purposes (e.g. contamination of the
staff),

4. to yield “step-by-step quantities” to the KNM staff which is used to check their values during
the procedure of the measurement.

Therefore solutions of these steps have not only historical purpose but also direct application in
auxiliary tasks.

6.3 Source on the Background

The only data directly measurable in the activity/kinetics estimation task are counts of ionizing
particles detected above the places of interest in the body. These counts are random quantities
“polluted” by a backround radiation, also random. The measurement time must not be too long
(tens of seconds), supplied activity during the diagnosis stage must be low enough to minimize the
radiation risk and the measurements cannot be repeated because of the KNM work schedule and
large amount of patients. All these reasons increase the uncertainty of the data.

Therefore the elimination of the background is a very important problem. If the source signal
of interest is much higher than background, the task is very simple. If the background and the
source signal are of the same level, the probabilistic approach must be used [16].

6.3.1 Measurement

Counts of particles (impulses in the measurement device) in some fixed time interval are detected.
Assume that

• B is a mean value of the background particles count (without a source),

• Z is a mean value of the source particles count (without a background — so called signal),
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• both B and Z are constant during the measurement.

Let us perform n measurements of backround impulses, result of each is bi, i = 1, 2, . . . , n. Denote
b(..n) = {bi}ni=1. Assume that mean value of bi is B.

Let us perform m measurements of signal plus backround impulses, result of each is zj , j =
1, 2, . . . ,m. Denote z(..m) = {zj}mj=1. Assume that mean value of zj is B + Z.

The mean value of source signal impulses Z is the quantity to be estimated.

6.3.2 Model

Let us assume the data are independent, Poisson-like distributed. Model of the background im-
pulses measurement bi with mean value B is f(bi|B) = PB(bi) (see part 4.2.2, page 37). Model
of the source on background impulses measurement zj with mean value B + Z is f(zj |B,Z) =
PB+Z(zj). Due to the independence, the joint probability function of data measurement is

f(b(..n), z(..m)|B,Z) =
n∏
i=1

PB(bi) ·
m∏
j=1

PB+Z(zj).

Z is the parameter to be estimated.

6.3.3 Likelihood

The form of likelihood is (see part 4.2.2, page 37)

L(b(..n), z(..m);B,Z) ∝ Bb̃(n)e−[ν(n)+ν(m)]B · (B + Z)z̃(m)e−ν(m)Z ,

b̃(n) = b̃(n− 1) + bn, b̃(0) = 0
z̃(m) = z̃(m− 1) + zm, z̃(0) = 0
ν(n) = ν(n− 1) + 1, ν(0) = 0.

Terms b̃(n), z̃(m) and ν(n) are finite sufficient statistics.

6.3.4 Prior Information

The expert knowledge is expressed by choice of a suitable measurement range b.
As the independence of background and source impulses is assumed, i.e.

f(B,Z) = f(B) · f(Z),

prior information on background and source can be investigated independently.
As described in part 4.2.2, page 37, the prior pdf can be expressed by gamma-pdf f(B) =

GB(b̃0, ν0). Our requirements are (i) mean value of prior pdf EB is in the middle of the measurement
range 〈0, b〉 and (ii) standard deviation

√
varB of the prior pdf is one half of the measurement range

length 〈0, b〉. Knowing that EB = b̃0+1
ν0

and varB = b̃0+1
ν2
0

, we obtain

b̃0 = 0, ν0 =
2
b
≡ ζ. (6.6)

As for the source prior pdf , the procedure and the values for z̃0 and ν0 will be the same provided
that the same range b is assumed.

As the result, the prior pdf for the source and background is

f(B,Z) ∝ Bb̃0(B + Z)z̃0 · e−ν0(2B+Z),

b̃0 = 0,
z̃0 = 0,

ν0 =
2
b

= ζ.
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6.3.5 Estimation

According to the previous conclusions, the joint probability of both backround and source impulses
is

f(B,Z|b(..n), z(..m)) ∝ Bb̃(n)(B + Z)z̃(m) · e−{[ν(n)+ν(m)]B+ν(m)Z},

b̃(n) = b̃(n− 1) + bn, b̃(0) = 0
z̃(m) = z̃(m− 1) + zm, z̃(0) = 0

ν(n) = ν(n− 1) + 1, ν(0) = ζ =
2
b
.

The marginal pdf of Z is obtained as

f(Z|b(..n), z(..m)) =

+∞∫
0

f(B,Z|b(..n), z(..m)) dB.

The explicit form of this formula is [6]

f(Z|b(..n), z(..m)) =
e−ν(m)Z

z̃(m)∑
j=0

z̃(m)! (b̃(n)+j)!
(z̃(m)−j)! j!

Zz̃(m)−j

(ν(n)+ν(m))b̃(n)+j+1

1
ν(m)z̃(m)+1

z̃(m)∑
j=0

z̃(m)! (b̃(n)+j)!
j!

ν(m)j

(ν(n)+ν(m))b̃(n)+j+1

. (6.7)

The formula for k-th moment
∫ +∞
0

Zk p(Z|b(..n), z(..m)) dZ has the form [6]

E
(
Zk|b(..n), z(..m)

)
=

ν(m)b̃(n)+1
z̃(m)∑
j=0

(b̃(n)+j)! (z̃(m)−j+k)!
(z̃(m)−j)! j!

(
ν(m)

ν(n)+ν(m)

)j
z̃(m)∑
j=0

(b̃(n)+j)!
j!

(
ν(m)

ν(n)+ν(m)

)j . (6.8)

Both these formulae are numerically extremely untractable.

6.3.6 Implementation Remarks

The posterior pdf is represented by the class Pdf sig.
Very smart and stable algorithms for the pdf and k-th moment evaluation were derived by [6].
Unfortunately, both the algorithms contain z̃(m)-times repeated cycle. This feature becomes

disadvantageous for count numbers z̃(m) of order 105 – 106 that are frequently used. Therefore an
approximation of pdf (6.7) should be designed. Some attempts were done in this question [16] but
not too successfully. Therefore a temporary solution was optionally accepted. The mean value EZ
is taken as a center of the confidence interval. Distance of upper bound Zu and lower bound Zl
was chosen as Zu − Zl = 4

√
varZ. This interval in Gaussian approximation represents cca. 97%

probability.
The pdf is normalized. Function value, mean value, variance, 1st and 2nd derivatives are

available in the class. Computation procedure of the derivatives uses the original algorithm for
pdf value modified in a particular way and peforms complicated calls of methods inside the object,
which is invisible from outside. This shows the advantage of using object-oriented tools here.

6.4 Calibration Coefficient

Calibration coefficient c, defined by (3.9), page 29, converts count of particles emitted by a source
to the activity. For its estimation, a source of a known activity must be used.
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The estimate of signal on background cannot be included as a part of further estimation tasks
because of its computational difficulty (6.7). Therefore the impulses counts treated later in this
chapter are point estimates of signal on background taken as means of confidence intervals yielded
by (6.7). This simplification will cause an artificial decrease of uncertainty of the estimates men-
tioned below. But if z � b (see part 6.3.1), point estimate of Z appears to be a good approximation
[15].

6.4.1 Measurement

Let us have a “standard” source of the known activity S. Detecting emitted particles, let us
perform n measurements with the geometrical measurement conditions unchanged. Result of j-
th measurement is count sj , where j=1,...,n. Counts sj are independent. Let us assume that
calibration coefficient c is constant.

6.4.2 Model

Data model has the form

f(s(..n)|c(..n), S) =
n∏
j=1

Psj (c S),

where Pb(a) means Poisson distribution with mean value a and discrete variable b.
Parameter to be estimated is c.

6.4.3 Likelihood

The form of likelihood is (see part 4.2.2, page 37)

L(s(..n);S) ∝ cs̃(n)e−cS̃(n)

s̃(n) = s̃(n− 1) + sn, s̃(0) = 0
S̃(n) = S̃(n− 1) + Sn, S̃(0) = 0.

6.4.4 Prior Information

The expert knowledge is expressed by choice of a suitable value cu that is upper limit for the
geometrical conditions usually used for measurement. Lower limit is zero, as c must be non-
negative. Using conjugated gamma-pdf

f(c) = Gc(s̃0, S̃0),

requesting that its mean value is cu

2 and standard deviation is cu

4 and using similar procedure as
in (6.6), page 60, we will get

s̃0 = 1, S̃0 =
8
cu

≡ ζ. (6.9)

For details see [19].

6.4.5 Estimation

According to the previous conclusions, the posterior pdf of the calibration coeficient is

f(c|s(..n), S) = Gc(s̃(n), S̃(n)),
s̃(n) = s̃(n− 1) + sn, s̃(0) = 1 (6.10)

S̃(n) = S̃(n− 1) + Sn, S̃(0) = ζ ≡ 8
cu
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and corresponding moments are

E[c|s(..n), S] =
s̃(n) + 1
S̃(n)

var [c|s(..n), S] =
E[c|s(..n), S]

S̃(n)
.

6.4.6 Implementation Remarks

The posterior pdf is represented by the class Pdf cal.
As gamma-pdf contains exponents and Γ-function arguments of high orders, enumeration prob-

lems were encountered. Therefore the posterior pdf is pseudo-normalized (see part 5.1.3, page 48).
Because of using logarithm in pseudo-normalization, value in point 0 is defined as 0.

Function value, mean value, variance, mode, 1st and 2nd derivative are available.

6.5 Instantaneous Activity

6.5.1 Measurement

Count a of particles corresponding to the source of an unknown activity A is detected. Using the
calibration information (see part 6.4, page 61), unknown activity A can be estimated.

6.5.2 Model

Model of detected particles counts a can be written as

f(a|c, A) ≡ f(a|c, A, s(..n), S(..n)) = Pa(cA), (6.11)

where c is calibration factor, S is the standard source activity (known) and s is count of the
coresponding standard source particles.

A is the parameter to be estimated.

6.5.3 Likelihood

Likelihood is L(a, s(..n), S(..n); c, A) ∝ (cA)ae−cA.

6.5.4 Prior Information

There is an upper bound of activity in the patient’s body given by the decay law ((3.6), page 28),
where the applied activity is substituted for A0. Let us denote this upper bound as Au. Lower
bound of the activity in the patient’s body is 0. Estimated activity A must appear in the range
〈0;Au〉.

A specific form of prior pdf f(A) will be derived later.

6.5.5 Estimation

As unknown activity A and calibration factor c are independent, the joint pdf can be expressed as

f(A, c|s(..n), S(..n), a) = f(A|a, c, s(..n), S(..n)) · f(c|s(..n), S(..n)), (6.12)

where f(c|s(..n), S(..n)) corresponds to (6.10) and

f(A|a, s(..n), S(..n)) ∝ f(a|c, A, S(..n)) · f(A). (6.13)

As f(A|s(..n), S(..n), a) =
+∞∫
0

f(A, c|s(..n), S(..n), a)dc, considering (6.10) and (6.13) we get

f(A|s(..n), S(..n), a) = K̃ f(A)
Aa

(A+ S̃(n))a+s̃(n)+1
, (6.14)
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where K̃ is a normalizing constant and S̃(n), s̃(n) are described in (6.10).
The explicit form of prior pdf f(A) is chosen as

f(A) ≡ f(A|s(..n), S(..n), α, β) = Kp
Aα

(A+ S̃(n))β
,

where Kp is a normalizing constant of prior pdf , α and β are fictitious data (see part 4.1.5, page 34).
If Au is some upper limit that cannot be exceeded (see part 6.5.4), let us choose α and β so that
f(A) has mean value in Au

2 and standard deviation is Au

4 .
Then the posterior pdf is

f(A|s(..n), S(..n), a) = K
Aα+a

(A+ S̃(n))β+a+s̃(n)+1
, (6.15)

where (see (6.10), page 62)

K ≡
[

+∞∫
0

Aα+a

(A+S̃(n))β+a+s̃(n)+1 dA

]−1

= S̃(n)β−α+s̃(n) · Γ(β+a+s̃(n)+1)
Γ(a+α+1) Γ(β−α+s̃(n))

α = Ā2(Ā+S̃(n))2+DĀ(2+Ā−S̃(n))−S̃(n)2D

Ā+S̃(n)

β = Ā(Ā+S̃(n))2+D(2+Ā+S̃(n))

S̃(n)D

Ā = Au

2

D = Au

4 .

(6.16)

For details see [19].
If we denote [K(p, r, s)]−1 =

∫ +∞
0

Ap

(A+s)r dA, then it is obvious that E(Aj) = K(p,r,s)
K(p+j,r,s)) . Hence

E(A|α, β, a, S̃(n), s̃(n)) = S̃(n)
α+ a+ 1

β + s̃(n)− α− 1
, (6.17)

var (A|α, β, a, S̃(n), s̃(n)) = [S̃(n)]2
(α+ a+ 1)(β + a+ s̃(n))

(β + s̃(n)− α− 1)2 (β + s̃(n)− α− 2)
. (6.18)

Expression for mode is x̂ = S̃(n)
β−a+s̃(n)+1 .

6.5.6 Implementation Remarks

The posterior pdf is represented by the class Pdf act.
As the expression of the constant K contains exponents and Γ-function arguments of high

orders, it is not evaluated and the posterior pdf is pseudo-normalized (see part 5.1.3, page 48).
Because of using logarithm in pseudo-normalization, value in point 0 is defined as 0.

Function value, mean value, variance, mode, 1st and 2nd derivative are available.

6.6 Effective Half-life

Effective half-life in an important parameter characterizing activity kinetics. Time course of activ-
ity, obtained by compartment model, is a combination of polynomes, exponentials and goniometric
functions with many parameters [11] estimation of which would be complicated and would suffer
of lack of data. Therefore the time course of activity is modelled by 1st order exponential function
that dominates over others and has only two estimated parameters.

6.6.1 Measurement

Sequence of measurements that are described in part 6.5.1, page 63, is performed. Time difference
of subsequent measurements is usually about 24 hours.
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6.6.2 Model

The time depencence of activity in some accumulating organ is a process of higher order. Its
qualitative description is: (1) an increase from zero, (2) reaching the maximum, (3) a decrease to
zero. Stages (1) and (2) take place within first few hours, so stage (3) covers majority of time and
data measurements. This stage is usually modelled by mono-exponential function. Let t1 be the
time instant when activity of the organ reached its maximum (stage (2)).

Then unknown activities in tj , j = 1, 2, . . . ,m, follow the relation

Aj ≡ A(tj) = A1 · exp
[
− (tj − t1) · ln 2

Tef

]
≡ A1 · ψ(Tef , j) (6.19)

ψ(Tef , j) ≡ exp
[
− (tj − t1) · ln 2

Tef

]
Counts aj = a(tj), j = 1, 2, . . . ,m are considered Poisson-distributed and conditionally indepen-
dent. Then

f(a(..m)|c, A1, Tef , s(..n), S(..n)) ∝
m∏
j=1

Paj (cA1 ψ(Tef , j)) (6.20)

Parameters are c, A1 and Tef , where A1 means unknown activity in time t1 and Tef is one to be
estimated.

6.6.3 Likelihood

Likelihood has a form

L(a(..m), s(..n), S(..n); c, A1, Tef ) ∝ cã(m)+s̃(n) A
ã(m)
1 Ψ̃(Tef ,m) · e−c (A1ψ̃(Tef ,m)+S̃(n)), (6.21)

where s̃(n) and S̃(n) are described in (6.10), page 62, and

ã(m) = ã(m− 1) + am, ã(0) = 0,
ψ̃(Tef ,m) = ψ̃(Tef ,m− 1) + ψ(Tef ,m), ψ̃(Tef , 0) = 0,
Ψ̃(Tef ,m) = Ψ̃(Tef ,m− 1) ψ(Tef ,m)am , Ψ̃(Tef , 0) = 1.

(6.22)

Note that functions ψ̃(Tef ,m) and Ψ̃(Tef ,m) are not sufficient statistics as they depend on the
unknown parameter Tef .

6.6.4 Prior Information

There are three parameters in the model (6.20): calibration factor c, maximum activity A1 and
effective half-life Tef . Let us discuss their dependence.

Calibration factor c expresses geometrical and technical conditions of the measurement, there-
fore it is independent of A1 and Tef . As A1 results from complicated dynamics (as mentioned
above) that is not investigated here, its dependence on Tef is unknown. Hence both the parame-
ters A1 and Tef should be considered à priori independent. It allows to discuss all three parameters
separately.

Prior information on c is given by (6.10), page 62.
Lower bound of activity is 0. If we denote applied activity (that was administered into patient’s

body) as Aapl and application time as tapl, it is obvious that activity in time t1 anywhere in the
body, according to the decay law (see (3.6), page 28), cannot exceed value

Ā1 = Aapl · exp
(
− t1 − tapl

Tp
ln 2
)
, (6.23)

where Tp is physical half-life (see 3.5, page 28). As no other references are known, prior pdf of the
parameter A1 is taken as uniform density f(A1) = UA1(0, Ā1).

Considering the definition of effective half-life (3.7), page 28, prior pdf of Tef can be expressed
also uniform on (0;Tp〉, i.e. f(Tef ) = UTef

(0, Tp).
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6.6.5 Estimation

Posterior pdf of Tef can be found in two integration steps. At first, joint pdf of A1 and Tef is
obtained by integration over c :

f(A1, Tef |a(..m), s(..n), S(..n)) =

+∞∫
0

f(c, A1, Tef |a(..m), s(..n), S(..n)) dc (6.24)

∝ UA1(0, Ā1) UTef
(0, Tp)

Ψ̃(Tef ,m) Aã(m)
1[

A1ψ̃(Tef ,m) + S̃(n)
]ã(m)+s̃(n)+1

.

At second, the posterior pdf of Tef is then obtained by intergration of (6.24) over A1 in limits
〈0, Ā1〉. For Ā1 → +∞, the explicit formula can be found. In this case, the calibration information
is eliminated, thus unnecessary:

f(Tef |a(..m), s(..n), S(..n)) ≡ f(Tef |a(..m)) ∝ UTef
(0, Tp)

Ψ̃(Tef ,m)
ψ̃(Tef ,m)ã(m)+1

. (6.25)

For finite Ā1, the integral of (6.24) must be found numerically.

6.6.6 Implementation Remarks

The posterior pdf is represented by the class Pdf tef. The version for finite Ā1 is implemented.
This class uses several other classes. Class LPdfTef2 represents logarithm of joint pdf (6.24).
Class LPdfTef2 is used by class Pdf Tef2A1 that fixes Tef and represents (6.24) as a function of
A1. Class Pdf Tef then integrates Pdf Tef2A1 over domain of A1. Class LPdfTef2 is used also in
prediction of radio-hygienic limits.

LPdfTef2 is pseudo-normalized and offers function value and mode, classes Pdf Tef2A1 and
Pdf Tef give only function values.

6.7 Prediction of Reaching Radiohygienic Limits

After application, the patient is a source of radiation for his neighbourhood and therefore he has
to be under radio-hygienic supervision. Meaning and importance of radiohygienic limits and their
prediction were discussed in part 3.9, page 29.

This task is a modification of effective half-life estimation (part 6.6), therefore many steps will
be the same.

6.7.1 Measurement

This part is the same like in part 6.6.1.

6.7.2 Model

Ideas of this part are the same like in 6.6.2, page 65. Furthermore, let us consider value of patient’s
activity Ah that determines change in his handling regulations during his hospitalization in the
KNM . For the given A1 and Tef (see part 6.6.2, page 65), prediction of time th, when the patient’s
activity will sink to a given value Ah, can be done using the decay law

Ah = A1 exp
[
− th − t1

Tef
ln 2
]
. (6.26)

If we re-arrange this expression as

A1 = Ah exp
[
+
th − t1
Tef

ln 2
]

(6.27)
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and substitute it to (6.24) for A1, we will get model of data of limit reaching prediction.
Parameters of this models are c, Ah and th, where the last one is to be estimated.

6.7.3 Likelihood

This part is the same like 6.6.3, considering the formula (6.27).

6.7.4 Prior Information

Ideas of this part are the same like in 6.6.4, page 65. As for th, it must be greater than t1 and it
cannot exceed value t̄h obtained by physical (the slowest possible) activity decrease

t̄h = tapl + Tp
ln Aapl

Ah

ln 2
.

Prior pdf for th is taken as uniform f(th) = Uth(t1, t̄h).

6.7.5 Estimation

Substituting (6.27) into (6.24) for A1, we will get joint pdf f(th, Tef |Ah, a(..m), s(..n), S(..n)). If
we denote conditions of this pdf as P, the marginal posterior pdf of th is then

f(th|P) ∝ Uth(t1, t̄h)

Tp∫
0

Ψ̃(Tef ,m) exp
[
(ã(m)+1) th−t1Tef

ln 2
]

{
Ah exp

[
th−t1
Tef

ln 2
]
ψ̃(Tef ,m) + S̃(n)

}ã(m)+s̃(n)+1

d Tef
Tef

. (6.28)

This integral must be computed numerically.

6.7.6 Implementation Remarks

The posterior pdf is represented by the class Pdf apr. This class uses several other classes. Class
LPdfTef2 represents logarithm of joint pdf (6.24). Class LPdfTef2 is used by class Pdf AprT that
substitutes (6.27) for A1, fixes it and represents (6.28) as a function of Tef . Class Pdf Apr then
integrates Pdf AprT over domain of Tef . Class LPdfTef2 is used also for estimation of effective
half-life Tef .

LPdfTef2 is pseudo-normalized and offers function value and mode, classes Pdf AprT and
Pdf Apr give only function values.

6.8 Excretion of Activity

“Excretions” Eri are important to determine some radio-hygienic quantities. They are defined
by (3.10), page 29. Only three measurements are performed — one calibration immediately after
application, when activity inside the patient is known, and two measurements with unknown
patient’s activity (i = 1, 2).

Exretions can be defined also implicitly as

Ai = Aapl ψ(Tp, i)

1−
i∑

j=1

ERj

 , i = 1, 2, (6.29)

where Aapl is applied activity, tapl is application time, Tp is physical half-life, A(i) means whole-

body activity in time ti and usual notation ψ(Tp, i) = exp
(
− ti−tapl

Tp
ln 2
)

is used. If the calibration
measurement is denoted by subscript 0, then usually t0 ≈ tapl, t1 ≈ tapl + 24 hours and t2 ≈
tapl + 48 hours. Note that Er = ER · 100%.

Values Er1 and Er2 are to be estimated.
Estimation will be derived for quantities ERi, change for Eri can be then done by simple

variable transformation (see part 3.3, page 28).
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6.8.1 Measurement

To avoid direct measurements of patients’ excrements activity, which is technically and methodolog-
ically complicated, unpleasant and non-hygienic, excretions are measured indirectly. Whole-body
activity measurement is performed and then value of eliminated activity is estimated.

Impulses ei in time ti, i = 0, 1, 2 over the whole body are counted. The measurement in t0
provides a calibration.

6.8.2 Model

Impulses counts are conditionally independent and Poisson-like distributed. If c is an unknown
calibration factor assumed to be constant, Ai is the whole-body activity in time ti and m=2, then

f(e0, e(..m)|c, A(..m)) =
m∏
i=0

(cAi)
ei

ei!
exp(−cAi) , m = 2. (6.30)

Parameters of this model are c and Ai, i = 1, . . . ,m. Quantities to be estimated are Er(..m)
that are “hidden” in A(..m) through (6.29).

6.8.3 Likelihood

Substituting (6.29) into (6.30) and considering that A0 = Aapl ψ(Tp, 0), we get the expression for
likelihood

L(e0, e(..m); c, E(..m)) ∝ cẽ(m) exp
[
− cAapl

(
ψ̃(Tp,m)− ẼR(m)

)] m∏
i=1

[
1− ẼR(i)

]ei

, (6.31)

where
ẽ(m) = ẽ(m− 1) + em, ẽ(0) = e0,

ψ̃(Tp,m) = ψ̃(Tp,m− 1) + ψ(Tp,m), ψ̃(Tp, 0) = ψ(Tp, 0),

ẼR(m) =
m∑
i=1

ERi,

ẼR(m) =
m∑
i=1

ψ(Tp, i)ẼR(i).

6.8.4 Prior Information

Parameter c can change firstly during 48 hours as 131I is being distributed over the organism, and
secondly because of the possibility that geometrical conditions during measurements in time t1
and t2 can slightly differ from those in t0. As these changes are unknown, c must be considered
constant and independent of ER1 and ER2. Anyway, the calibration measurement is independent
of the following ones.

The measurement in t0 is simple calibration as described in section 6.4, page 61. Therefore
its prior pdf is Gamma-pdf Gc(0, 1

c̄ ), where c̄ is some usual suitable value of c that is both mean
value and standard deviation of the prior pdf . Because 1

c̄ is added to standard activity as prior
information, it must be added to Aapl for the calibration measurement (i = 0). Looking at (6.31),
we see that ψ(Tp, 0) occurs only in sum. Then we can add 1

c̄ Aapl
as initial condition for ψ̃(Tp, 0):

ψ̃(Tp, 0) = ψ(Tp, 0) +
1

c̄ Aapl
. (6.32)

As amount of radioactive solution diluted from the body cannot decrease, the sequence
{
ẼR(i)

}m
i=1

is non-sinking. Furthermore 0 ≤ ẼR(i) ≤ 1 for any i, as the patient cannot dilute more than he
has drunk. Putting this together, we get the condition

0 ≤ ER1 ≤ ER1 + ER2 ≤ 1. (6.33)



6.9. RADIO-HYGIENIC QUANTITIES 69

Then the prior pdf for ERi, i = 1, 2, is

f(ER(..m)) =
m∏
i=1

UERi

(
0, 1−ẼR(i−1)

)
=

χER1(0, 1)
1

· χER2(0, 1−ER1)
1−ER1

(6.34)

for m = 2. Then domain of the joint posterior pdf is triangle, in which both ERis are non-negative
and their sum does not exceed 1.

6.8.5 Estimation

Putting together (6.31), (6.32) and (6.34), we get a joint posterior pdf of c, ER1 and ER2. Inte-
grating over c on 〈0,+∞〉 we get a joint pdf of ER1 and ER2:

f(ER(..m)|e(0), e(..m)) ∝

m∏
i=1

UERi

(
0, 1−ẼR(i−1)

) [
1− ẼR(i)

]ei

[
ψ̃(Tp,m)− ẼR(m)

]ẽ(m)+1
, (6.35)

where

ẽ(m) = ẽ(m− 1) + em, ẽ(0) = e0,

ψ̃(Tp,m) = ψ̃(Tp,m− 1) + ψ(Tp,m), ψ̃(Tp, 0) = ψ(Tp, 0) + 1
c̄ Aapl

,

ẼR(m) =
m∑
i=1

ERi, ẼR(0) = 0,

ẼR(m) =
m∑
i=1

ψ(Tp, i)ẼR(i)

and m = 2.
Marginal pdf s will be obtained by numerical integration over another variable on its domain

given by prior information.

6.8.6 Implementation Remarks

This estimation task is not solved in the object-oriented way. The function values of (6.35) are
stored in a grid and numerically integrated. As the function values are calculated using their
logarithms, the condition (6.33) must be changed to 0 ≤ ER1 ≤ ER1 + ER2 < 1.

6.9 Radio-hygienic Quantities

Radionuclide present in the patient’s body produces ionizing radiation. Necessary information to
be known is which dose is absorbed in which organ, namely, if dose in the target organ (in this
case thyroid gland) will be sufficiently high and if dose in other organs (e.g. blood, bone marrow,
liver etc.) will not exceed some “safe” value.

In the KNM , two radio-hygenic quantities are being estimated: specific irradiation of thyroid
gland and specific irradiation of blood.

6.9.1 Specific Irradiation of Thyroid Gland

As mentioned in part 3.10, page 30, the formula for specific irradiation of thyroid gland for 3.7 GBq
of applied 131I is

SIth =
139 Armax

H
Tef ,

where Armax is maximum relative activity of the thyroid gland [%], H is thyroid gland mass [g]
and Tef is effective half-life [days]. Unit of SIth is Gy (=J/kg).
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Bayesian estimate requires integration of complicated formula over two variables [11]. Further-
more, shape of the domain is irregular due to prior information, therefore some variable trans-
formation and use of approximation integration formulae [39] is not well justified. As estimates
of all input variables for the definition formula are available in their interval form, a more simple
method of SIth estimation was chosen. The main reasonss for this decision were limited time for
computation and perspective of using the MIRD method.

If x is some quantity, x̂ its point estimate and ∆x its absolute error, the notation x = x̂±∆x
represents some interval 〈x̂−∆x; x̂+∆x〉, in our case the 95% symmetric confidence interval (see
part 4.1.7, page 35). Let us denote lower bound of this interval xl = x̂ − ∆x and upper bound
xu = x̂+ ∆x.

Following the introduced notation, we can estimate SIth,l and SIth,u in the following “pes-
simistic” way:

SIth,l =
139 Armax,l

Hu
Tef,l,

SIth,u =
139 Armax,u

Hl
Tef,u.

Then

ŜIth =
SIth,u + SIth,l

2
,

∆SIth =
SIth,u − SIth,l

2

and SIth = ŜIth±∆SIth. This interval represents generally more than 95% probability [20]. The
main source of uncertainty here is the estimate of thyroid gland mass.

6.9.2 Specific Irradiation of Blood

As mentioned in part 3.11, page 30, the formula for organic and anorganic fraction of maximum
specific irradiation of blood for 3.7 GBq of applied 131I is

SIKan,max = 160 (Er1+Er2)
M ,

SIKorg,max = 13.9 (100−Er1−Ar1) Tef .
(6.36)

This formula contains four dependent variables that shoud be integrated off. Therefore similar
approach like in the previous part was adopted for the same reason. Furthermore, data for esti-
mation of Eri, i = 1, 2, and Ar1 are dependent. Integration domain is then non-trivially bounded
by prior information which makes the integration task even more complicated.

Following the ideas from the previous part, we will find

SIKan,max,l =
160 (Er1,l + Er2,l)

M
,

SIKan,max,u =
160 (Er2,u + Er2,u)

M

and

SIKorg,max,l = 13.9 (100−Er1,u−Ar1,u) Tef,l,
SIKorg,max,u = 13.9 (100−Er1,l−Ar1,l) Tef,u.

Then quantities ŜIKan,max, ŜIKorg,max, ∆SIKan,max and ∆SIKorg,max can be easily computed.
The confidence intervals generally represent again the probability greater than 95%.
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6.9.3 Medical Internal Radiation Dose — the MIRD Method

As mentioned in part 3.12, page 31, the formula for the mean absorbed dose in target organ is

D̄t = Aapl
∑
s

τs Ss→t. (6.37)

If we consider thyroid gland as the only source organ of destructive β-radiation [11], we can denote
τs explicitly as τth. To determine the residence time τth, we must compute integral below the
curve Ath(t) in the thyroid gland. In the part 6.6.2, page 65, we adopted the simplified model of
single-exponential activity sinking for t ≥ t1,th (phase (3) of the time course). To estimate the
whole integral from tapl to +∞, we must determine the phase (1) of the time course, i.e. Ath(t)
for tapl ≤ t ≤ t1,th. As we know only that this phase is relatively fast, we can approximate it by
line segment described by linear fuction Ath(t) = A1,th

t1,th
(t− tapl).

To summarize, we have for Ath(t):
phase (1): fast increase to the maximum tapl ≤ t ≤ t1,th Ath(t) = A1,th

t1,th
(t− tapl)

phase (3): exponential decrease t ≥ t1,th Ath(t) = A1,th exp
(
− t−t1,th

Tef,th
ln 2
)
,

where Tef,th is effective half-life in thyroid gland. Then the residence time τth can be computed as

τth =
A1,th

Aapl

 t1,th2
+

+∞∫
t1,th

exp
(
− t− t1,th

Tef,th
ln 2
)
dt

 .
The solution is

τth =
A1,th

Aapl

(
t1,th
2

+
Tef,th
ln 2

)
.

Furthermore, the mean absorbed dose for thyroid gland as a target is related to some standard
thyroid gland mass, which is for adult male 20.7 g [35]. If we know “true” thyroid gland mass,
which is given by the Bayesian estimate H, and considering thyroid gland as the only source organ
of β-radiation, we can modify the formula (6.37) for thyroid gland as

D̄th→th = Aapl
20.7 g
H

τth Sth→th,

where D̄th→th explicitly means the mean absorbed dose for thyroid gland.
The S-factor Sth→th is known as number.
What we must keep in mind is that quantities A1,th, Tef,th and H are Bayesian estimates

represented by their confidence intervals. Following the same ideas like in previous two parts, we
can write for the residence time τth→th:

τth,l =
A1,th,l

Aapl

(
t1,th
2

+
Tef,th,l

ln 2

)
,

τth,u =
A1,th,u

Aapl

(
t1,th
2

+
Tef,th,u

ln 2

)
and for the mean absorbed dose for thyroid gland D̄th→th:

D̄th→th,l = Aapl
20.7 g
Hu

τth,l Sth→th,

D̄th→th,u = Aapl
20.7 g
Hl

τth,u Sth→th.

For adult male, Sth→th = 5.64mGy/(MBq hour) which corresponds to 135.36mGy/(MBq day).
For application to thyroid gland as a source and bone marrow as a target, the formula (6.37)

will have a form
D̄th→marrow = Aapl τth Sth→marrow ,
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where for adult male Sth→marrow = 8.5·10−3 mGy/(MBq hour), i.e. 0.204 mGy/(MBq day).
Determining D̄s→t for other organs, we can use the same ideas. Note that the estimate does not

include the model errors (both MIRD and approximation of time course of Ath(t)) and uncertainty
of Sth→th.



Chapter 7

Experiments with Data and the
Algorithms

In this chapter, some tests of the algorithms are described. Furthermore for some tasks, outputs of
the Bayes-based algorithms are compared to “deterministic” results to judge the quality increase.

7.1 General Testing of the Algorithms

First, the numerical algorithms were tested for their behaviour and reliability. The focus was taken
on the numerical precision.

7.1.1 Batch Processing — Test of Stability

Testing of algorithms on data is important to consider their stability and reliability. However,
testing on “artificial” simulated data can hide some pitfalls, because numbers prepared artificially
are “pretty” and need not reflect situations that can be met with real data, or other reasons (e.g.
human mistakes etc.).

In the last five years, data of the patients treated at the KNM were collected. Till now,
more than 5 000 data records are available, where one record means one activity application and
following sequence of measurements.

The algorithms were run on all the available records of real data and no failure was detected.

7.1.2 Precision of QUANC8

Chapter 5, page 43, was dedicated to solution of numerical tasks with stress on the precision
and reliability. In sections concerning integration step design, integration table design and anal-
ysis of integration interval restriction, values of distribution functions (integrals) of normal and
logarithmic-normal pdf s were used. It is well known that these functions are not analytically
integrable.

For that purpose, numerical integrals were computed using the algorithm QUANC8 (see page
40). The main advantage of this algorithm is that it can compute the integral with the required
error, relative or absolute, provided that the function is continuous up to its 9th derivative.

The precision was tested in the following way. Normal pdf was integrated within limits 0 and
x for x changing from 0 to 5 with step 0.5. The integrals were first computed by QUANC8 with
required relative error 10−15. Then these results were compared with ones in the tables [1]. In
these tables, integrals of normal pdf for 0 < x ≤ 3 are calculated with 15 decimal places, integrals
for 3 < x ≤ 5 with 10 decimal places.

The results for x ∈ 〈0.5; 3〉 were in agreement for all the 15 decimal places. Values of estimated
error, which is a part of the QUANC8’s output, were from 2.1·10−17 to 5.3·10−16.
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As for x ∈ 〈3; 5〉 the tables yield only 10 decimal places, the decision about the algorithm
precision could not be done.

The conclusion is that for sufficiently smooth functions, the QUANC8 can be used to compute
numerical integrals with a precision as required. For the variable type in use, a specific lower limit
must be respected. For the C-type double (8 bytes, 53 bits for mantissa, 9 bits for exponent, 2 sign
bits), the lower bound is δm = 2−52, which is approximately 2 · 10−16. For the C-type float
(4 bytes, 24 bits for mantissa, 6 bits for exponent, 2 sign bits), the lower bound is δm = 2−23, which
is approximately 1 · 10−7. Requirements for a lower integration error has no meaning as δm is such
a minimum δ, for which is valid 1 + δ > 1 in the given variable type. In other words, lower error,
i.e. higher precision, is not possible to be reached as no more significant digits are available.

The integrals computed in this work by this algorithm can be considered reliable within the
requested accuracy.

7.1.3 Confidence Interval

Here, some tests are made with algorithms building the task of confidence interval determining.
Specifically, questions of integration step design, allowed restriction of pdf ’s integration interval
and the integration procedure itself are focused. The tests and experiments are performed with
normal pdf for which the algorithms and criteria were designed.

Integration step design

Here, the validity of the formula (5.5), page 44, is tested.
The normal pdf Nx(0, 1) on the specific segment skl is integrated in m = 2, 4, 6 etc. integration

steps and absolute error εreal of each integration is computed. Then mεmax
is found, which is such

highest m, so that |εreal| ≤ εmax. Then mεmax and εreal are compared with mkl and εmax given
by (5.5).

The results are shown in the Table 7.1.

εmax = 10−4 εmax = 10−5 εmax = 10−6

k l mkl εreal mεmax mkl εreal mεmax mkl εreal mεmax

0 1 4 1.1·10−5 4 6 2.1·10−6 6 10 2.7·10−7 8
1 2 4 −1.3·10−5 4 6 2.6·10−6 6 8 −8.1·10−7 8
2 3 2 −2.2·10−5 2 4 7.9·10−7 4 6 1.4·10−7 4
3 4 2 2.5·10−5 2 4 1.6·10−6 4 6 3.1·10−7 4
4 5 2 1.8·10−6 2 2 1.8·10−6 2 4 1.4·10−7 4
5 10 4 3.4·10−7 2 6 1.5·10−7 2 12 1.9·10−8 2

Table 7.1: Numbers of integration steps found theoretically (mkl, see (5.5), page 44) and experi-
mentally (mεmax

)

Values εreal are less than εmax, because those εreal were selected that are below εmax. It is
visible that theoretical mkl and experimental mεmax

match for l ≤ 5 and εmax ∈ 〈10−4; 10−5〉. For
εmax = 10−6, theoretical mkl are in majority of cases higher than mεmax

, but never more than by
2 for l ≤ 5. This difference can be caused both by inequality (5.2), page 44, and limited set of
values of m.

For k = 5 and l = 10, the higher precision is required, the higher is the difference between mkl

and mεmax
. This is caused by a relatively large interval 〈5; 10〉 on which the maximum of the 4th

derivative in the design of mkl is taken. The actual values throughout the interval are obviously
much lower. If we decrease value of g5,10 in the Table 5.1, page 44, from 0.33331 to 0.05 (i.e.
approximately by 1/6), the values of mkl correspond with mεmax

for the interval 〈5; 10〉.
Anyway, numbers of integration steps found theoretically and experimentally are in a good

agreement. The integration error is never underestimated and increase ofmkl due to overestimation
is significantly higher only in interval 〈5; 10〉 if higher accuracy is required. It was observed that
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because of the integration domain restriction (see page 45), this interval is rarely involved in the
integration.

Confidence interval shift due to domain limitation

Here, the validity of the formulae (5.10) and (5.11), page 46, is tested.
The pdf Nx(0, 1) was used to find confidence interval with α = 0.049 995 70 which represents

probability 95.000 420 97%. As for the interval, x̂ = 0 and −xl,exact = xu,exact = 1.96 [1].
Various values of εmax (see (5.2), page 44), and εa (see (5.11), page 46), were combined. Only

upper bound of the confidence interval (due to symmetry) was computed in two ways: with the
correction to domain limitation (xu, see (5.10), page 46) and without it (x̃u). Value x̂ is the mean
of the confidence interval. The upper value of the domain xεau

for the given ∆x is also mentioned.
∆x̃u = x̃u − xu,exact, ∆xu = xu − xu,exact. The significant results are shown in the Table 7.2.

no correction corrected
∆x εmax xεau x̂ x̃u ∆x̃u xu ∆xu

10−2 10−5 3.5 2.2·10−16 1.9535 −6.5·10−3 1.9616 1.6·10−3

10−3 10−6 4.5 1.1·10−16 1.959105 −9.9·10−4 1.959917 −8.3·10−5

10−4 10−8 4.7 −1.0·10−15 1.959907 −8.3·10−5 1.959989 −2.1·10−5

10−5 10−9 5.2 −4.4·10−16 1.95999086 −8.1·10−6 1.95999989 −2.1·10−7

Table 7.2: Mean value and upper limit of confidence interval α = 0.049 995 70 with various εmax
and εa. Exact values: x̂exact = 0, xu,exact = 1.96.

The rows represent the best result for the pair ∆x and εmax in the sense of minimum ∆x̃u
and ∆xu. We can see that corrected values xu have lower errors than x̃u without the correction.
Anyway, the errors are below the limit ∆x in all the cases.

For the practice, ∆x = 10−3 was chosen. Value of εa is then approximately ∆x/10 = 10−4

(see (5.12), page 46). Value of εmax is then chosen εa/100 = 10−6. This scheme can be used for
ranges approximately 10−2 ≤ ∆x ≤ 10−4. But according to our point of view, relative precision
∆x ≈ 10−2–10−3 is sufficient.

Similar results for different precisions were obtained also for some other levels of α, particularly
approximately 0.34 and 0.02.

If we compare the Table 7.2 with the Table 5.2, page 47, we can notice that xεa < xεau
for the

given εa = ∆x/10. This difference is caused by the fact that xεa is the point where the integration
can be stopped to reach “exactly” εa, whereas xεau is the node of the numerical integration closest to
xεa , so that real error of area determination εau, that is reached during the step-by-step integration,
is less than εa.

7.1.4 Simplex Method

It was already mentioned here that the simplex method in some conditions converges to a non-
stationary point. Some modifications of the algorithm were done to prevent this case, as mentioned
above. Anyway, the two-variate functions used here are smooth enough to avoid the case of
unwanted convergence.

Several thousands of computations on various two-dimensional pdf s were done with different
starting conditions. All the experiments gave correct results and no problems with convergence
were detected.

This experience made us accept the simplex method for this work as an optimizing method
that does not require derivatives and is not computationally demanding.
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7.1.5 Integration Table

For integrating the logarithmic-normal pdf , the integration table was designed, so that error of
quadratic interpolation is less than 10−4 (see part 5.1.5, page 49). Here, the error of interpolation
is tested.

Integrals I(x) =
∫ x
0

Lt(1, 1) dt were computed. Values x were generated as pseudo-random
numbers on the interval 〈0; A〉, where A was some chosen fixed number. The integrals were
computed in two ways: using algorithm QUANC8 with requested relative precision 10−10 (quantity
IQ(x)) and using the interpolation table (quantity It(x)). Then values ∆I(x) = It(x)−IQ(x) were
investigated.

For each A, 10 000 values of x were generated and some descriptive statistics of ∆I(x) and
|∆I(x)| were calculated. The Table 7.3 shows results for A = 2 which represents the area with the
greatest curvature of the function.

quantity mean std. dev. min. max.
∆I(x) −9.56·10−6 1.29·10−5 −4.77·10−5 5.04·10−5

|∆I(x)| 1.11·10−5 1.58·10−5 3.21·10−9 5.04·10−5

∆I(x) > 0 7 207 cases
∆I(x) < 0 2 739 cases

Table 7.3: Testing of the integration table for the maximum required error of interpolation 10−4

It is visible that maximum difference of IQ(x) and It(x) is about half of the requested one. Sim-
ilar results were obtained for different values of A. The actual error never exceeded the maximum
allowed one.

7.1.6 Integration Table vs. Gaussian Approximation for Log-normal pdf

Posterior pdf of thyroid gland mass estimation is logarithmic-normal pdf .
It is obvious that using the integration table designed for the logarithmic-normal pdf in this

estimation task is more correct than application of rules designed for normal pdf to logarithmic-
normal pdf . In this section, thyroid gland mass confidence interval is computed using both the
integration table and the rules for Gaussian approximation. Both the results are compared.

Actually, “Gaussian approximation” does not mean that logarithmic-normal pdf is replaced by
normal pdf . It means (see the section 5.1.1, page 43) that some rules for lengths of integration
steps, points where to stop the integration etc., designed for normal pdf , are applied to another
pdf which is then integrated according to these rules.

Focusing on one task, design of the integration step, we can make similar experiment like in the
part 7.1.3, page 74, with the Table 7.1 but the computations are done with the logarithmic-normal
pdf . If we keep the same notation, the results are shown in the Table 7.4.

εmax = 10−5

k l mkl εreal mεmax

0 1 6 −7.9·10−6 16
1 2 6 3.4·10−6 6
2 3 4 2.9·10−6 4
3 4 4 8.5·10−6 2
4 5 2 2.1·10−6 4
5 10 6 6.3·10−6 6

Table 7.4: Numbers of integration steps found theoretically (mkl, see (5.5), page 44) and experi-
mentally (mεmax

) for logarithmic-normal pdf
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We can see that between 0 and 1 the predicted number of integration steps (m01=6) is much
less than actual one (mεmax

=16) to get under the required integration error εmax=10−5. We expect
that error limits for confidence interval shift and its correction would disagree as well.

We performed another experiment concerning thyroid gland mass estimation more closely. We
generated 1 000 pairs of (h, ω) (see 6.1, page 55), estimated posterior pdf of H and constructed
confidence interval with each pair twice on the same posterior pdf — once using the integration
table, once using the Gausian approximation. Values of h were generated from range 〈0; 10〉 and
values of ω from 〈0; 0.6〉. We compared lower bound Hlt and upper bound Hut of the confidence
interval obtained using the table with lower Hlg and upper Hug bounds obtained by the Gaussian
approximation. Quantities

∆lr =
Hlg −Hlt

Hlt
, ∆ur =

Hug −Hut

Hut

were evaluated for each pair of (h, ω) and processed. Arithmetic mean ∆r, sample standard
deviation sr, maximum and minimum deviations were found, see Table 7.5.

Lower bound Upper bound
arithmetic mean ∆lr = −0.104 ∆ur = 2.25·10−2

standard deviation slr = 0.169 sur = 1.03·10−2

minimum value ∆lr,min = −0.593 ∆ur,min = −0.0017
maximum value ∆lr,max = 9.3·10−4 ∆ur,max = 0.0320

Table 7.5: Confidence intervals limits for thyroid gland mass estimate. Difference of results deter-
mined using integration table and Gaussian approximation

It is visible that because of using the Gaussian approximation instead of the integration table,
the lower bound of the confidence interval of H is decreased by cca 10% in average with a relatively
high dispersion and the upper bound is increased by approximately 2.3% in average.

According to this result, the integration table is used rather than the Gaussian approximation
to determine confidence interval in the task of thyroid gland mass estimation.

7.1.7 Run Times

For illustration, run times of some computation programs are shown in the Table 7.6. The tasks
of signal, effective half-life, prediction of RH limits, excretions and thyroid gland mass are tested.
The programs are run 100-times on some usual data set, where run time does not depend much on
data. If run time is strongly dependent on data, several cases are mentioned with different values.

The programs were run on Pentium 100MHz with MS-Windows 95. The run times include
reading and writing data files.

Notes:

• Symbol “(1)” by the items of signal means “honest” computing of symmetric confidence
interval on the pdf

• Symbol “(2)” by the items of signal means simplified confidence interval computing as men-
tioned in the part 6.3.6, page 61.

• Numbers “5”, “50” and “500” by the items of signal mean number of impulses (ionizing
particles) detected in 1s. It is visible how computation time grows with increasing number
of impulses.

• In case of thyroid gland mass estimation, only one computation is done (see part 6.1.6,
page 58).

Even on as ancient machine as Pentium 100MHz today (1999), the run times are short enough
so that the programs can be used during daily work at the KNM with the equipment that KNM
has.
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task run time [s]
signal (1) 5 0,15
signal (1) 50 2,0
signal (1) 500 18,0
signal (2) 5 0,04
signal (2) 50 0,065
signal (2) 500 0,30
Tef 0,35
RH prediction 2,2
excretions 1,2
thyroid gland mass 0,0045

Table 7.6: Runtimes of numerical programs

7.2 Experiments with Batch Processing of Data

In this section, results of some batch data processing is presented. Namely, Bayesian and de-
terministic estimates are compared for effective half-life, predictions or radio-hygienic limits and
excretions. Further, influence of data amount and quality on effective half-life and thyroid gland
mass estimate and other experiments is shown.

For the computations, real patients data collected for about five years were used. The data
file contains about 5 000 records, where one record means data of one application of 131I and the
sequence of various following measurements.

All the data presented here are anonymous and concern patients who are suspicious of suffering
from thyroid gland carcinome.

Several times, quantities

∆r(a, b) =
b− a

a
(7.1)

δr(a, b) =
b

a

will be used to consider relative difference of quantities a and b.

7.2.1 Comparison of Bayesian and Least-square Tef -estimate

From the data file, 2 978 records were selected for which an estimate of Tef could be computed
by least squares method. Denote the least-square estimate by TLSef and the Bayesian estimate
T̂ef ± δTef .

According to (3.7), page 28, 0 < Tef ≤ Tp, where Tp is physical half-life. After screening of
TLSef , it was found that

• for 96 records (3.2%), TLSef ≤ 0, where minimum value was −97.4 days,

• for 153 records (5.2%), TLSef > Tp = 8.04 days, where maximum value exceeded range of the
field (greater than 999.99 days), second maximum was 662.31 days,

• together, for 249 records (8.4%), estimate of TLSef was out of the range (3.7), i.e. had no
physical meaning.

Then variable ∆r(T̂ef , TLSef ) was introduced (see (7.1)). Histogram of ∆r(T̂ef , TLSef ) is shown
on the Figure 7.1.
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Figure 7.1: Comparison of Bayesian and least-squares estimate of Tef , histogram of ∆r(T̂ef , TLSef ),
filtered for −1 ≤ ∆r(T̂ef , TLSef ) ≤ 1, used 2 787 records

7.2.2 Difference Between Diagnostic and Therapeutic Tef

It was observed that Tef in diagnostic phase usually differs significantly from Tef in therapeutic
phase immediately following, although it is assumed that they are the same. This assumption is
a key step to estimate/predict dose absorbed in an organ (see parts 3.10, page 30, 3.11 etc.).

A quantity

ρ =
diagnostic Tef
therapeutic Tef

(7.2)

is introduced. 702 pairs of diagnostic and immediately following therapeutic applications in case of
thyroid gland carcinoma were analyzed. It was found that arithmetic mean ρ = 2.94 and standard
deviation σρ = 1.72. This result is repeated in the Table 7.7. It means that diagnostic Tef is in

aritmetic mean ρ = 2.94
standard deviation σρ = 1.72

Table 7.7: Arithmeric mean and standard deviation of ρ — ratio of diagnostic and subsequent
therapeutic Tef , see (7.2)

average almost three-times greater than therapeutic Tef .
If we compare histograms of Tef s obtained in diagnostics (Figure 7.2) and therapy (Figure 7.3),

we can see that therapeutic Tef tends to be shorter.
Scanning the data, we can notice that number of diagnostic measurements is usually 2–3 whereas

number of therapeutic measurements often exceeds 5, even reaches up to 12 or more. The question
is if the difference in figures 7.2 and 7.3 is not caused by the number m of measurements and there-
fore by properties of model of Tef (6.19). The Table 7.8 shows relations of diagnostic/therapeutic
application and number of measurement m. 4 939 records were used.

Let us plot histograms of Tef with number of measurements m ≤ 3 (Figure 7.4) and m > 3
(Figure 7.5). Although the value m = 3 separates diagnostic and therapeutic applications better
than other values, it is not a reliable criterion. For this reason the figures 7.3 and 7.5 differ most
significantly by a small peak in values of Tef > 4 which is completely absent in therapeutic cases.
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Figure 7.2: Histogram of Tef [days], estimates in diagnostic phase, 3 412 records

Figure 7.3: Histogram of Tef [days], estimates in therapeutic phase, 1 522 records

diagnosis 3 412 records
therapy 1 522 records
diagnosis m ≤ 3 3 057 records
therapy m > 3 1 236 records
diagnosis m > 3 355 records
therapy m ≤ 3 291 records

m ≤ 3 3 348 records
m > 3 1 591 records

Table 7.8: Frequencies of different numbers of measurements m in diagnostics and therapy
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Figure 7.4: Histogram of Tef [days], estimates for number of measurements m ≤ 3, 3 348 records

Figure 7.5: Histogram of Tef [days], estimates for number of measurements m > 3, 1 591 records
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Further, we can ask about origin of the smaller peak on the figures 7.2 and 7.4.
It can indicate:

• medical reasons (organism behaves differently with low and high activity application, grouping
of diagnostic results — mixtures, etc.),
• artefacts caused by insufficient properties of the model of Tef (6.19), page 65.

This problem definitely requires further analysis that falls beyond scope of this thesis.

7.2.3 Prediction of Activity in a Measurement Sequence

One of the quality tests of effective half-life estimate is this one: estimate Tef with k measurements
and predict time when activity of l-th measurement, where l > k, will be reached. In other words,
we know activity Al in time tl and we want to “predict” tl using data up to tk.

For this experiment, 989 therapeutic records with number of measurementsm ≥ 5 were selected,
so that data processed by least quares do not give meaningless estimate of Tef . l was chosen as
index of the last measurement in the sequence, k was chosen as index of at least third measurement
after t1, at most second before k, depending on m.

Then time tl = t(Al) was predicted both in the Bayesian way (t̂l±δtl) and least-squares method
(tLSl ). Quantities ∆r(tl, t̂l) and ∆r(tl, tLSl ) were taken to compute arithmetic means and standard
deviations (see Table 7.9) and plotted to the histograms (see Figure 7.6 and Figure 7.7).

Bayesian prediction LS prediction
arithmetic mean ∆r(tl, t̂l) = 4.81·10−2 ∆r(tl, tLSl ) = 2.55·10−3

standard deviation sB = 0.215 sLS = 0.132·10−2

Table 7.9: Bayesian and least-squares relative differences of t(Al) prediction

Figure 7.6: Histogram of ∆r(tl, t̂l) (see (7.1)), Bayesian prediction of t(Al), 989 records

It is visible that the mean of Bayesian ∆r(tl, t̂l) is more biased and dispersion is greater than
in case of least-squares ∆r(tl, tLSl ). On the other hand, distribution of ∆r(tl, t̂l) seems to be closer
to normal one than ∆r(tl, tLSl ). This result can again indicate insufficient model (6.19), page 65.
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Figure 7.7: Histogram of ∆r(tl, tLSl ) (see (7.1)), least-squares prediction of t(Al), 989 records

7.2.4 Comparison of Bayesian and Deterministic Estimate of Excretions

Quantity Eri called “excretion” is defined in the part 3.7, page 29.
From 3 612 records, deterministic estimates of excretions Er2 and Er3 yielded 25 records (0.7%

of records) where Er2 + Er3 ≤ 0. No record where Er2 + Er3 > 100% was detected.
Using Bayesian estimates Êr2 ± δEr2 and Êr3 ± δEr3, quantities ∆r(Êr2, Er2), ∆r(Êr2, Er2),

δr(Êr2, δEr2) and δr(Êr3, δEr3) (see (7.1)) were computed and processed in the Table 7.10.

arithmetic mean standard deviation

Êr2 67.5 14.9
Êr3 15.6 5.8
δr(Êr2, δEr2) 5.6·10−2 0.131
δr(Êr3, δEr3) 0.201 0.210
∆r(Êr2, Er2) 1.28·10−2 0.285
∆r(Êr2, Er2) 3.14·10−2 0.405

Table 7.10: Comparison of deterministic and Bayesian estimate of excretions

Greater difference between Bayesian and deterministic estimate (over 3%) is for Er3 than for
Er2. At the same time, Er2 is estimated with lower relative uncertainty (cca. 6% in average) than
Er3 (with almost 20%).

7.2.5 Influence of Data Quality on Thyroid Gland Mass Estimate

During data screening, it was found that thyroid gland masses measured by palpation differ in
many cases significantly from those by sonography, if both the measurements are available for one
thyroid gland.

Let us denote data hpalp as result of palpation measurement with relative precision ωpalp.
Similarly, hsono and ωsono is data pair for sonographic measurement. Bayesian estimate is then
H = Ĥ ± δH.

The differences between hpalp and hsono are visible in the Figure 7.8. Also some characteristics
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Figure 7.8: Scatterplot of hsono vs. hpalp for thyroid gland mass measurement, 487 records

of ∆r(hsono, hpalp) (see (7.1)) are shown in the Table 7.11.

arithmetic mean ∆r(hsono, hpalp) = 8.47
standard deviation σ∆r

= 16.31
minimum value ∆r,min(hsono, hpalp) = −0.71
maximum value ∆r,max(hsono, hpalp) = 213.29 (!!)

Table 7.11: Relative difference of palpation and sonographic data ∆r(hsono, hpalp) for thyroid gland
mass estimation

We tried to consider influence of these differences on the estimate uncertainty. We chose 487
records where both palpation and sonographic measurement was finished.

We investigated dependence of δr(Ĥ, δH) on ∆r(hsono, hpalp) and other quantities. It was
found, as property on logarithmic-normal pdf , that δr(Ĥ, δH) is constant and does not depend on
any data combination.

Histograms of quantities ∆r(H,hpalp) and ∆r(H,hsono) are shown on the Figure 7.9 and Fig-
ure 7.10. The characteristics of these quantities are shown in the Table 7.12.

arithmetic mean standard deviation
∆r(H,hpalp) 4.8 7.7
∆r(H,hsono) −0.233 0.14

Table 7.12: Arithmetic means and standard deviations of ∆r(H,hpalp) and ∆r(H,hsono)

From the figures and the tables, it is visible that relative difference between the Bayesian
estimate and palpation measurement is much higher (up to 5-times in average with a very high
dispersion) than in case of sonographic one (cca. 23%). It means that, according to (6.2), page 56,
the lower ω is, the more it attracts a final estimate. In other words, sonographic measurement
influences the final estimate much more than palpation one, if both the measurements are available.

Anyway, the methodology of the thyroid gland measurement should be revised to avoid so
high average differences between palpation and sonographic data, as thyroid gland mass in a very



7.2. EXPERIMENTS WITH BATCH PROCESSING OF DATA 85

Figure 7.9: Histogram of ∆r(H,hpalp), 487 records

Figure 7.10: Histogram of ∆r(H,hsono), 487 records
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important quantity to estimate a absorbed dose (see 3.10, page 30). At least, correctness of values
ωpalp and ωsono should be tested.

7.3 Experiments with Individual Estimation Tasks

In this section, some single estimates on selected data are investigated. Influence of prior infor-
mation is shown on the example of thyroid gland mass estimation. Further, quality of model for
effective half-life estimation is tested by modifying a subset of data selected from two measurement
sequences.

7.3.1 Influence of Prior Information on the Estimate

As derived in part (6.1.4), page 57, prior information for thyroid gland mass estimation is given
by (6.3) and it was obtained from batch processing of sonographic data. The prior information
represents fictitious data corresponding to h=5.4 g and ω=5.38. In the Table 7.13, the estimates
and deviations are shown for simulated data h=2g, 27 g, 100 g and 500 g. At first it is considered
only palpation measurement, at second only sonographic measurement and at third combination
of palpation and sonographic one with the same h. For the given pdf , intervals for probability 95%
(α=0.05) and 67% (α=0.23) were found. It is visible that combination of data slightly decreases

95%-interval 67%-interval
h palpation sonography palp.+sono. palpation sonography palp.+sono.
2 2.74± 1.96 2.14± 0.79 2.11± 0.72 2.11± 0.88 2.02± 0.38 2.01± 0.35

27 31.5± 22.5 27.0± 10.3 27.8± 9.5 24.0± 10.0 26.5± 5.0 26.5± 4.6
100 107± 77 102± 37 102± 35 83± 35 97± 18 97± 17
500 487± 348 501± 184 501± 171 375± 157 474± 90 477± 83

Table 7.13: Estimation of thyroid gland mass with sonographic priors, ĥ0=0.998, ν0 = r/3.395

uncertainty.
If we do batch processing of only palpation data, we find that h̄=16.7 g and s̄=32.18 g. The

prior is expressed by ĥ0=7.69 and ν0 = r/1.55 which corresponds fictitious data h=16.7 g and
ω=1.93. The results are shown in the Table 7.14. As the standard deviation is relatively less than

95%-interval 67%-interval
h palpation sonography palp.+sono. palpation sonography palp.+sono.
2 3.22± 2.32 2.22± 0.81 2.19± 0.74 2.59± 1.05 2.11± 0.40 2.09± 0.36

27 32.3± 22.6 28.1± 10.3 28.0± 9.5 25.2± 10.2 26.7± 5.0 26.7± 4.6
100 101± 71 101± 37 101± 34 79± 32 96± 18 96± 17
500 414± 290 485± 178 487± 166 324± 131 459± 86 465± 81

Table 7.14: Estimation of thyroid gland mass with palpation priors, ĥ0=7.69, ν0 = r/1.55

in case of the sonographic priors, the prior information has stronger influence on the result. We
can see that esimates of higher values are shifted down and estimates of lower values are shifted
up. Again, with combination of data, the means of the intervals get closer to h and width of the
interval decreases.

If we introduce no prior information (ĥ0=1, ν0=0), which corresponds to ω → +∞ and
h=anything, we get results shown in the Table 7.15. The interval means are generally increased
and procesing of more pieces of data both shifts the means to the data values and decreases the
estimate uncertainty.
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95%-interval 67%-interval
h palpation sonography palp.+sono. palpation sonography palp.+sono.
2 2.92± 2.13 2.15± 0.80 2.13± 0.73 2.22± 0.95 2.04± 0.39 2.03± 0.36

27 39.5± 28.8 29.0± 10.8 28.8± 9.9 29.9± 12.8 27.5± 5.3 27.4± 4.8
100 146± 107 108± 40 107± 37 111± 48 102± 19 101± 18
500 731± 533 538± 199 533± 183 554± 238 509± 97 507± 89

Table 7.15: Estimation of thyroid gland mass with no prior information, ĥ0=1, ν0=0

In case of thyroid gland mass estimation, the prior information influences mostly the cases if
only one measurement is available. The prior information causing the best match of data and
mean of the confidence interval seems to be the one obtained by batch processing of sonographic
data.

7.3.2 Influence of Data Amount on Effective Half-life Estimate

The model of effective half-life Tef treats values of activities Aj measured in time instants tj for
tj > t1, j = 1, . . . ,m, where m is number of measurements, according to (6.19), page 65. The
question is how can m (i.e. number of measurements performed) influence the estimate of Tef .

In practice, m is about 2 or 3 for diagnostic measurement, mostly over four for therapeutic
measurement. Time gaps in therapeutic data sequences mean weekends, holidays etc.

We chose two sequences (red number 5138 applied 7.2.1999 and 3214 applied 19.12.1992) of
therapeutic data with total number of measurements n = 12. We selected a sub-sequence of
data with m members. We fixed t1 as a measurement time where activity reaches its maximum
and changed a number of subsequent data m. The Table 7.16 shows means of intervals T̂ef and
deviations δTef .

sequence 1 sequence 2
m T̂ef δTef T̂ef δTef

1 4.0380 3.8063 4.0376 3.8030
2 1.5069 0.0047 4.9750 0.0153
3 6.5893 0.0394 3.4135 0.0055
4 3.9261 0.0069 2.7098 0.0028
5 2.9426 0.0031 2.3553 0.0018
6 2.4882 0.0019 2.2432 0.0015
7 2.2607 0.0016 2.1859 0.0013
8 2.1328 0.0015 2.1509 0.0012
9 2.0802 0.0014 2.1231 0.0011

10 2.0425 0.0013 2.1047 0.0011
11 2.0216 0.0012 2.0970 0.0010
12 2.0079 0.0012 2.0929 0.0010

Table 7.16: Dependence of Tef on number of data m

It is visible that estimate of T̂ef in both cases approaches some value with increasing m. What
is surprising is a very low value of δTef in all the cases except of m = 1.

7.3.3 Influence of t1 on Effective Half-life Estimate

The model of effective half-life Tef treats values of activities Aj measured in time instants tj for
tj > t1 according to (6.19), page 65. The time t1 represents a time from which the activity course
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A(t) can be treated as exponential. The question is, how can a choice of t1 influence the estimate
of Tef .

In practice, t1 is chosen as a measurement time when the activity reaches its highest value. We
check the validity of this decision and influence of this choice on the Tef estimate.

The same data sequences as in the part 7.3.2 are chosen.
At first, m was set to 8 and t1 was changed from the first to the fifth measurement. In this way,

five sub-sequences were obtained and used to compute estimate of Tef . The means of intervals
T̂ef and deviations δTef are shown in the Table 7.17. Symbol n1 denotes (absolute) index of the
measurement taken (relative) as the first one (i.e. n1 = 3 means 3rd measurement in the sequence
is taken as the first one in this computation, 4th one as the second one etc.) Symbol t1(n1) denotes
time t1 corresponding to the n1-th measurement taken as the first one.

sequence 1 sequence 2
n1 t1(n1) T̂ef δTef t1(n1) T̂ef δTef

1 1.954 2.1328 0.0015 0.815 2.1509 0.0012
2 2.902 1.9899 0.0014 3.800 1.4721 0.0013
3 3.920 1.5476 0.0011 4.807 1.5689 0.0016
4 6.913 0.8643 0.0011 5.837 1.7001 0.0021
5 7.889 0.9264 0.0021 10.811 2.2102 0.0084

Table 7.17: Dependence of Tef on t1 for m = 8

Another experiment was done with bothm and t1 variable. The measurements were cut off from
the beginning and the computations were done on the data that “remained”, i.e. n1 +m = n− 1.
The results for both the data sequences are shown in the Table 7.18.

sequence 1 sequence 2
n1 m t1(n1) T̂ef δTef t1(n1) T̂ef δTef

1 12 1.954 2.0079 0.0012 0.815 2.0929 0.0010
2 11 2.902 1.8869 0.0010 3.800 1.5113 0.0012
3 10 3.920 1.5181 0.0009 4.807 1.6070 0.0016
4 9 6.913 0.9974 0.0011 5.835 1.7221 0.0021
5 8 7.889 1.1921 0.0019 10.811 2.2099 0.0084
6 7 8.911 1.4893 0.0034 11.864 1.8713 0.0079
7 6 9.880 1.6970 0.0054 12.810 1.8196 0.0095
8 5 10.916 1.8613 0.0080 13.809 1.9277 0.0137
9 4 13.887 2.4612 0.0366 15.860 7.9947 0.0447

10 3 14.901 7.8592 0.1777 16.855 7.9902 0.0491
11 2 15.947 2.8026 0.1912 17.894 4.1365 0.4680
12 1 16.891 4.0200 3.8190 18.849 4.0200 3.8190

Table 7.18: Dependence of Tef on t1 for variable m

It is obvious that estimates of Tef strongly depend on the subset of chosen data and deviations
are too small to cover this dispersion. This observation can indicate insufficiency of the model
(6.19), page 65.
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Conclusions

Application of the Bayesian methodology in nuclear medicine for solution of the estimation prob-
lems mentioned above and other ones seems to be promising both theoretically and practically.

At the practical level, the specific problems at the specific Clinic of nuclear medicine (con-
nected to optimization of radiation load on patients, fulfilling more strict radiohygienic regulation
measures, more economical exploitation of radiopharmaceuticals etc.) are solved.

At the theoretical and algorithmic level, problems related to applicability of Bayesian method-
ology, especially numerical ones, are addressed.

Within this effort, several results have been achieved. Among them, the most important are:

• The Bayesian estimates of specific biophysical quanties were derived, as summarized in Chap-
ter 6.

• The estimates were generally and safely implemented and computer programs for Bayesian
estimations were created.

• The software system JodNew that ensures complete data management of patients and con-
tains implemented Bayesian estimates runs at the KNM .

The work described in this thesis is a part of effort to contribute to improvement of treatment
by better data processing using sophisticated mathematical methods.

The estimates and algorithms are designed for the KNM but they can be used in other clinics
or related fields, e.g. dosimetry, radiation protection etc.

8.1 The Contributions

The main fields to which this work contributed are as follows:

Application of the Bayesian theory in a new field

Successful application of formulae derived using some theory can be a task for itself. In this work,
focus was mainly put on practical implementation of theoretical results with stress on numerical
precision and stability.

1. Solutions of important numerical and programming tasks are derived in Chapter 5.

• Construction of symmetric confidence interval had the important subtasks to derive
criteria for variable integration step, confidence interval shift and its correction and ter-
mination of the step-by-step numerical integration. The task was to find the confidence
interval limits with the given numerical precision.

89
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• Design of integration table for uni-variate function with floating distance of its points
is focused on determining such a distance between adjacent points, according to the
function curvature, to keep the given precision of quadratic interpolation between the
table points.

• Other numerical tricks and methods are mentioned there, e.g. pseudo-normalization
of non-normalized function, half-width searching, domain restriction, testing of simplex
method, modification of its procedure and termination test.

• Programming approach is described together with hierarchy of numerical classes and
with other methods of solution.

2. The estimation formulae, derived in [11], were modified and extended in Chapter 6. Other
contribution is in implementation remarks to each estimation task where specific features of
practical realization are mentioned.

3. The extensive tests of the algorithms are performed in Chapter 7 with the following results:

• The algorithms are numerically stable, run on cca. 5 000 patient data records passed
successfully.

• The algorithms are numerically precise within requested accuracy.

• Run times of the estimation programs are within fractions of seconds except of signal es-
timation. Therefore some simplification based on Gaussian approximation was adopted
for this task that increased the computation speed 50-times.

4. Experiments with batch processing of data and individual estimation tasks are also performed
in Chapter 7. The main conclusions are:

• Bayesian estimates are always physically meaningful compared to the deterministic ones.
For example, in the investigated data sets, almost 10% of deterministic Tef estimates
and up to 1% of deterministic excretions estimates were physically meaningless.

• Bayesian predictions of radio-hygienic limits yield worse results (but always meaningful)
than deterministic ones. The reason can be in insufficient model of activity course in
time.

• Uncertainty of estimates depends on data uncertainty and other information used for
the estimation. Results of thyroid gland mass estimation show that in case of small
amount of uncertain data, prior information becomes more significant for values of the
estimates.

• Estimation of Tef depends strongly on starting time t1 and amount of data and uncer-
tainty of the estimates are too low which is not realistic. Again, this observation can
indicate insufficience of the activiy time course model.

Use of results of the Bayesian theory in practice — JodNew

The software system JodNew is used for everyday work at the KNM . Except of computing the
Bayesian estimates for medical purposes, it completely manages patients’ data including adminis-
trative ones, includes routines for preparation of radioactive solutions, supports technical dosimet-
ric operations (calibrations of devices, measurement of standard sources. . . ), prints reports for the
physicians, updates data archives and saves data obtained during various biophysical measurements
for “scientific purposes” — further procesing and analyses, hopefully performed in future.

The Bayesian estimates as inputs for eventual retrospective studies for finer individ-
ualization of therapeutic activity

Estimated parameters have physical meaning and estimate methodology should respect it. Bayesian
estimates on biophysical data are designed so that they are always meaningful physically . There
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was detected an insufficiency in modelling of A(t) that may cause medical meaninglessness of some
estimates. The model improvement is already finished [13] and its algorithmical implementation
should be done soon.

Results of the retrospective studies can indicate ways to refine individual therapeutic activity.
However, this topic is beyond scope of this thesis.

Observations of data quality

In this context, it was observed that palpation and sonographic data in the task of thyroid gland
mass differ in many cases significantly, even by 2–3 orders. This observation has brought a message
to the KNM to check the measurement methodology and precision.

This question is very important as thyroid gland mass H is a quantity that enters formulae for
estimate of dose absorbed by thyroid gland, which is a key quantity to determine a therapeutic
activity. H appears both in specific irradiation estimation (see part 6.9.1, page 69) and MIRD
method (see part 6.9.3, page 71). As H usually reaches low values and it is in denominator, the
dose estimates are very sensitive to thyroid gland mass uncertainty.

8.2 Open Problems

Results of this thesis indicate that application of Bayesian theory in solution of the estimation
tasks in nuclear medicine described here seems to be successful both in theoretical and practical
level. In order to take more advantage of this approach, the following open problems should be
addressed:

• algorithmical implementing of the alternative model for estimation of Tef and predictions of
radio-hygienic limits [13] and testing existence of differences in 131I kinetics during diagnostics
and therapy,

• approximating of the posterior pdf in the task of signal on background estimation for better
further theoretical applicability and practical performance,

• looking for optimization methods with proved reliability and convergence properties for the
given class of tasks and substuting them for the simplex method,

• testing of properness of Gaussian approximation for deriving of integration criteria for other
pdfs treated here,

• deriving Bayesian estimates for the MIRD method as it is the best tool for doses estimation
and contains independent input quantities (Aapl, τ and S) in contrast to SIth and SIK
formulae,

• designing a retrospective study trying to discover influence of biophysical data and estimates
on success of therapy.
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[3] J. Böhm and M. Kárný. Transformation of user’s knowledge into initial values for identifica-
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ÚTIA AV ČR, P.O. Box 18, 182 08 Prague 8, Czech Republic, 1995.
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[28] Jan Němec. personal message. Prague, 1999. In Czech.
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[32] J. Roj́ıček, M. Valečková, M. Kárný, and K. Warwick, editors. Computer-Intensive Methods in
Control and Data Processing. Can We Beat the Curse of Dimensionality? 3rd European IEEE
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J. Petrová, editor, Radioisotopes in biology and medicine, pages 411–462. Státńı zdravotnické
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