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Local Abstract (2nd part) The central concept of face (with respect to an arbitrary continuous linear
ordering on imsets) and the corresponding deductive mechanism (facial implication) are introduced. The
class of all faces constitutes a lattice which, in the case of finitely established orderings, is shown to
be finite. Moreover, its atoms and co-atoms are characterized and two possible representations of faces
are treated: by means of generating imsets and by means of portraits. Then a concrete ordering, called
the structural ordering, is studied. Faces with respect to this ordering are identified with a class of
dependency models including all models of probabilistic conditional independence structures.

INDEX TERMS:* Conditional independence, imset, face, structural ordering, structural semigraphoid.

PREFACE

This paper is the second installment of the work Description of structures of sto-
chastic conditional independence by means of faces and imsets, a series of three
papers. The purpose of the work as a whole is to present a new approach to de-
scription of probabilistic Cl-structures (= conditional independence structures) and
to relate it to classical methods of their description. This part contains the mathe-
matical fundamentals of the theory. Before reading this paper the reader should be
familiar with the concepts introduced in the first installment, subtitled Ist part: in-
troduction and basic concepts. The motivation of the theory developed here is ex-
plained and a global view on its construction is given there. Note that the last in-
stallment, subtitled 3rd part: examples of use and appendices, consists of several
examples of use of the theory and Conclusions where advantages and disadvantages
of and prospects for the presented approach are discussed.

Note that each definition or result (throughout all series) is denominated by two
numbers: the first one indicates the part where it can be found and the second one
is its location within that part.

'This research was supported by the internal grants of Czech Academy of Sciences n. 27510 “Ex-
planatory power of probabilistic expert systems: theoretical background™ and n. 27564 “Knowledge
derivation for probabilistic expert systems”.

*AMS classification: 68T 30, 62B 10.
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202 MILAN STUDENY

Let us outline the subject of this second installment in detail (concepts from the
first installment are assumed to be known). The paper is divided into three sections;
every section has an introductory paragraph describing its contents. The first section
introduces the concept of face with respect to an arbitrary scalar product ordering of
imsets. In the case of a finitely established linear ordering, subminimal and sub-
maximal faces are characterized, two possible characterization of faces are derived,
and the corresponding deductive mechanism, called facial implication, is described
in terms of the skeleton. Note that the last result is essential for computer imple-
mentation of facial implication.” The second section studies a concrete example of
such an ordering, called the structural ordering. It is characterized in two ways,
namely by means of an establishing set of imsets and by means of an inducing class.
The third section relates faces with respect to the structural ordering to certain de-
pendency models, namely so-called structural semigraphoids; this identification makes
it possible to use faces as mathematical tools for description of Cl-structures. Spe-
cifically, using some information-theoretical concepts a structural face describing the
corresponding Cl-structure is assigned to every probability measure and therefore
every probabilistic ClI-structure is described by a structural semigraphoid. Moreover,
the pertinent facial implication is shown to entail the probabilistic implication of CI-
statements. Thus, semigraphoid derivability can be replaced by a more fitting ap-
proximation of the probabilistic implication, which is finitely implementable from a
theoretical point of view, although it subsumes infinitely many inference rules of the
semigraphoid type.

NOTATION

Throughout this paper we will deal with the following situation: A finite set N having
at least two elements called the basic set is given, i.e. 2 = card N < =. The class
of all its subsets will be denoted by exp N. The class of nontrivial subsets of N, i.e.
subsets having at least two elements will be denoted by U:

U = {SC N; card S = 2}.

Having a set T C N, its indicator i.e. the zero-one function on exp N (possibly
restricted to 9U), is defined as follows:

_J1 incaseS=T
5’(3)“{0 in case § # T

The class of all probability measures over N (see Def 1.1, §1.1.1) will be denoted
by P(N), the simple equivalence (see Def 1.10, section 1.2) by ~. Having disjoint
sets A, B C N the juxtaposition AB will stand for their union A U B.

Further, the set of real numbers will be denoted by R, the set of nonnegative
integers (including zero) by Z* and the set of positive integers (natural numbers)
by N.

*The details are explained in the third installment.
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Finally, the following symbols for classes of functions on U will be used:
R(U) the class of real functions on AU

Z(U) the class of integer-valued functions on U

Z,,m(U) the class of normalized integer-valued functions on A, see Def 1.10
ZT(u) the class of nonnegative integer-valued functions on 4.

2.1 FACES

The central concept of this section is the concept of face introduced for every scalar
product ordering < on imsets here. In section 2.3, just faces with respect to a so-
called structural ordering will be used to describe Cl-structures. In addition to the
primary definition several further concepts are introduced: the face generated by a
set of imsets, facial implication of imsets and facial equivalence on imsets.

Then, for the case that the ordering < is finitely established, some basic results
are proved:

— every face is uniquely determined by its intersection with the base
— there exist finitely many faces
— every face is generated by a single imset (called the generating imset)

— faces are characterized by means of the skeleton (and therefore facial impli-
cation and equivalence are formalizable).

The last result leads to the concept of portrait facilitating computer representation
of faces. Moreover, as consequences of preceding results characterizations of sub-
minimal and submaximal faces are given. Subminimal faces (i.e. atoms of the lattice
of faces) are shown to be just faces generated by basic imsets, while submaximal
faces (i.e. co-atoms of the lattice of faces) correspond uniquely to skeletal imsets.

Throughout this section a scalar product ordering < on imsets (see Def 1.13,
§1.3.1) will be dealt with. The set of “positive™ imsets (with respect to <) will be
essential in the sequel:

Notation Z(=X)={u€Z(W); 0 < u}.

2.1.1 Definition of Face

DEerINITION 2.1 (face)
A set F C Z (<) is called a face iff it satisfies the following three conditions:

0OEF nontriviality (F.0)

uvEF>u+veF ' composition (E.1)
u, VEZLYu+vEF>u, vEF decompoasition (F.2)

Terminological remark This terminology is motivated by an analogy with the
theory of convex polytopes [Brgndsted, 1983] where the concept of face has a central
role, I think it is possible to prove that every subset of Z(<) satisfying (F.0)-(F.2)
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is the intersection of Z(AUl) with a zero—contammg face (in Brgndsted’s sense) of the
cone determined by <.

Trivial examples of faces are {0} and Z(<) i.e. the least and the largest face.
Evidently, the intersection of every nonempty collection of faces is a face too. There-
fore it holds:

Fact 2.1 For any L C Z(<) there exists the least face containing L.

It is now easy to see that the class of faces constitutes a complete lattice* with
respect to inclusion. Moreover, Fact 2.1 makes the following definition possible.

DEFINITION 2.2 (generated face, generating imset)

For any L C Z(<), the least face containing L will be called the face generated by
L and denoted by AL). Whenever a face F has the form f({u}) where u € Z(<) say
that u is the generating imset of F.

In fact, every face generated by a finite set is generated by a single imset:
LEMMA 2.1 For any finite L C Z(<), ALY = f{Z.cu}).

Proof LetF = f{Z.,cu}). For each v € L write Z,c;u = v + (2,cw) and by
decomposition derive v € F. Thus, L C F gives fiL) C F. Conversely, by com-
position (Z,e.u) € L) and hence F C A(L). &

2.1.2 Facial Implication

Faces introduce a certain deductive mechanism for imsets, more precisely for ele-
ments of Z(<). It will be shown that composition and decomposition may be inter-
preted as inference rules for faces. (Nontriviality plays the role of an axiom.)

DEFINITION 2.3 (facial implication, facial quasiordering)

Suppose that L C Z(<) and u € Z(<). Say that L facially zmphes u and write L > u
iff L C F = u € F whenever F is a face.

Whenever u, v € Z(x) write also u ~> v instead of {u} — v. This binary relation on
Z(<) is clearly a quasiordering called the facial quasiordering.

LEMMA 2.2 Let L C Z(<) and u € Z(X). Then L — u iff any of the following
three conditions hold:

(a) u € fIL)
(b) there exists a finite subset L' C L and numbers k, € Z* (v € L') such that
e kv — u) € Z(<), where we accept the convention X, cp k, v = 0

(c¢) u is derivable from L by means of (F.0)-(F.2) i.e. there exists a derivation
sequence wy, ..., w, where w, = u such that for each wj; either w; € L or w;
= 0 (i.e. (F. 0) is used) or w; is a direct consequence of some preccdmg ws
by virtue of (F.1) or (F.2). .

‘A complete lattice is a partially ordered set every subset A of which has a supremum (i.e. the least
element greater than all elements of A) denoted by sup A and an infimum (i.e. the greatest element less
than all elements of A) denoted by inf A.
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Proof 1. [L +> u] = (a) is evident from Def 2.2.

II. (a) > (b) Put F = {u € Z(<); u satisfies the condition from (b)}. Evidently
L C F and it is easy to verify that F is a face.
III. (b) = (c) The derivation sequence can be described as follows:

. — first list the elements of L'

— imsets k,-v (v € L') are derived either using (F.0) (the case k, = 0) or
by a consecutive application of (F.1) (the case £, > 0)

— 3.k, v is derived by virtue of (F.1)

— vk, v =u+ (2,epk, v — u) makes it possible to derive u by virtue
of (F.2).

IV. (¢) = [L ~ u]. By induction every member of the derivation sequence be-
longs to any face containing L. H

It is easy to see by Lemma 2.2(b) that the facial quasiordering is linear:

Fact 2.2 [ull—>v1&u2'—>v2]$ul+u2'-;>v1+v2
whenever u,, u,, v, v, € Z(=).

2.1.3 Facial Equivalence

As > is not an ordering on Z(<), a further natural step is to introduce an equivalence
remodelling it in an ordering.

DEFINITION 2.4 (facial equivalence)

For u, v € Z(<) say that u is facially equivalent to v and write u = v iff

neEF&vEF whenever Fis aface.

The corresponding factor space® will be denoted by Z(<)/...

Of course, u = v iff [u — v & v > u]. Therefore, we get from Lemma 2.2(a):'
Facr 2.3 u = v iff f{u}) = fA{v}) whenever u, v € Z(x).

- Let us compare facial equivalence with simple equivalence (see Def 1.10, section
1.2). By (V.5) (see Assertion 1.1, §1.3.1) the simple equivalence ~ respects Z(<)
(i.e. foru, v€E ZAU) u~ v € Z(<) > u € Z(<)) and therefore ~ can be con-
sidered on Z(<). Moreover, ~ similarly respects an arbitrary face. Hence,

FacT24 u~v>u=yv wheneveru, v € Z(<).

As — is conformable to =-equivalence classes, it can be considered as a binary
operation on the factor space Z(<)/.. An analogous conclusion holds for + (use
Fact 2.2). Altogether:

SUMMARY 2.1 The factor space Z(<)/.. is endowed with two operations:

5The factor space is the set of equivalence classes.
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a) the ordering > (interpret « — v as “u is greater than v”) b) +.
They are associated by the following property:

[, >V, & @& VW)=>d4, +a,— v, + v, whenever iy, i, v, V, € Z(L)/ .

Hence, one can easily derive that sup(id, V) = i + v whenever ii, v € Z(<)/..

Note that Z(<)/. is in fact isomorphic to the lattice of faces (see Lemma 2.5 in
§2.1.6). :

2.1.4 Faces for Finitely Established Orderings

In the rest of this section =< will be considered to be a finitely established linear
ordering (Def 1.15, §1.3.3). The first intention is to represent faces in its base (see
Def 1.16, §1.3.4).

LEMMA 2.3 For a finitely established <, consider a finite set T C Z(<) establishing
it. Then it holds: Fy N T C F, N T = F, C F, whenever F,, F, are faces.

Proof Take u € F, and write n-u = 3k, v (n € N, k, € Z*). Whenever
k, > 0 then v € F; N T (decomposition for F;) and therefore v € F, N T. By
composition for F, derive thenu € F,. R

LEMMA 2.4 Suppose that < is finitely established and let E C Z(<) be its base.
The following conditions for 0 # u € Z(<) are equivalent:

(@ u€EE
B uezZ, AUWENVO#vEZ) urrvod>u~yv

(©) {n-u; n € Z%} is a face.

Proof (a) = (b) Consider 0 # v € Z(<) with u = v, by Lemma 2.2(b) n-u —
v € Z(<) for some n € Z*, as v # 0 necessarily n € N. As E establishes < write
m-(nu—v) =3k, wandp-v = 2 .l -wwherem,p €N, &k, I, € Z".
Hence (mpn — pk, — ml)-u = 3 cni(pk, + ml,)-w. Necessarily mpn — pk, —
ml, = 0 (otherwise u is expressed by means of E \ {u}, therefore E\{u} establishes
< and it contradicts the definition of the base). Thus, the antisymmetry condition
for < implies that the expression above vanishes and hence [, = 0 for w € E \ {u}.
Therefore p-v = [, - u gives easily u ~ v.

(b) = (¢) To verify (F.2) for{n-u, n € Z*} write n*u = v + w where v, w €
Z(<). In the nontrivial case v # 0 by Lemma 2.2(b) 4 — v and using (b) u ~ v.
Lemma 1.1, section 1.2 implies then v = k- u for k € N.

(c) = (a) Consider two different faces: {n-u, n € Z*} and {0}. As E establishes
<byLemma23{n-u;n € Z'} NE# Qand henceby Lemma 1.1 €EE, K

DEFINITION 2.5 (distinguishing of faces)
A set T C Z(<) distinguishes faces iff

F,#F,>F, NT#F,NT wheneverF,, F, are faces.

Now, the first theorem can be formulated.
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THEOREM 2.1 :

Suppose that < is a finitely established linear ordering on imsets. Then its base E
is the least set of normalized imsets distinguishing faces (i.e. faces are determined
uniquely by their intersection with the base). Moreover, every face F has the form

F = f(F N E).

Proof By Lemma 2.3 E distinguishes faces. Suppose that T C Z,,,..(U) N Z(X)
distinguishes faces too. Consider u € E and put F, = {n-u; n € Z*}, F, = {0}. By
Lemma 2.4 F is a face, as T distinguishes faces F, N T # F, N T = Q. Nevertheless,
T C Z,,,m(U) implies by Lemma 1.1 ¥ € T and the inclusion E C T is verified.
Finally consider an arbitrary face F and put K = f(F N E). Evidently XK C F and
asaFNECKNE, FCKbylLemma23. B

2.1.5 Atomic Faces
The preceding theorem has two important consequences.

CONSEQUENCE 2.1 Suppose that < is finitely established. A face is an atom® of the
lattice of faces iff it has the form {n-u; n € Z*} for some basic imset u (for <).

Proof For F = {n-u; n € Z*} where u € E (= the base) consider a face K C
F. In the case that K # {0} we can find 0 # v € K and derive u ~ v. Hence u €
K and therefore F C K.

Conversely, let F be an atom of the lattice of faces. By Theorem 2.1 F N E #
0, so we choose u EF NEand put K = {n-u; n € Z*}. By Lemma 2.4(c) K is a
face and K N E C F N E implies by Lemma 2.3 K C F. As F is an atom derive
F=K ©

Remark It can be proved that < is finitely established iff the set {u E Z(<)
{n-u; n € Z%} is a face} is finite and establishes <.

CONSEQUENCE 2.2 Supposing that < is finitely established there exist finitely many
faces.

Proof This follows easily from Theorem 2.1 as the base has finitely many sub-
scts. M

2.1.6 Generating Imsets

LEMMA 2.5 The following conditions are equivalent (for a scalar product ordering
<):

(i) there exist finitely many faces
(ii) the factor space Z(<)/.. is finite.

Whenever either of them holds:

°An element of a lattice is called an atom iff the only d:fferent less element than it is the least element
of the lattice.
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a) Each face has a generating imset.

b) The mapping u — fi{u}) (assigning faces to imsets) is constant on =~-equiva-
lence classes. It defines a one-to-one correspondence between Z(<)/. and the
lattice of faces.

This correspondence is isotone’ (i.e. isomorphism of lattices).

Proof By Fact 2.3 the mapping ¥ — f({u}) can be understood as an injective
mapping of Z(<)/.. into the class of faces. Therefore (i) > (ii). Now, suppose (ii).
By proving a) it will be shown that the mapping is onto. Hence (i) follows and the
mapping is one-to-one. The simple argument {u = v iff f({v}) C f({u})] will say the
rest. Thus, to show a) consider an arbitrary face F and note that every =~-equivalence
class intersecting F is contained in F. Therefore using (ii) conclude that F is the
union of finitely many =-equivalence classes L,, ..., L;. Choose u; € L; and put u
3%, u;.. As every element of F is equivalent with some u;: get F C f({u,, ..., w))
C F and hence by Lemma 2.1 F = f({u}). B

THEOREM 2.2
If < is a finitely established linear ordering every face has a generating imset.

Proof Combine Consequence 2.2 and Lemma 2.5. M

Remark Intuition suggests that the previous result holds for arbitrary scalar prod-
uct ordering. However, I did not try to prove this as the result above is sufficient
for the purposes of this work.

2.1.7 Skel_eton and Faces-

Finally, faces and corresponding concepts will be described by means of any finite
inducing class, especially by means of the skeleton (see Def 1.17, §1.3.4) in case
that it exists. Note that all these results can be achieved even if there exists a finite
C C R(W) inducing <.

ASSERTION 2.1 Suppose that < is a finitely established ordering and C C Z(W) is
any finite class inducing it (its existence follows from Assertion 1.3, §1.3.3). Sup-
pose L C Z(=<) is finite and u € Z(<). Then L — u iff the following condition holds:

YvreC (r,u)>0>[{r, v) > 0 for some v € L].

Proof By Lemma 2.2(b) [L — u] means that there exists k, € Z*(v € L) such
that 0 <. S kv —uie. Vi€ CO={(r, ZcL k,'v — u) = Z,c k(r, v) —
(r, u). As C is finite, it is easy to see that the condition [k, € Z*'(vE L)Vr € C
{r, u) <= 2, k(r, v)] is equivalent to the desired condition. W

CONSEQUENCE 2.3 Suppose that < is finitely established, C C Z(U) is a finite class
inducing <; 4, vE Z(Z). Thenu = viff Vr € C(r,u) > 0 & {r, v) > 0.

Proof u=v & [u— v & v u]; use Assertion 2.1. H

Yi.e. it preserves the ordering.
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THEOREM 2.3

Suppose that < is a finitely established linear ordering and C C Z(U) is any finite
class inducing < (for example the skeleton in case that it exists). Then every face
F has the form F = {u € Z(Z); Vr € D (r, u) = 0} where D is a subset of C.
Conversely, any set of this form is a face.

Proof By Theorem 2.2 there exists u € Z(X) with F = f({u}) i.e. by Lemma
220@) F ={v € Z(X); u— v}. Weput D = {r € C; {r, u) = 0} and by Assertion
2.1 get F = {v € Z(L); Vr € C{r, v) > 0 > r € C\ D} and hence the desired
form. The second statement can be shown by verifying (F.0)-(F.2). H

2.1.8 Co-atomic Faces and Portrait

CONSEQUENCE 2.4 Suppose that < is an ordering established by a finite exhaustive
subset of Z(U) and A is its skeleton. A face is a co-atom® of the lattice of faces iff
it has the form {u € Z(<); (r, u) = 0} for some r € A.

Moreover, faces of this form are different for different r € A.

Proof For card N = 2 the statement is trivial. Suppose card N ; 3.

I. Vr € A {u € Z(x); {r, u) = 0} # Z(<).
As card A = 2 (otherwise < is not an ordering) Assertion 1.4(b), §1.3.4
can be used.
II. Fisaco-atom=> 3Ir€ A F = {u € Z(L); {r, u) = 0}.
" By Theorem 2.3 find D C A with F = {u € Z(<); Vs € § (s, u) = 0}.
. Evidently D # 0; choose r € D and put K = {u € Z(<); (r, u) = 0}. As K
is a face containing F and by 1. K # Z(<) derive easily F = K.

M. Vr,s EAUEZ=;{r, ) =0 C{lu EZ<); {5, u) =0} D r=s.
In case r # s use Assertion 1.4(b) to get the contradiction. .
IV.VrEeA F={u€ Z();{r, u) = 0} > F is a co-atom.
Supposing K is a face with F C K by Theorem 2.3 find D C A with K =

{u € Z(<); Vs € D (s, u) = 0}. By IIL. for each s € D derive r = si.e. D
C{r}.Incase D = {r}get K = F,incase D = O getK = Z(x). W

Remark This result does not hold if the skeleton is replaced by a minimal finite
inducing class. Example 1.2 in §1.3.4 can provide a counterexample.

A useful concept allowing faces to be represented in a computer concludes this
section.

DEFINITION 2.6 (portrait) :

Suppose that < is a finitely established ordering and A C Z,,,,(U) is a finite class
inducing it (for example the skeleton). Whenever u € Z(<) the set A, = {a € A;
(a, u) > 0} is called the portrait of u in A.

Similarly, for a face F (or simply a subset of Z(<)) its portrait is defined as the
union of portraits of its elements: Ar = {a € A; (a, v) > 0 for some v € F}.

8An element of a lattice is called a co-atom iff the only different greater element than it is the greatest
element of the lattice.
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It is easy to derive the following using Assertion 2.1 and Consequence 2.3:

SUMMARY 2.2 Portraits can describe both facial implication and equivalence:

a) L— uiff A, C A, whenever L C Z(<), u € Z(<)

b) u = v iff A, = A, whenever u, v € Z(<).
Thus, the portrait of a face is exactly the portrait of its generating imsets and portraits
can be used for isomorphic description of faces:

¢) F, C F, iff Ary C Ap, whenever F,, F, are faces
or description of elements of Z(<)/. (see Lemma 2.5); owing to b) we can take A,
as A, for u € 4 € Z(<)/~, by Summary 2.1, get:

d) Agpis) = Aare = Aury = A, U A, = A; U A,

2.2 STRUCTURAL IMSETS

In this section, a concrete finitely established linear ordering on imsets is introduced.
It is called the structural ordering as faces with respect to this ordering serve as
models of Cl-structures in the next section. The ordering is defined by prescribing
an establishing set. Nevertheless, an equivalent definition by means of an inducing
class is incorporated: the largest inducing class is characterized. This makes it pos-
sible to derive several necessary conditions for structural imsets (i.e. imsets “posi-
tive” with respect to the structural ordering). Finally, the base is found and the ques-
tion of finding the skeleton is discussed. |

2.2.1 Structural Ordering
First, we introduce both possible establishing sets.

DEFINITION 2.7 (elementary and semielementary imsets)
An imset u is called semielementary iff its natural extension (see Def 1.11, section
1.2) has the form:

u= SKUL - 8]( - 6[_ + BKI'IL Where K, L gN.

The set of semielementary imsets will be denoted by E,,,. Moreover, an imset u is
called elementary iff its natural extension has the form:

ﬁ=6sur—as‘”67+asnr WhereS,TgN card S\T =cardT\S = 1.

The set of elementary imsets will be denoted by E in the sequel.

LEMMA 2.6 The set of elementary imsets E is nonempty and finite, and
a)3g ERU)Vu EE (q, u) >0
b) E is exhaustive (see Def 1.13d, §1.3.1).
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Proof a) Define the sequence {rien as follows:
n=0 rn=1 nga=2rr~—rn_,+1 fork=2

and introduce ¢ € Z*(U) by the equality: g(S) = 7.4 Whenever S € AU. It is easy
to see that Vu € E {q, u) = 1.

b) Consider r € Z(U) with [Vu € E (r, u) = 0}. If A C N and card A = 2 then
84 € E and therefore r(A) = (r, 84) = 0. Then by induction on card A prove r(A)
= 0; it suffices to find a proper u € E of the form a = §, — 85 — 8; + 8sqr with
A=SUT. R

DEFINITION 2.8  (structural ordering, structural imset)

The structural ordering is the ordering established by the set of elementary imsets
(use Assertion 1.3(b), §1.3.3). It will be denoted by <. An imset « is called struc-
tural iff 0 < u. The class of structural imsets will be denoted by Z(<).

Terminological remark Later, we will see that the natural identification of faces
with dependency models is one-to-one for this ordering (see Lemma 2.9 in §2.3.1).
Therefore such faces “precisely” correspond to structures described by dependency
models. This specificity of the ordering motivated the terminology.

2.2.2 Convex Set Functions

Now, the class of completely convex functions, shown Iater to be the largest class
inducing <, will be introduced. A

DEFINITION 2.9 (convex and completely convex set functions)

A set function m: exp N — R is called convex iff it satisfies the condition of con-
vexity: m(K U L) + m(K N L) = m(K) + m(L) whenever K, L C N.

A set function m € R(AU) (on U only!) is called a completely convex set funcuon iff
its settled extension m (see Def 1.12, section 1.2) is convex.

Finally, m € Z* (OIL) is called a convex multiset iff it is a completely convex set
function.

Terminological remark The terminology is taken from game theory (see [Ro-
senmiiller and Weidner, 1974]). Some readers may prefer to call these functions
supermodular (corresponding to superadditive functions in measure theory).
LEMMA 2.7 a) For m: exp N — R the following two conditions are equivalent:

OmKUL +mENLyz2zmK)+mL)K,LCN

@ mSUD +mSNT)=mS) + mT)
whenever, S, TC Ncard S\T =card T\ § = 1.

b) Every convex settled function m : exp N — R is nondecreasing and hence
nonnegative.

Proof a) The implication (i) => (i) is trivial. Conversely, supposing (i) prove
the inequality in (i) by induction on ¢ = card ((K'\ L) U (L\ K)). With ¢ > 2 suppose
card K\ L = 2 (otherwise replace K by L), choose x € K\ L and write:

mKUL +mKNL)— mK)— mlL) =[mKUL)+ mK\{x}) - mK)
— m(K UL\{xh] + [m(K U L\ {x}) + m(K N L) — m(L) — m(K\{xP].,
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Both expressions in square brackets are nonnegative owing to the induction assumption.
b) Whenever U C V C N with card V\ U = 1 the inequality m(U) < m(V) follows
from (i) where K = U, L = V\ U (vanishing outside %). N

2.2.3 Characterization of Structural Imsets

The most important equivalent definition of the structural ordering is contained in
the following theorem.
THEOREM 2.4

a) The structural ordering is established by the class of semielementary imsets.

b) The structural ordering is induced by the class of completely convex set func-
tions, which is the largest class inducing it.”>

Proof Supposing u € Z(W), it suffices to show that the following conditions are
equivalent: :

IneN k EZ*(vEE) n-u=zk,,-v 2.1
vEE
IEN kKEZ (VEEy) nu= D k-v 2.2)
vEEm

{m, u) = 0 for every completely convex set function m € R(U) 2.3)

Since E C E,.,., (2.1) = (2.2). Whenever v € E,,,, and m is a completely convex
function, then {m, v} = 0. Therefore, supposing (2.2), the equality n{m, u) =
3.ec,, kim, v} = 0 gives (2.3). Finally, to show (2.3) = (2.1) use Lemma 10b in
[Studeny, 1993] (clearly by Lemma 2.7a the class of completely convex functions
can be written as {m € R(OU); Yu € E (m, u) = 0}). Because of the class of com-
pletely convex set functions is a regular cone by Assertion 1.2, §1.3.2 it equals
C. H '

REMARK 2.1 (how to recognize structural imsets)

Consider an imset ¥ and the task of ascertaining whether u is structural. By defi-
nition, the direct method to prove that « is structural consists in “decomposition of
a multiple of u into elementary imsets”. Nevertheless, by Theorem 2.4a it suffices
to decompose the multiple into semielementary imsets. This is sometimes easier as
the class of semiclementary imsets is wider. Moreover, the set of elementary (or
semielementary) imsets can be reduced to E = {v € E; v = 85y — 8s — 8p + Oscr
where SUT C A € AU with u(A) # 0}. The proof is left to the reader as a simple
exercise.

Note that in case card N = 4 one can decompose without first multiplying as both
approaches are equivalent. This is shown in [Studeny, 1991] §4, 5. Nevertheless, a
more effective method is possible in case that the skeleton is at our disposal (see the
discussion below Consequence 2.5, §2.2.4).

Note that it can be shown that the class of convex multisets induces < too.
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Theorem 2.4b can serve as a tool to derive various necessary conditions for structural
imsets. For example, whenever m is a convex multiset then

(m, u) =0 for each structural imset u.

Concretely, convex multisets can be found as follows:

LemMMA 2.8 Suppose that ¥ C AU is ascending, i.e. SE T, SCTEUSTE T,
Denote the system of its minimal sets by J,,, and introduce the multiset my (the
evaluation of J) by defining directly its settled extension mg:

mg(K) =0 whenever K € (exp )\ T
mg(K) =1 wheneverK € J,,,,

and for K € I\ J,,, define m3(K) successively (by induction on card K):
mg(K) = max{mg(S) + mg(T) — mg(SNT); S, T, CNSUT =K

card S\T =card T\ S = 1}.

Then my is a convex multiset and T = {A € U; mz(A) > 0}.

Proof By the definition of mg it is easy to verify the condition (ii) from Lemma
2.7a. By Lemma 2.7b mg is a multiset and = {4 € U; mz(4) > 0}. M

2.2.4 Base and Skeleton

The above mentioned necessary conditions will be used in Appendix A (see the third
installment of the work, section 3.2) to show:

ASSERTION 2.2 The set of elementary imsets is the base of <.
Thus the base is known. What about the skeleton? It easily follows from Lemma
2.6b and Assertion 1.4(a), §1.3.4 that:

CoNseEQUENCE 2.5 The skeleton for < exists.

Thus, from the theoretical point of view we know how to recognize structural imsets.
Namely: 0 < u iff [{a, u) = O for each skeletal imset a].

Nevertheless, the problem of practical finding of the structural skeleton is open. A
convenient characterization of skeletal imsets giving an algorithm finding the skel-
eton for every number of attributes is needed. Note that in case card N = 3 the
skeleton has 5 imsets while the base has 6 imsets (see Example 3.1, §3.1.1).

In [Studeny, 1991] the skeleton in case card N = 4 is found. In this case, every
skeletal imset has the form mg for some ascending J C AU (see Lemma 2.8) and
there exist exactly 37 skeletal structural imsets (while the base has 24 elements).
The skeleton can be divided into 10 classes (every permutation of elements of N
gives an “isomorphic”™ skeletal imset). The list of these classes is given (note that
S, T, R, V are different subsets of a three-element set N) in Table 2.1.

2.3 STRUCTURAL FACES AS MODELS FOR CI-STRUCTURE

The aim of this section is to relate structural faces and imsets to dependency models.
First, a dependency model is assigned to every structural face. This defines a one-
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Table 2.1 Skeletal structural imsets in case card N = 4.

I my  where T, = {N} - 1 representative
II my where 7., = {5} 4 representatives
m mgy  where 9, = {S, T, R} 4 representatives
IV my whereJ,,={8NT} 6 representatives
A" my where J,., = {5, T, R, V} 1 representative
VI my where J,..={SNT,R,V} 6 representatives
VII mg where J,.,, = {S, TNR, TNV,RN V} 4 representatives
VIII my where 7., = {SNT,SNR, SNV} 4 representatives
IX mg where T, ={SNT,SNR SNV, TNR, TNV} 6 representatives
X my whereJ,.,.={SNT,SNR SNV, TNR,TNV,RNV} 1 representative

to-one correspondence between structural faces and a certain class of semigraphoids
also called structural. Then using the natural mapping of imsets into faces (see Lemma
2.5) a dependency model is assigned to every structural imset. Nevertheless, every
probability measure induces a structural face through the concept of the multiinfor-
mation function and in this way it is shown that every probabilistically representable
semigraphoid is structural. Some consequences concern facial implication; it is de-
rived that semigraphoid derivability entails facial implication and facial implication
entails probabilistic implication. Another consequence says that the description of
Cl-structures by means of structural imsets (or faces) and the description by means
of dependency models are equivalent.

2.3.1 Primary Mapping

The first step to set up a connection between dependency models and structural faces
is to define the primary mapping from the set of triplets T«(N) (see Def 1.3, §1.1.2)
to semielementary imsets.

DEFINITION 2.10 (primary mapping)
Define a mapping i: T«(N) — E,,,, called the primary mapping as follows: to every
triplet (A, B, C) € T«(N) assign u € E,,, such that

& = S40uuc — Oauc — Osuc + Oc.

(Evidently, # satisfies (N.1)—(N.2)—see section 1.2.)

REMARK 2.2 (primary mapping is relatively ‘injective)
Clearly, i({A, B, C)) = i({B, A, () for every triplet (A, B, C). But this is the only
reason why i is not injective. Using Lemma 1.2 (section 1.2) it is easy to see that

i({A,B,C)) =i((A’",B',C')iff [C=C'&{A,B}={A", B'}].
Similarly, it is evident from the definitions that i maps T«(N) onto E,,,\{0}.

Now, dependency models can be assigned to structural faces:

DEFINITION 2.11 (dependency model corresponding to a face)
For a face F with respect to the structural ordering the dependency model i_(F) i.e.
{t € T«(\); i(t) € F} will be called the dependency model corresponding to F.
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LEMMA 2.9 The mapping F — i.,(F) considered on the class of structural faces is
injective. Moreover, every dependency model i_, (F) is a semigraphoid.

Proof 1. Suppose that F, and F, are structural faces with i_,(F;) = i_,(F,). When-
ever u € E (elementary imset) then evidently u € E,,,\{0} and by Remark 2.2 there
exists ¢ € Tx(N) with u = i(¢). Therefore:

uEF,@tEi_l(Fl)QIEi-l(Fg)CbuEFz.

Thus, F; N E = F, N E. As E is the base of the structural ordering (Assertion 2.2)
by Theorem 2.1, §2.1.4 it distinguishes faces. Hence F, = F,.

II. Fora structura] face F the symmetry condition for i_,(F) (see Def. 1. 6, §1.1.3):
@A B, COEI(F)e(B,A C)E I (F)
follows directly from Remark 2.2. To prove the second condition
(b) (A, BC, D) € i_{(F) & (A, B, CD), (A, C, D) € i_(F)
Obscrve that (A, C, D) e i...l(F') & i((A, C, D)) =] F i.c. SACD - SAD - 6CD + 6[)
restricted to AU belongs to F and similarly for the other triplets. But the equality
(Ouscp — Osp = Opcp + Op) = (Oascp — Oacp — Opcp + Ocp) + (Bacp = Oap — Ocp
+ 8p) restricted to AU enables us to derive the implication < in (b) by composition
for F and the implication = in (b) by decomposition (both summands belong to E..,,,
and therefore are structural imsets by Theorem 2.4a, §2.2.3). N

The following easy consequence relates semigraphoid derivability with facial
implication.

CONSEQUENCE 2.6 Whenever I C T«(N) and t € Tx (N) then

I+, ..t entails i(]) - i(?).

Proof Consider a face F with i(I) C F; it suffices to derive i(f) € F (see Def
2.3). The assumption says that there exists a derivation sequence k,, ..., k, =t C
T«(N) (see Def 1.7, §1.1.3). It is straightforward to prove by induction that Vj =
1, ....,n k€ i (F) (by Lemma 2.9 i_\(F) is closed under all semigraphoid in-
ference rules). W

2.3.2 Structural Semigraphoids
Proceeding with the development of the theory, we introduce:

DEFINITION 2.12  (structural semigraphoid)
Every dependency model of the form i_,(F) where F is a structural face is called a
structural semigraphoid (by Lemma 2.9 it is indeed a semigraphoid).

The adjective “structural” is indeed meaningful as there exist semigraphoids which
are not structural, An example follows.

EXAMPLE 2.1 (nonstructural semléraphmd)
Consider N = {0, 1, 2, 3} and put™:

1={0,1,2),(1,0,2),10,2,3),{2,0, 3), (0, 3, 1), (3, 0, 1)}.

4a, b, ¢} is written instead of ({a}, {6}, {c}).
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Clearly, it is a semigraphoid. Suppose that I C i_(F) for a structural face F. For
our purpose, it suffices to show that 0, 2, 1) € i_,(F). By Def 2.11 the following
imsets belong to F:

i(0, 1,2)) = 8,12 — 8oy — Sy
i{0, 2, 3)) = 623 — B3 — Oy
l'((_O, 3, 1) = 8013 — Sony — S

Hence, by (F.1) their sum « belongs to F. To derive by (F.2) that i({0, 2, 1)) =
6{0_1'2} - 6{0']} - 8{1’2} € F write:

u-— (5{0.1.2} - 5{0,1} - 6{1,2}) = {5{0.2.3} - 5{0,2} - 5{2,3}} + {8{0.1.3} - 3{0.3} - 6{1.3}}-

The right-hand side is a sum of elementary imsets, and is therefore a structural imset.

REMARK 2.3 (struct. finite semigraphoids have no finite axiomatic characterization)
Structural semigraphoids cannot be characterized as dependency models closed under
a finite number of inference rules. Note that this can be proved in the same way as
was used in [Studeny, 1992] for the analogical result concerning probabilistically
representable dependency models. In fact, every structural semigraphoid must be
closed under all “inference rules” proved valid for probabilistically representable
dependency models there (Proposition 1 in [Studeny, 1992]) and since any proba-
bilistically representable semigraphoid is structural (see below, Consequence 2.9,
§2.3.4) the consideration from Consequence 1 in [Studeny, 1992] can be repeated.

The above mentioned correspondence with dependency models can be transferred
to structural imsets. Namely, every structural imset u determines the face f({u}) (see
Def 2.2, §2.1.1). The corresponding dependency model {t € T«(N); i(t) € f({u})}
can be expressed as follows (use Lemma 2.2(a)):

DEFINITION 2.13 (depehdency model corresponding to imset)

For a structural imset # € Z(<) the dependency model {t € T« (N);u — i(?)} i.e.
i_(f{u}) will be called the dependency model corresponding to u and denoted by
1,. .

Note that I, can be written in another form (use Lemma 2.2(b)): .
Fact2.5 I,={t ET«(\N); Ik E Z" k-u — i(t) € Z(<)} whenever u € Z(<).
By combining Lemma 2.9 and Lemma 2.5, §2.1.6 we get:

SuMMARY 2.3 The mapping u — I, considered on structural imsets is relatively
injective with respect to facial equivalence i.e.: I, = 1, iff u =~ v whenever u, v €
Z(<). Moreover, it maps structural imsets onto the class of structural semigraphoids.

2.3.3 Multiinformation Function

Faces and imsets will be related to probability measures by means of the concept of
the multiinformation function having its source in information theory.
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DEFINITION 2.14 (multiinformation function)
Given a probability measure P over N define its multiinformation function M : exp
N — R as follows:

M(@©) =0
M) =HP; ] PP for 0#SCV

where H (R, Q) denotes the relative entropy of R with respect to Q defined by the
formula

HR, Q)= Y, R®-In (RX)/0(x))

R(x)>0

wheré{'}[Q(x) = 0 implies R(x) = 0]; this condition is satisfied for R = P’ Q=
I-IfesP ! .

Terminological remark Multiinformation generalizes the well-known informa-
tion-theoretical concept of mutual information serving as a measure of dependence
of two random variables. Multiinformation serves as a measure of stochastic depen-
dence of two or more random variables. This view led me to adopt the name “mul-
tiinformation” in [Studeny, 1989]. Another name, “entaxy”, was used by Malvestuto
[1983].

The foilowing lemma summarizes the results from [Studeny, 1989]84,5 which
allow the use of multiinformation as a tool for study of conditional independence.

LEMMA 2.10 For P € P(N) (see Def 1.1, §1.1.1), its multiinformation function is
a settled convex function (see Def 2.9). Moreover, whenever {A, B, C) € T«(N):
P obeys (A, B, C) iff M(ABC) — M(AC) — M(BC) + M(C) = 0.

Usually, M will be considered as a function on % in the sequel. The principal
concept follows.

DEFINITION 2.15 (probability measure complies with imset)

For P € P(N) and u € Z(<) say that P complies with u iff (M, u) = 0 where M is
the multiinformation function of P (the scalar product {-, -} is defined in Def. 1.13b,
§1.3.1).

Note that the second part of Lemma 2.10 can be reformulated as follows:

FacT 2.6 Whenever P € P(N) and t € T«(N) then P obeys ¢ iff P complies with
i(r). ‘

2.3.4 Induced Face
THEOREM 2.5 Suppose that P is a probability measure over N. Then the set Fp =
{u € Z(<); P complies with u} is a structural face.

Proof 1If M is the multiinformation function of P, then the set F = {u € Z(<);
(M, u) = 0} satisfies (F.0) and (F.1) owing to properties of scalar product. To show
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(F.2) consider u, v € Z(<) with u + v € F. Nevertheless, as E,,,, establishes <
(Theorem 2.4a) n+u = 2., k., wwithn €N, k, € Z*. As M is convex (Lemma
2100 M, n-u) = 2, k, (M, w) = 0. Hence (M, u) = 0 and similarly (M, v) =
0. Thus O =M, u+v) =M, u) + (M, v) gives (M, u) = (M, v) =0ie. u, v €E
F. R

The previous theorem makes possible the definition:

DEFINITION 2.16 (face induced by probability measure)
For P € P(N) the structural face {u € Z(<); P complies with u} will be called the
Jace induced by P and denoted by Fp.

Moreover, Theorem 2.5 has some important consequences. The first one relates
the description of Cl-structures by means of dependency models with complying with
imsets. Therefore complying with a structural imset can be understood as certain
type of description of the CI-structure.

CONSEQUENCE 2.7 For each P € P(N) and u € Z(<) it holds that P complies with
u iff 1, is a submodel of Cl-structure of P.

Proof For u € Fp consider t € I,. To show that P obeys ¢ observe that i(r) €
Fp (since u — i(t) and F, is a face) and use Fact 2.6.

Conversely, suppose that P obeys every ¢ € I,. Then by Theorem 2.4a write n- u
= 3k, ko-w where n € N, k, € Z". For every w € E,,,\{0} with k, # O find
t, € T«(N) with w = i(z,) (see Remark 2.2). By Fact 2.5 ¢, € I, and therefore P
obeys ¢, i.e. P complies with w (Fact 2.6). As P complies with every w € E,,,, \{0}
with &k, # 0 and F; is a face by (F.1) and (F.2), it follows that u € F,. W

A further consequence relates facial implication with probabilistic implication.

CONSEQUENCE 2.8 Whenever I C T«(N) and ¢t € T(N) then i(l) — i(¢) entails

IEs. '

Proof Consider P € P(N) which obeys I. By Fact 2.6 {i(k); k € I} C Fp. As
Fp is a face i(I) — i(r) gives i(t) € Fpi.e. P obeys t by Fact 2.6. W

Probabilistically representable dependency models can be characterized by means
of faces as follows:

ASSERTION 2.3 For each P € P(N) the dependency model corresponding to the
face induced by P coincides with the model of Cl-structure of P (see Def 1.4, §1.1.2).

Proof Write for t € Ty(N) using Fact 2.6, Def 2.16 and Def 2.11 : P obeys ¢
& P complies with i() E Fp &t € i_(Fp). N

This assertion has a significant corollary:

CONSEQUENCE 2.9 Every probabilistically representable dependency model is a
structural semigraphoid.

Proof Combine Def 1.5 from §1.1.2, Assertion 2.3, Theorem 2.5 and Def
2.12. W .
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2.3.5 Multiinformation Ordering

To make faces and imsets completely parallel with dependency models let us add
the following definition (an analogue of Def 1.5 from §1.1.2).

DEFINITION 2.17 (probabilistically representable faces and imsets)

Suppose that ® C P(N). Say that a structural face F is represented in ® iff F = F,
for some P € ®. A structural imset u € Z(<) is represented in © iff f({u}) is rep-
resented in @ or equivalently /, is represented in ® (by Assertion 2.3). A probabil-
istically representable face (resp. imset) is a face (resp. imset) representable in P(N).

We conclude this section with the concept of multiinformation quasiordering dis-
cussed in the Conclusions (see the third part).

DEFINITION 2.18 (multiinformation quasiordering)

For @ C P(N) define the multiinformation quasiordering corresponding to ® as the
scalar product quasiordering (see Def 1.13c, §1.3.1) induced by the class of mul-
tiinformation functions of measures from ®. By the standard multiinformation or-
dering is meant the multiinformation quasiordering corresponding to P(N).

In case that @ is sufficiently large the corresponding quasiordering has to be an
ordering. For example, the following condition is sufficient (this is the case of the
standard multiinformation ordering):

VY A € 9 3 P € ® such that its multiinformation function has the form:

_)Jk>0 incascACB
MB) = { 0 otherwise.

Certainly, it can be shown by Lemma 2.10 that the multiinformation ordering is
weaker than the structural one. Nevertheless, so far I don’t know whether they differ.
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