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Abstract. As a rule, l Be'sure is r mappiag frort a o.field oís€ts into the
oct of reďs, ot more genctally, into some Banach sprce. A concept oÍact-valued
meesure (SV-measure) is introduced in the paper being e specific mappiug from e
o-field of setc into a power set of a set. Properties of SV-meesurcs are anatyzed
and illustrated on cxamples. Closc relationship betvrccn SV-measurcs and r
new nonsta.ndard approach ia artificial intelligencc (ÁI) is explained. Then, the
congtruction of factorization oí the meesur€s ie nentioacd, e rpcciď clag of a-
quasiatomic SV-measures is defined rnd correcponding characterizatioa theorem
Írs proved. This class involves SV-measures ranging in a countable set which were
uscd in nodelling uncertainty in AI. It enablee to answer onequestion arising in
coancction with this application.

Key worda: cet.valued mcasule' Íactorization, quasiatom oí scbv.lued
nejáutc. '

Introduction. Presented paper deals with a notion of set-
vaiued measure (SV-measure). Domains of SV-measures coincide
with domains of 'ordinary' measures, i.e., they are o-fields of sub-
sets of a set. In contrast with classical measure theory, values of
an SV-measure are membeis of a power set of a set called. target
,below.

This article has two basic sources of motivation. The first
one is in artificial intelligence. Bundy (1985) sutgested a new ap-
proaqh to description of uncertainty in expert sy6tems: degrees of
uncertainty of propositions are described by means of subsets of
certain basic set (instead of numbers). This approach was followed
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by Kramosil (1991) who introduced the notion of nonstandard 8-
valued probability measure for similar purposes.

The second motivation souroe is measure theory. We present
here principď features of certain analogy of this theory. Let us re'
call that a measure is a mapping ascribing numbers to sets (namely
to the elements of a o-fields of sets). There are some general-
izations, for example Banach space'valued measures in functional
anai;rsis ciiccussed by Dunford and Schwartz (1958) or (orthogo.
nď) siochastic rrreasures in the theory of stqcbastic p|ocesses; see
Cramér and Leadbetter (1967). our.approach is similar, but we
consider a mapping ranging in subsets of another set.

We feel that there, is some void rrhich should be filled up by
corresponding theory. Our concept can easily relate the abbve men-
tioned apparently remÓte area,s. Nevěrtheless, it can be also con.
sidered as further alternative model of pr,:bability (as reviewed in
Fine (1973)) or another attempt to change quantities of measure
values cf PÍa'nzagl (1971).

We shall show. that an SV-measure is a a-homomorphism of
o-fields. Maybe such a concept is treated somewhere in literature
but Ýe have no information about it.

A príncipď fegture of SV-measures is that they arq cxtensional:
it means that tbe Íneasure of the union of two sets can be obtained
expliciily from values of measures of these components (similarly
for the difference and other set-theoretical operations). This is
not valid in case;of "ordinary' measures and probably i-t is the
main motirration point of above mentioned approaches in artificiď
inteliigence

The aim of the article is not only to. define the concept of SV-
measure but alsb to deepen it by further more adnanced concepts
and some results arising in connection with new nonstandard ap-
proaches to modelling uncertainty in expert systems.

A'c.oncept of SV-measure is introduced in the ffrst section,
various example of SV.measuřes are stated. It is,shon,n tbat alr SV.
meixure is a c-homomorphism of o-fields. Properties of coverings of
a set applied in the PePer are sumlnarjzed in ťhe second (auxiliary)
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aection. As a rule, both description and characterization of an SV-
measure can be simplified using a simple factorization procedure
stated in the third section. Further, notions useful for analysis of
SV-measures, like null-sets and quasiatoms, are introduced in the
fourth section. Our null.sets are similar to null-sets of ordinary
measures, while quasiatoms resemble atoms of ordinary measures.' 

The last two sections and appendixes are dealt with specific
classes of SV-measures closely related to description of uncertainty
in expert systems mentioned above. Namelyi a concept of o-qua-
.siatornic SV-measure is introduced and discussed !n the fifth sec-
tion... Complete c}raracterization ď a.q.iasiatomic SV-méasures is
given. lt enables us to derive a omplete characterization of SV-
rnea^sures ranging in a countable target; sc'e the last (sixth) section.
In Appendices we related our theory to the concept of nonstandard
B-valued probabiiity measure introduced by Kramosil (1991) and
grye an affirmative answer of a question from that work.

1. Set vďued me&su'res. In this section we introduce the
concept of set vďued measure (SV.measure). Somé examples of S\'.
measures are given and basic.properties are mentioned. We show
that an SV-measure is a a-homomorphism to o-fields. At the end
of the section we discuss a distinction between SV-measures and
"ordinaryt measures. Namely, in contrast with ordinary measures,
the SV-measures could 'saven the structure of underlying a-field
and thel' are extensional with respect to set-theoretical operations.

DpnNtrtoN 1. A tetra.d fr - (o,/' /í,p) is called c qa,ce with a
set-oalued maosTt t, p iff the following conditions are satisfied:

(O,d) is a measurable space, (l)

í.;:'jl", 
. (2)

(3)
for every A,B e,4 with AflB =e it holds p(A)np(B) = C, (4)
for every countable collection {ád l d € I} (5)

of ňutually disjoint measurable seis it bolds:
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/ \
u( U*f=[Jda)

\ i € '  /  i e l

.' The get Ií will be called the úorgc| of 9t.

We give five examples of spaces with SV-measures here.

Example 1. (trivial SV-measure). t"t (O,,4) be a measurable
space and II be a set. By a trivial SV-measure we understand the
mapping p .. Á - exp Ií ascribing empty set to each measurable set.

Example 2. (identical SV-measure). Let (O,/) be e mea-
surable space. Put Íí = o and define p as the identity mapping
On r4 :

p(A)=A foreach AeA.

E,xample E. Let Á be the system of atl at most countable
subsets of the interval (0,1) and their complements. Take any
nonempty set .čí and define p : Á - exp I[ as follows:

if A is at moet countable,
otherwise..

p(e) = {on
It makes no problem to see that ((0,l),A,H,p) is a space with an
SV-measure

-Example 4. (direct product of spaces with SV-measures).
Let us consider a nónempty system

(Qi ,A; ,E i ,p i ) ,  i  e  I

of spaces with SV.measur€s and suppose that Q;, j e J ere mutually
disjoint and r!Ii, i e J are mutually disjoint.

Put

o= (_,lg
ie t

and define the o-field.d on CI by
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( ,  )
, l=  {  U A i  |v j  €  J  :  A i  eÁ i |= {á  go IV je  J  :  Ar ro1 eÁ i | .( i Ú  ,

Tlre target ÍÍ is defined by 
.

. H = Uřri.
'  i e J

Finally' for any á e ,{ put

p(A\= U pi@noi).
ie '

As can be easily verified (Q,,,4,11, p)is a space with SV-measure.
. In fact, Example 5 is a combination of the preceding ones.

Example 5. Let x1 1 t<2 be two infinite cardinals.
Let T1,T2,Ts,. . .be mutually disjoint sets having the cardinal-

ity x2. We put

n= lj4,
j = 1

Áj = o({,D g 1i I card D š xr})

and

.4  = c  ({T1,72,3 i , . . .  }  u  {p  e  O I  card  D (  x r}) .
'Let 

HyHz,Hs,.. .  be mutual ly disjoint sets and

a= !rr.
i= !

At first, for each i = !,2,... define an SV-measure Fi z Ai + Hi
similarly as in Example 3:

pi@) = 
{rr, ltili*,* 

* ""
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To define p use the procedure from Example 4:

tt(A,) =l]r i(en4), wbenever Á e A,
.  i = l

Clearly (Q,A,H,p) is a space with SV-nreasure.
In the rest of the presented paper we suppose that a space with

SV-measure

fr' = (8,Á, H, p)

is given. Ťhe only exception concerns Proposition 2 in the section 5.
We shall show that an SV-measure Preserves basic set-theore'

' ticď operations'

Iemma L. I.et A, B € Á, Tben

t(B \ A) = p(B) \ p("4) uheneter AE B, (6)

p(Av B\ = p(A)v p(B), (7)

p(An B) - p(A\ n p(B). (8)

ProoÍ.
a) It holds rr(0)ny(0) = 0 by (4), i.e., p(e)= $.
b) We prove {hat p(Av B) = p(A)u p(B) whenever Ai B = i.

We have

p(Au B)= p(AuBuSue u .  . . )= p(A\up(B)ur (0)up(0)u . . .

by (5) ,  thus  p(áUB)  -  p(A)vp(B)  by . ) .
c) We prove (6). The sets p(.,{) and p(B \ á) are mutually

disjoint according to (4), p(B) = ,r(A\v p(B \ ,{) according to b).
Therěfore l(B \ Á) = F(B) \ p(a).

d) We prcve (7). Using b) twice we obtain

p(Au B) = p(A \ .B) u p(An B) u p(B \ .'{) =

=lr(A \8)u p(AnB) lv l r@nBlup(B \ ,{) l  =
= p(Alu t @).
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e) Let us consider the rcmaining case (B). It holds .l{ íl B =
o \ {[o \ /]u to \ Bl]. Using ir together with (6) and (Z) we get

p(Aa B)= l(o) \ {[p(o) \ p(e)]Uh(o) \ p(g)]} = p(Á) np(B).

Precisely, p is a homomorphism of ,{ into expp(e): Such map
pings have been studied in lattice theory. Therefore, p holds the
following properties, cf. Birkhoff (1940), Sikorski (tg60).

Lemma 2. Let A,B eA. Then

P(0) = 0,

AEB impl iee p@)e p@\,
p (B \ á )  =p (B ) \ p ( , { ) ,

p(A) = y(B) iÍÍ p(AA'B) = $,

(e)
(10)
(l l)
(r2)

Theorep 1. Án SV.measure p is a o-homomorphisn of Á
inúo expp(o), i.e., p fuLfiIs (6) and wheaever A^ e A for aJ] n € JY
then both

l] r{a")
n=l

and

.(^| l(á")
n=t

ňold.- '- 
Pr-y.
a) Leť us prove (l3). Since the sets áo \ u:l Ár are mutually

disjoint the last equality in

, ( Ě ' )  =

'("n'") =

,(Ě*) =,('q ['"' jJ,'-]) ='Q'(n" '

(t3)

(t4)

a - l  \

U e.l
l=1 I
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follows from (5).

O n s et- u alu eil m eas unet

Hence by (1t) and (7) we have

[J r(,1").
n=1

b) Using (13) and

= p(0) \

which gives (12).

CoRot,lany 1. The range p('4) is a o-ring of subsets of ří, more
precisely it is a a-field of subsets of p(íl)

Propertius of SV-measures stated in theo.rem I and Corollary
1 express our phrd'se that SV-measures could nsave' the structure
of an underlying {-field.

Owing to Slirneasures the properties, they are extensional.
E.g.i there exists, a concrete formula (narnely (7)) which express
the value (of SV:measure) of the union of two sets by means of
the values (of SV-measure) of these sets. Nevertheless, in case
of "ordinaryn measure p the value p(AU.B) is not determined by
v-alues of p(A) and p(.8) uniquely. Analogical situation concerns
other set-thegretical operations, as follows from (1 1), (13) and (14).
These formulas show extensionaliuy of SV-rneasure with respect to
set-theoretical operations. They have no counterparts in classical
measure theory.

2. Equivalences determined by cove"itg". This section
contains some auxiliary results on coverings' oť a set used later.
We shall need special equivalence deterntined by a covering of the
basic set O (resp. p(O)) and the corresponding partitions ofO (resp.

r(o)).

"Ů [,.n",',(ij".)]
Ů [,.n", 

\ Ů'lte.l] =

(11) we get

,(g/") =

ó . l

[Jro t a"tl
n= l  I

Ů tutnl \ p(á,,)] = fr l(a")
n = l  n = l

,(ňá") =,[n'
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Dprrlurrox 2. Let X be a nonempty set. A set M is cailed a
coaeting of X, iff X =Uue*rM.

Moreover, any covering M oÍ X determines the fo|lowing equiv-
alence -ju on X : if a,9 € X, then

x -M y g ivu €.,1,í ei{her x,g e M, ot a,y e M| .

The set of ail -x classes will be denoted by Í^..
(Cf. Roblin (194?), Samorodnickij (1990) p.l8-21 for details.)
The classes of ^-*r equivalence have great importance for our

study. Clearly, Íg i' also a covering of X and -a1 equals to -^
The following lemma summarizes basic properties of *"í'á.

lence classes.

Lemma E. I,ct M bě a covering oÍ X.

a)
b) Wňenever M €' M andu e ft'y, then either u C M, or ufiM =

0.
c) Let M be closed under the complement operation. i.e.,

x \ M E M f o r a n y M € M . T h e n

1!= í.) "r= o u
M E M  M E M
, 9 M  C E M

d) o(M) ís a coyerin g of X and -.pl equals to -o(*l).
P"*Í. Proof of a), b), c) is left to the reader. For sketch of

the proof one can consult Rohlin (lg47) or Samorodnickij (lgg0),
Chapter 1, 94.

For a proof of d) we consider a,y e X.
. If o -o(M) y then x nMy since o(.,t1) ) ,,V.

IÍ r -u y then there exists u e ftu such that a,! € u.
As {M g X I u C M or u ! X \ M} is a o-field, for each

M e o(M)we have either u g M or u C X \ M. Therefore a -o(M\ !.

3" Factorization of SV-measures. In this section we show
that both SV-measure and target set could be modified in order to
ensure that points of the new target are distinguishable by means of

uheneae r  u € X . * , t ,  x € a ,
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the modified SV-measure" The construction is called factorization.
It is possible to reconstruct the original SV-measure from its factor-
measure.

Factorization can t'e applied to simpliíy both description and
iharacterization of a pa.rticular S V-measu re.

It seems natural to call points x,c €  p(Q) p.separoble if there
exists á €  ,4 such that z e p(A) and y / p(A), and in the opposite
case to cďl them p.inseparcble. Certainly, it defines an equivalence
on g(O). Lllearly, points outside p(Q) form a special class which can
be omitted (cf. Corollary 1).

The factor 'p'.u fiř;,ir1 is denoted by .É(p).
containing e e p(A) is denoterl by i. For any

f r (A)=l t lxep(A)I .

Dr,rrxrrrox 3.
The class in itlp;
A € A w e s e t

It makes no problems to see from preceding results that tlre
foiiov.ing hoids.

Proposition 1. The tetrad (A,A,frb),p) is a space with
SV-measure. Moteover, each different points u,o g F(p) are p-

separ;rbie.

Further- ri. ; ' 1.t follows from Lemma 2.

Lemma 4" a)  Let  AeÁ andu €  f r1p1.  rnu,e i therue y{Á),
or u fi p(A) = 0.

b) /f u e frU), then u= fl .i,e1, l(,{).
In general, the members of new target .&1p1 *.y not be p('4)-

measurable, i.e., the inclusion

fr@) s peq)

may not hold. Namely, consider a measurable space (O,-4) such
that some classes of -r equivalence are not l-measurable. If we
define the space ({l,A,H,p) with identical SV-measure p according
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to Example 2, then fr(p) equals the set o1it| -,1.classes and p(Á) =
.Á, i.e., fr@) sp(,d) does not hold.

The problem how to ensure that clements of 'Éfu) belong to
p(,4) is postponed to the end of the next section.

4. Null-sets, atoms and quadatoms. Here, the class of
null-sets on an SV-measure is introduced and shown to be a o-
ring. Our null-sets are parallels of null-sets in classical measure
theory. Further, the concepts of an atom and a quasiatom are
defined. Our quasiatoms resemble atoms of ordinary measures.
Several equivalent characterizations of-quasiatoms are given. In
the rest of the section it is shown thbt under the assumption that
the underlying o-field,4 is countably generated, all classes in the
factor 'p'.u .É1p; introduced above belong ro y(A).

Dortxltron 4. A set A e Á is called a null-set itrp(,{) = e. The
class of all null.sets will be denoted by ,Á/(p). i.e.'

r,I(p) = {-A e,A I p(,{) = 0}.

The structure of ,A/(p) is characterized by the following lemma.

Lemma 6. N(p) is a o-ring.

Proof. a) Let A,B €.,Á/(p). Then,,(Á \ B) e p@) = 0 by (10)
and consequently á \ B eN(p).

b) Let A^ e N(p), n € Jv. Then p([ff=r,{") = LĚr p(,4") = 0
according to (12). Thus [,ff-, A" eN(p).

Dorrnttlott 5. Let (X,X\ be a measurable space. A measurable
set u € .ť is called an otom of ,ť iff u + e and the only proper
measurable (i.e., belonging to .ť) subset of u is the empty set.

Dpr.lxtttox 6. A measurable set A e.A is cďled a quuiatorn of
SV-measure p ifr p(A) is an atom of p(-{).

If / is an atom of "4 and p(A) # l then Á is a quasiatom
of y. (Namely, if u € p(.,{), then therc ic B e A with p(8) = u.
Thus either A g B,or /o B - 0, i.e., either p(A) Ep(B) = u or
0=  p (A )np (B )  -  p ( / ) nu ) .
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on tbe other hand a quasiatom A oÍ p may exist such that
p(A) + p(a) holds for all atoms B of Á, E.g., in Example 3 a|l
atoms of .'{ are singletons of O and p({a}) = e + H = p(A) holds for
a|l z € o and for all quasiatoms A oÍ p.

There are ser,eral eqrrivaleut characterizations cf quasiatoms:

Lemmg 6. Let A e Á. ?ůc followiqg statements are equir'a-
ie.nÚ

A is a quasiatorn of F (15)

t ' G )*0  and t o r any  A>B € Á  weha t ee i t he r  ( 16 )

p(B} = y{Á), or s\B) _ 0

p(A) * $ and lor any C e A we havc either (17)

pi.A) E pG) or p(A) n y(C) = I
pé) e fr@)' (18)

P,wÍ. a) Using (10) we easily derive that (15) implies (16).
b) Suppose that .,{ satisfies (16) and consider a set C € ..{.

Eence the statement (16) yields (17) taking B = C ftá and using
(8  ) .

c) We prove {hat (17) imply (18). Í.ct x e p(A). We shďl
show that á = p(-!). Immediately we have n e r@) according to
Lemma 4. Convemeiy take another point 9 e p(A). Using (17) one
has either b,y\ g,p(A) e p@) or {e,y} np(C) g p@)np(C) = 0 for
each C €,{. Eence ú *,u) e, i.e., y € á and consequently p(A) g i.

d) Let p(A\ e frfu). We shall show that Á is a quasiatom
of p. Necessarily p(A) # 0" Suppose that B e A, p(B) # Ú and'
p(B) 9 pé| Taking x e p(B) we have i g p(B) e p(A) = i
according to Lemma 4. Hence p(B) = p(.,{) and .á is a quasiatom
oÍ p.

Tbe preceding lemma easily implies the following corollary.

Conor,r.lRy 2. TÍ A, B e A are quasiator4s of p, then we have

either p(A) = p(B) or p@)n p(B) = 0 (ls)
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and

either p(AAB\=0 or p(AnB\=0 .  ( 20 )

The following lemma enables us to derive an easy suffcient
conditions for measurabil ity of ali classes of the factor .pr"" E1p;.

Lemma Ť. Let x,ť) be a measurable space. If a o-freld X is
countably generated, then X is úhe un.ion of a]l atoms oÍ X.

P*"Í. Let D be a countable collection of generators of jť. As-
sume without any loss of generality that 2 is a covering of X which

is closed under the complement operation (i.e., X \ D E 2 for any
D eD). l lence, it suffices to show that Ío e ,ť since X =|)oeÍ, A.

Take :{ e ftp. By Lemma 3, parts c and d, we get A = fioe,o D.

But D is a countable set, tbus consequ"nil, i, * . 
' 'aeD

Conolunv 3. Let A be countably generated. Then frUi S
p("4). Moreover. there exists a coliection 1T, | ; e.I) of atoms of "4
such that ptT;\ # 0 holds for any i e / and

p { Á )  - p(7i]'

takes place for each A € Á.
P,o"Í. By Lemma 7, o = U,e Í uj for the col|ection {u; I i €  l}

of all atorns A" Let us select a collection of atoms I such that

{T . l i  e / }  =  { u ,  I  p ( u i )  *  0 ,  i e  i } .

Consider a e p(o). Let us denote }4' = {D e D I x € p(D)} and

33

t l
I Q '

Ť,g^

B= n D.
DeW

We prove that B € l and e e p(B) hold. If
o  \  D €  2 ,  thus  e  €  p (Q)  = y(D)up(o  \  D) ,  i .e . ,
set 2 is countable and W ! D, i.e., B e Á by (21)'

Í.]'3f."", p(D)2 {x}'

(21  )

D € 2, then
w*0 "The
thus p(A) -
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We prove tbat B is an atom of ,{. It holds -e--p by Lemm-
3d, thus it suffices to prove that if D eD, then either I C D, or
B f i D=0 . | f  x ep (D ) ,  t h enD €W , i . e . ,  B gD  b y ( 21 ) .  | Í x ( p (D ) ,
then a  € , J (n  \  D) , i .e . ,o  \  D €  W,sothat  B  g  n  \  D, i .e . ,  BnD =6.
Tbus B € {?i Ii e I} and a € U;erp(?1) = l(o).

We have proved that {7i l ' € J} is a collection of atoms ,4
with property p(o) - Uelp(?i). Let A € Á. obviously, p(A) 2
Un:i,, dri) and p(o \ Á) 2 U'.glf\ ^ y€.) take place. Moreover

r l(Á)Udo \ A) - p(o) = Uielp(7. l) and p(,{)np(n \ á) = l .
Consequently, p(á) = í1'ii'. l(7i). Eence we have immediately

fru) = {p€t) [d e /} e p(A) which conc|udes the proof.
. The assumption that,4 is countable generated cannot be omit-
ted in Corollary 3. E.g., in Example 3 atoms of ,4 coincide with
singletons of o and p({"}) = 0 for any singleton c € o. Thus ií
p(A\ + g, then p(A) = U,.i1 l(Zl) cannot hold for any collection

tfr I i e "I) of atoms of ",{.

5. Tbe characterization of o-quasiatomic SV-measures"
A special class of SV-measures called o-quasiatomic SV-measures is
iutroduced. Á complete characterization nf o.quasiatomic measures
is given. This typepf SV- measures is close,ly related to description
of uncertainty in ixpert systems (see Introduction). They are, in
fact, generalizati{ns of measures introduced by Kramosil (1991),
cf. Appendix A. '

DprtxIrrox 7: .An SV-measure p is cďIed o-quasiatgmic ifi
there is an at most countable collection {l I i € /} of quasiatoms
of p satisfying

r,(o) = {_lr(n).
iet

(22)

DrrlxrtroH 8' A collection {7i l i € /} is c&lled p- ai|missibtc itr
{7i I d e .I} is an at most countable colle:tion of mutually disjoint
quasiatoms of p and (22) takes place.

Lemma 8. Tňe SV.measure p is o-quašiatamic itr a p.úmi-
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ssible collecúion exisfs.

Proof. Ler {.ri | ' € /} be at most countable co|lection of quasi-
atoms of p satisfyin8 Uier p(Ti) = p(o). Without a loss of generďity
we can assume that p({), i € / are different sets. Thus iÍ i * i,
then p({) n p€i) _ 0 by Corol|ary 2. We set ?t = zj \ U.:: \ for
all r e /. Then ?i, d € 1 are mutually disjoint. tvto.*u"i'i g r1
and

p(ri) = p(?T) \ l) ut\) = p(Ti),
1Ži

i.e., T- are quasiatoms of p and (22) takes place.
A full characterization of o-quasiatomic sv-measures is given

in the rest of the section.

Theorem 2. Let (Q,Á,H,p) b , space with a.quasiatomic
SV-measure p and {4 l; e Il fu a p-a.dmissible collection.

Let us denote B = N(,p\ and H; = p(Ti) for all i e I.
Then

TíB  f o r an y  i € I .  ( 2 3 )
o\  Ur ieB,  e4)

; e I  š

f o r ang  BeB , i e I  uehcoe  BnT ;eB ,  ( 25 )
A=o(Bu{?} l ; e l } ) ,  ( 26 )
VAeA :p (A )=  U  " r ,  

whe re  I a={ i e I l An r . eB I .  e I )
i € I , t

P;*Í. (23) and (24) immediately follow from the definitions of
o-quasiatomic SV-measure and of null-sets. (25) is obvious by (8).
Thus (26) and (27) remain for a proof. Let us put

D = o (N(ptv {?i  I i  € ,})
for that goal. Of coursee D S "1 takes place.

Take á €.,d. For each í € / we have either p(AnT) = ;l(n)
or p(A n 7:) = e because of 7j is a quasiatom. Since .[ is at most
countable set it follows
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(-l dÁn7i),
iCI t,

thus

p(A) =

and (27) is true.

Using Lemma 2 we derive ,{A(l-1i.1, T) E ^fU) and hence
'{ \ Uier^ Ti, U;er^7i \ á e },Í(y) according to (10). Consequently
,4 e D and therefore "{ e f,.

Theorem 2 and Lemma 5 describe a-qua-siatomic SV-measure
completely as the following Proposition 2 shows. Proposition 2
builds a-quasiatomic SV-measure with prescribed collection of qu-
asiatoms, with given values on them and wlth given o-ring of null-
sets. Only in this Proposition we leave the assumption that (O,,4,
.Ě/,p) denotes a space with SV-mea.sure.

Propositioni 2. Let O + 0, H be a set. Suppose that the
following entities bre given:

- L..  at most countable index set.
- ITi,i e I\ 1.,.& collection of mutually disjoint ngnempty

subsets of O,
_' {H;, í € /} . .. a collection of mutually disjoint noriernpty

subset of .čí,
- B C exp O . .. a a-ring of subsets of O.

Assume that conditions (23), (24) and (25) are fulfilled. Finďly let

"4 be defined by (26) ar.d p:A +expňr by (27).

Then (o,',{,.Íí,p) is a space with o.quastatomic SV-measure p.
Moreover {?i,i e 1} is a p-admissible collection, the o-field p("4) is
generated by {Iír I i e /}' and ď(p) = B.

r (A ' )  =Up(, tn? i )u , (nf  UO) =
i € ,  \  ier  /

.U p(zr) = r (,!/ o)
i C I l  \ i € l ^  /
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Proot. Let us denote

(

t={.4go l / \  Ur ieBkv;er( r e r
(28)

[ r \ ,cer  or

We prove that ! is a o-field (part a), t = A (part b), p satisfies
(4) (part d), p sat isf ies (5) (part e) and N(p)= B (part f).

a) Let ,4 € D. It ho|ds (o \ Á) \ U'.l?i = (Q \Uiel2i) \ (Á \
U..l?}) € B, as follows from (24), (28) and the fact that B is a
o.r ing. bíoreover.7l \ (0 \ /) = ?ií|á and 7}n(o \ Á) =7.1 \ / is
true for all i e .I, so that a '\ á € f, by (28).

Let .4' € f, for all n € iť. Hence U^eryÁ' \ U;er1i = U'e,v(Á' \
U..,?i) €  B since B is a o.ring' It remains to prove that 7.1 \ U"el,á'
€ B or that t' fl U'e rvá' € 8. We distinguish two cases.

i) Let Ti n A^ € B for all n € N. Bence I Í] U'e,vÁ' =

U'e,v(/' n4) € B since 8 is a o-ring.
ii) Let there be an index n9 sUch that 7} \ Á"" e B. It

bolds

r \ Ua" = í.l (4 \á") \ [l t':nÁ'),
r €N a € . lVr n €JVz

whenever y'ýr is nonempty and N1 U l{' = ry. Taking ňlr _ {n €
N  I l . \  Á "  e  B }  and  N2  =  {n  €  l Í  | f r f f / .  €  B }  we  f i nd  t ha t
?j \ U"eiu A" € B.

b) Let us prove that f = l. The r-field f contains any
A e B (cf. (24)' (25) and (28)) as well as any ?.1, d € /. Thus

D  "@U{? . l  I t € 1 } )=A . 4
Conversely, let us take ,{ e D. We have / \ Uier7i e B g A.

Mo reove r  T t nAeBgA  o r  4  \  AeB9 . 4 ,  and  a lway s  T ; eA , i . e . ,
T;nA € ',4 for all i € ,J" Therefore .4 = (Á \ [l,.7?i)UU;e ÁTinA) e Á.

c) We observe that if A eD and i e í, then either 7i \ á € 8'
or ?i í.l A e B (if 7i \,4 € B and Tine € B, then Ti e B, which
contradicts to(23)).

? l n á € B ] } .
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c1) Moreover a n A e B ho|ds i{ť p(T,i n A) = 0 ta'kes place;
7i \ á € 6 holds itr p(I n A) _ /íi takes place.
' c2) Using these two facts we firrd that

p(A)=Up(z in/)= U" '
i € I  i € ' I l

ho|ds for a'ny .4 €.4.
rt) Let A, B e l be <lisjoint. It sttÍfices to prove that /,ao13 = $.

Let i  €  / .  It  holr ls Tt =Ti \ (,{nB) = (] i  \ ,4)U(7l \,3) snd, T,; ( B,
i.e., at least one cf T \ A anrl ?i \ B does nct bclong to 6, so that at
least one of T;nA, .r inB l ies in | l ,  i .e.,  i  d Iaí1Ip, Thus .IaÍlIa * 0.

e) Let An €' .A for a|l n € /ý. Then

/")

and

/ \= Up{nn !,r" ),
;e I  \  n € .ť  /

,("y"

[_Jr(r")=UU p(r inA^),
n € , / Y  i € '  n € ^

as foltows fronr c?'. Thus it is enough to prove

/ \
r{nn!a" l= U p(rtnA^)

\ n e J \ / n e N

(2e)

for each i e /. We clistinguish the same two cases as in part a. In
the case i) both sides of (29) equal 0, a.s follorvs from c1. In the
case i i)  both s ides of (29) equal //;,  as fol lorvs from cl.

f) If ,4 € B l.hen Ie = 0 by (25). .fhus ;1 e //(p) by (27). If
A e N(p) t lren /a = 0 b.v (27), so t lrat,4nl i  e B holds for al l  d e -I.
The r e f o r e , 4n (U ' € / . 4 )  e6  and  /  \  U , . , * € 6  s i n c e  AeA -  D .  So
AeB .

6. SV-measure ranging in at most countable target.
SV-measures ranging in a countable targct l/  ancl sat isfying p(A) =
H are equiva, lent to the so-cal led nonstandard B-valued probabi l-
i ty mea^sures introduced irr l(ramosi l  (1991), cf.  Appendix A for
detai ls.
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An airn of the cha.pter is to completely characterize SV-measu-
res ranging in at most countable target.

Rpulnx 1. Let (X,X) be a measurable space with X at most
counta,ble. Then X is a union oť at most countable collection of
atoms of ,ť, thrts .ť is countably generated.

' Recall that R _ (o,,4,ř/,p) denotes a space with SV.measure.

Lemma 9. Let H be at most countable. Then p is a-quasiat-
amic.

Proof. We have t,(0) g 11, thus p(0) is at most countable, i.e.,
p(o) is a union of at most countable col lect ion {H;I i  €  /} of atoms
oÍ p(A) according to Remark i (in fact {/ír l l €  /} _ É(p)). r".
any  r  €  r  there  i s  2 i  e  l  such that  p(? l )=ř I ; .  o f  course '  T i ,  i € I
are qua.siatoms of p and (22) takes place.

Con,oll,rRv 4. An SV.rneasure p is a-quasiatomic iít (o,,4,p,
F(p)) is a space with SV.measufe ranging in at most .ouř'{Íblu
target.

Proof. a) Let p be a o-qua^siatomic SV-measure. There is a
p.admissible col lect ion {?j | '  €  /}. Thus áfu) = {p(T) | i  e /}, as
follows from Lemma 6, and hence fr(p) ir at most countable set.

b) Let the set ,0(p) U" at most countable. Then p is a a-
quasiatomic SV-measure according to Lernma 9 and thus p is o-
quasiatomic .

We derived a, complete description of a-quasiatomic SV-measu-
res in the preceding Chapter 5 (namely in Theorem 2 and Propo-
sition 2). It can be easily concretizeci to get a complete cha.racter-
izaťion of SV-rneasures ranging in a countable target. Details are
left to the reader.

If we assume that the a-field '4 is couňtably generated then we
obtain a special type of SV-measures.

Lem'ma Lo. Let H be at mosú counÍab]e set and Á be count-
ably generated a-field. T]ten there is aú mosú countab]e co]Iection

{![ | i € /} aÚoms of Á such that p(T;) # 0 holds for any i e I and
p(o) = Ule l#(7.i). Moreover N(p) is a a.fie]d ofsnbseÚs of o \ |J;E77i.
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P,.oaÍ. We have derived at Corollary 4 that there is a collection

{n I i e I} of mutuďly disjoint atoms of '4 such that

. p1o) = (-|r(7i), p€) * $.
'eI

Hence .[ is at most countable since p(A) is at most countable set
and p(?j), d € / are mutua|ly disjoint. Thus p(o \ U..r7i) = e and
Q \ U;.r?i is the maximal null-set in ,4.

Thus if Ií is at most countable and ,4 is countable generated,
then íl has the following structure. There is the null.set B and at
most countable coliection {li l d € /} of atoms of ,4 such that

Q=BUUT,
ieI

B and U,.'4 are disjoint and p(l) * 0 for all í € J.

Appendix A. The concept of nonstatndard B-aalued, prcbd-
bilžty measure (n. B.v.p.m.) is introduced in Kramosil (1991),
Definition 2. and recalled belou,.

We shall show that such a measure can be interpreted as SV-
measure'ranging iu a countable target set. Namely, we represent
aBy n. .B-v.p.m. |y ro-" SV-rneasure.

I,et us consi&r d measurable space (O,,4) and a nonempty set
H. The symbol {0,1}f denotes the set of all mappings from ,ří
into {0,1}. Finally,,.the symbol O denotes coordinatewise addition
defined on {0,1}í. It means that if i e }/ and M e {0,1}tr, then

-T c .-  
l z " t
seM

reaches values from {0, 1,2,. . .}U{+@}.
Infinite binary sequences are considered in Kramosil (1991),

i.e., the special case with H = N = {1,2,3,. .} ir.investigated.

DprtntrtoN 9. A mapping P which takes;{ into {0,1}ť is cďled
a norlstandatd B-talued pmbability mcosllru if P(A) = (1,1,1,. ..)

(,9'),
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and if for each countable system 4 g Á of mutual|y disjoint sets
it holds

/ \
P{ U / l= @ r1ey.

\  l € ; { r  /  AeA|

we shall represent nonstandard .B-valued probability measunes
by means of SV-measures. Roughly speaking. whenever a sequence
S e {0,l}i l is used we substitrrte it by a set S, €  exp/{ satisfýing

{' €  /y | .Sl = l} =.S''

Let Ms be the set of all mappings from,4 into expH,.fflr be
the set of all mappings from l into {o, l}řř.

We introduce a mappin E ý,. Moi, * Jt![p as follows. For every
r e u!;1 we set

ý ( P ) ( A )={ ' € H I P (A \ i _ l } ,  V á € / .  ( 3 0 )

Then, as could be easiiy seen, ý is a bijection between }íf'l
and It[p. Moreover, the following proposition holds.

Pnoposttlon 3. Let r e u!;1. Then ý(P) is an SV-measure iff

1 a  \  o

o("q o")= 
"Qo,n", 

(Br)

holds for any system An e Á, n € N of nrutua||y disjoint sets.
Proof. a) Let ý(P) be an SV-measure, denoted by p. We con-

sider mutualiy disjoint sets Án e Á, n € I{ and the set A = {'t[, Á"'
Let

M - p(A).

u = l) r@")
n = l

4 l

Then
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and p(á'), n € /v are mutuďly disjoint, as follows from (4) in
Definition 1.

Ifi é fi \ M, then P(á)i - o and P(Á.); = 0 holdfor any n € /Y.
So that

r

P(,{); - op(e"),. (32)
n = 1

If i e M, then there 'is just one n(i) €  /V such that i €  1r(/"ti)),
because F(A), n € lý are mutuďly disjoint. Therefore l = P(á)i =
P(lntil)i and P(Á"); = 0 for any n € iv \ {n(i}}. Thus (32) holds
for i € M as we|l. So that P satisfies (31).

' b) Let P fulfil (31) and p denote ý(P). We shall prove that
P(6)i = 0 holds for any i e H. We set 0 = At - Az = As = ...
into (31). Then P(0)1 = CIl, P(0)i, so that P(O)i = 0.

Let á, B e A be mutually disjoint. We set At = A, A2 = B
and 0  = As  = At=. . .  in to  (31) .  Then P(Au B)  = P( ,{ )OP(B) .
Let i € .ř/. If i ( p(A), then P(Á); = 1, so that P(B); = 0, therefore
i t p@)" Thus g(á) n p(B) = Ú and (4) is satisfied.

Il A^ e A, n€ y'ý are mutuďly disjoint, then (5) follows from
(a) and (31).

It results froni Proposition 3 and Dednitíon 1 that if P is an
n. B.v'p.m., theí ú(P) is an SV-measure. Conversely if p is an
SV-measure and ll(o) = J{, then ý.l(p} is an n. B.v.p.m.

.Appendix 
B. Compositions of a nonstandard B-vďued prob-

ability measure witlr probability measures (called induced proba-
bility measures with respect to given n. B-v.p.m.) are studied in
Kramosil (1991). There is an open question in Kramosil (1991)
whether such a measure is discrete or not. We shall give ari affir-
mative answer here.

To do tbat it suffices to prove that the composition of SV-
measure p ranging in a countable target set with a measure is a
discrete measure.

H^Bulnx. We call a probability measuř€ y defined on a measur-
able space (X, X| discretc iff there is an at most coutrtable collection
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{4 l í € /} of measurable sets such that for any Á e .ť it holds

v (A )= fv (enÁ r ) .
i € I

Lemma 17. Let (Q,A,H,p) be a space with SV-measure, p
be a measure on (p(o), p(Á)), Then pop is a tneasure on (o,,4).

Proof. Let .4. e A, n € l{ be mutually disjoint sets. Then
p(UL' An) = tjÍ=rp(1^) and p(,,1^), n €  /{ are mutual|y disjoint
sets again. Therefore

Let the target f1 be countable. Then p(O) is the union of
at most countable collection of atoms of p(A), because p is c_
quasiatomic by Lemma 9. Of course, any measure p on (p(Oi, p(r{))
must be discrete. Therefore the composed mexure I a p is di.screte
as well.

REFERENCES

Birkhofr, C. (1940). Lattke Theory. Amer. I\tath. Coll. pubt. No. 25. New
Yorl.

Bundy, A. (l985). Incidence calculus - a mechanism íor probabilistic reasoning.
J. ol Automated Reasoning, 1, 263-283.

Cramér, II', and Leadbetter, M.R. (1967). Stotionary ancl Relatd Stochastic
Proccsses. Wiley, New York.

Duníord, N., and Schwartz J.T. (1958). Linear operc|ors. Intergcience publish-
ers, New YorL, London

Fine, T.L' (1973). Theoňes ol Probobility - an Examination o! Foundoúdon. Aca.
demic Press, New York and London.

Eďma, P.R. (1974). Measurc Theory. New York.
Kramosil, I. (l99l). I}nertairúy Prcessing tInda a Nonstondatd Interprctatbn

ot Prohbility ý,alues. Research rePolt no. 1?07, lnstitute of Informetion
Tbeory and Áutomation.

Pdanzagl, J. (l97l). Theory of Measurc'menÍ. Physica-Verlag, Wírzrburg-Wien.

". ,("! ,  
Á") =,(Ěo(o'))  = 

Ě.o 
o p)(A^\.



on nt.vducd mcr,sv,Ý,

Rohlin, v.A. (19{7). on measurable partions classification' t. ol Russian Áca.
demg of Scietrcu,58, 29-32.

Samorodnichij, A.A. (1990). Measurc
ningrad,

Sikonki, R. (1960). Balean Algebmt.

Theory. Lcningrad University Press, Le

Springer-Verlag, BeÍlin.

Received December 1992

P. Lachout is a graduate of the Charles University of Pra-
gue; he defended his Ph.D. thesis in Spring 1988. Since that, he
has been working at Czech Academy of Sciences. IIis main subject
of interest is probability theory, namely theory and applications of
stochastic processes. Be investigates assymtoticproperties of em-
pirical procrsses connected to stochastic data analysis.

M. Studený born in Mariansk é LuŽne., Czechos|ovakia, in
1957 received his M.S. degree in mathematics (applied mathemat-
ical analysis) from the Charles University in Prague in 1981 and
Ph.D. degree in theoretical cybernetics from the Institute oí In.
formation Theory rand Automation in 1987.' At present he is a
senior research fellow in this institute. He is interested in appli-
cation of mathemttical methods (probability theory, mathematical .
analysis, information theory) to artifical intelligence. Now, he is
engaged in the study of formal properties of conditional stochastic
independence. Dr. 

.Studený 
is a member of the Czech Society for

Cybernetics and Informatics.

J. Šinaetař is an author and/or co.author of more than
thirty scientific publications in applied mathematicď logic and ar-
tifical intelligence (statistical and áutomated theorem proving),
computer science and recursion theory (complexity of computa-
tions, Xolmogorov computational complexity, probabilistic algo-
rithms), probability theory and statistics (parbmeter estimation,
pseudorandom generators), gnostical theory of real data (axiomat-
ics and models of theory).


