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Abstract. As a rule, a measure is a mapping from a o-field of sets into the
set of reals, or more generally, into some Banach space. A concept of set-valued
measure (SV-measure) is introduced in the paper being a specific mapping from a
o-field of sets into a power set of a set. Properties of SV-measures are analyzed
and illustrated on examples. Close relationship between SV-measures and a
new nonstandard approach in artificial intelligence (AI) is explained. Then, the
counstruction of factorization of the measures is mentioned, a special class of o-
quasiatomic SV-measures is defined and corresponding characterization theorem
is proved. This class involves SV-measures ranging in a countable set which were
used in modelling uncertainty in Al It enables to answer one question arising in
connection with this application.
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Introduction. Presented paper deals with a notion of set-
valued measure (SV-measure). Domains of SV-measures coincide
with domains of "ordinary” measures, i.e., they are o-fields of sub-
sets of a set. In contrast with classical measure theory, values of
an SV-measure are members of a power set of a set called target
helow. :

This article has two basic sources of motivation. The first
one is in artificial intelligence. Bundy (1985) suggested a new ap-
proach to description of uncertainty in expert systems: degrees of
uncertainty of propositions are described by means of subsets of
certain basic set (instead of numbers). This approach was followed
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by Kramosil (1991) who introduced the notion of nonstandard B-
valued probability measure for similar purposes.

The second motivation source is measure theory. We present
here principal features of certain analogy of this theory. Let us re-
call that a measure is a mapping ascribing numbers to sets (namely
to the elements of a o-fields of sets). There are some general-
izations, for example Banach space-valued measures in functional
analysis discussed by Dunford and Schwartz (1958) or (orthogo-
nal) stochastic measures in the theory of stochastic processes; see
Cramér and Leadbetter (1967). Our approach is similar, but we
consider a mapping ranging in subsets of another set.

We feel that there is some void which should be filled up by
" corresponding theory. Our concept can easily relate the above men-
tioned apparently remote areas. Nevertheless, it can be also con-
sidered as further alternative model of probability (‘as réviewed in
Fine (1973)) or another attempt to change quantities of measure
values cf. Pfanzagl (1971).

We shall show, that an SV-measure is a c-homomorphism of
o-fields. Maybe such a concept is treated somewhere in literature
but we nave no information about it.

A principal feature of SV-measures is that they are eztensional;
it means that the ‘kneasure of the union of two sets can be obtained
explicitly from values of measures of these components (similarly -
for the difference and other set-theoretical operations). This is
not valid in case' of "ordinary” measures and probably it is the
main motivation point of above mentioned approaches in artificial
intelligence. :

The aim of the article is not only to define the concept of SV-
measure but also to deepen it by further more advanced concepts
and some results arising in connection with new nonstandard ap-
proaches to modelling uncertainty in expert systems.

A concept of SV-measure is introduced in the first section,
various example of SV-measures are stated. It is'shown that an SV-
measure is a o-homomorphism of o-fields. Properties of coverings of
a set applied in the paper are summarized in the second (auxiliary)



P. Lachout et al. 23

section. As a rule, both description and characterization of an SV-
measure can be simplified using a simple factorization procedure
stated in the third section. Further, notions useful for analysis of
SV-measures, like null-sets and quasiatoms, are introduced in the
fourth section. QOur null-sets are similar to null-sets of ordinary
measures, while quasiatoms resemble atoms of ordinary measures.

The last two sections and appendixes are dealt with specific
classes of SV-measures closely related to description of uncertainty
in expert systems mentioned above. Namely, a concept of o-qua-
statomic. SV-measure is introduced and discussed in the fifth sec-
tion.. Complete characterization of o-quasiatomic SV-measures is
given. It enables us to derive a complete characterization of SV-
measures ranging in a countable target; see the last (sixth) section.
In Appendices we related our theory to the concept of nonstandard
B-valued probability measure introduced by Kramosil (1991) and
give an affirmative answer of a question from that work.

" 1. Set valued measures. In this section we introduce the
concept of set valued measure (SV-measure). Some examples of SV-
measures are given and basic properties are mentioned. We show
that an SV-measure is a c-homomorphism to o-fields. At the end
of the section we discuss a distinction between SV-measures and
”ordinary” measures. Namely, in contrast with ordinary measures,
the SV-measures could ”save” the structure of underlying o-field
and they are extensional with respect to set-theoretical operations.

DEFINITION 1. A tetrad R = (Q, A, H, u) is called a space with a
set-valued measure p iff the following conditions are satisfied:

. (8, A) is a measurable space, = 41)
H is a set, o . (2)
p:A—expH, (3)
for every A,B € A with ANB =0 it holds p(A)Nu(B) =0, (4)
for every countable collection {A; |i € I} (5)

of mutually disjoint measurable sets it holds:
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u(UA.') = | n(4:).

iel i€l
The set H will be called the target of R.

We give five examples of spaces with SV-measures here.

Example 1. (trivial SV-measure). Let (2, 4) be a measurable
space and H be a set. By a trivial SV-measure we understand the
mapping p : A — exp H ascribing empty set to each measurable set.

Example 2. (identical SV-measure). Let (Q,.4) be a mea-
surable space. Put H = Q and define u as the identity mapping
-on A:

u(Ad)=A for each A € A.

Example 8. Let A be the system of all at most countable
subsets of the interval (0,1) and their complements. Take any
nonempty set H and define y: A — = H as follows:

if A is at most countable
A ' 2
# ) {H otherwise. 3

It makes no prob}em to see that ({0, 1) A,H,p) is a space with an
SV-measure. :

"Example 4. (direct product of spaces with SV-mea.sures)
Let us consider a nonempty system

(Q,A4;,Hj,p435), J€J
of spaces with SV-measures and suppose that Q;, j € J are mutually
disjoint and Hj, j € J are mutually disjoint.
Put
$l— U Q; ,
j€d
and define the o-field A on @ by
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A:{UA,-leEJ:A,-E.A,-}z{AgQ]VjEJ:AnQ,- G.A,-}.
jeJ

The target H is defined by
F=118
Finally, for any 4 € A put
u(A) = ni(Aney).
jeJ
As can be easily verified (Q, A, H, u) is a space with SV-measure.
. In fact, Example 5 is a combination of the preceding ones.

Example 5. Let %, < x, be two infinite cardinals.
Let 71,T»,T3,... be mutually disjoint sets having the cardinal-
ity »;. We put ]

§l= DT},
7=

A =e{{DCT;] card D < #})

and

A=o ({11, T2,T5, ... Ju{DCQ| card DK x}).
" Let Hy, Hy, Hs, ... be mutually disjoint sets and

H = ;.

TCs

At first, for each j = 1,2,... define an SV-measure pj : Aj — H;
similarly as in Example 3:

_ 9 if card 4; < i,
ni(4;) = { H; otherwise.
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To define u use the procedure from Example 4:

u(A) = U p;i(ANT;), whenever A € A.
j=1

Clearly (Q, .4, H, ) is a space with SV-measure.

In the rest of the presented paper we suppose that a space with
SV-measure

R =(Q,A H,pu)

is given. The only exception concerns Proposition 2 in the section 5.
We shall show that an SV-measure preserves basic set-theore-
. tical operations.

Lemma 1. Let A, B€ A. Then

u(B \ A) = p(B) \ u(4) whenever AC B, (6)
#(A U B) = p(A) U u(B), (M
u(AN B) = u(A) N u(B). (8)

Proof.

a) It holds u(8) N u(8) = 0 by (4), i.e., p(#)-= 0.

b) We prove that u(AU B) = p(A) U u(B) whenever ANB = 8.
We have

uw(AUB) = u(AUBUBUBU...)= p(A)Up(B)Up@)up@) U...

by (5). thus u(AU B) = p(A) Upu(B) by a).

c) We prove (6). The sets p(A) and u(B \ A) are mutually
disjoint according to (4), u(B) = p(A) U u(B \ A) according to b).
Therefore u(B \ A) = u(B) \ p(A). -

d) We prove (7). Using b) twice we obtain

WAUB) = u(A\ B)UMANB)UK(B \ 4) =
= [s(A\ B)Uu(ANB)] U [s(ANB)Uu(B \ 4)] =
= p(A)U p(B). 2
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e) Let us consider the remaining case (8). It holds AN B =
Q\ {[2\ Alu[Q \ B]}. Using it together with (6) and (7) we get

HANB) = p(@) \ {[p(Q) \ s(A)]U Q) \ #(B)]} = n(A) N u(B).

Precisely, p is a homomorphism of A into exp (). Such map-
pings have been studied in lattice theory. Therefore, u holds the
following properties, cf. Birkhoff (1940), Sikorski (1960).

Lemma 2. Let A,B € A. Then

u(®) =8, 9

A C B implies p(A) C p(B), (10)
#(B \ A) = pu(B) \ p(4), : (11)
WA) = W(B) iff W(AAB)=0. (12)

Theorem 1. An SV-measure p is a o-homomorphism of A
into exp u(Q), i.e., u fulfils (6) and whenever A, € A for alln € N
then both

#( D An) k= G #(An) (13)

n=1 n=1
and
u(ﬂ&)aﬂMM) (14)
n=i n=1
hold.
Proof.

a) Let us prove (13). Since the sets A, \ U=} A: are mutually
disjoint the last equality in

#(DA,.)=;1<U[A \UA,,D;D,,(A \UA,,)

n=1 rn=1 n=1 k=1
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follows from (5). Hence by (11) and (7) we have

(24)- oG]

<l [ (4n) \ U (Ak)] U (4w,
=i N1

b) Using (13) and (11) we get
u( N A,.) =,,[Q v U@\ A,,)]
n=1 n=1
=@\ U 6@\ s(4))] = [ #(45)

n=1 n=1
which gives (12).

CoroLLARY 1. The range p(A) is a o-ring of subsets of H, more
precisely it is a o-field of subsets of u(Q)

Propertics of SV-measures stated in Theorem 1 and Corollary
1 express our phrd"se that SV-measures could ”save” the structure
of an underlying {}L-ﬁeld.

Owing to SV measures the properties, they are extensional. :
E.g., there exists a concrete formula (namely (7)) which express
the value (of SV- me?sure) of the union of two sets by means of
the values (of SV-measure) of these sets. Nevertheless, in case
of "ordinary” measure u the value p(A U B) is not determined by
values of p(A) and u(B) uniquely. Analogical sitvation concerns
other set-theoretical operations, as follows from (11), (13) and (14).
These formulas show extensionalicy of SV-measure with respect to
set-theoretical operations. They have no counterparts in classical
measure theory.

2. Equivalences determined by coverings. This section
contains some auxiliary results on coverings of a set used later.
We shall need special equivalence determined by a covering of the
basic set Q (resp. p(Q)) and the corresponding partitions of Q (resp.

1(52)).
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DEFINITION 2. Let X be a nonempty set. A set M is called a
covering of X, iff X = Upers M. _

Moreover, any covering M of X determines the following equiv-
alence ~p on X : if z,y € X, then

I

Z~Mm Yy & (VM € M either z,ye M, or z,yéM] e

The set of all ~x classes will be denoted by Xa,.
(Cf. Roblin (1947), Samorodnickij (1990) p.18-21 for details.)

The classes of ~u equivalence have great importance for our
study. Clearly, X is also a covering of X and ~ equals to .

The following lemma summarizes basic properties of equiva-
lence classes.

Lemma 8. Let M bé a covering of X.

a) The relation ~ is an equivalence on X.
~ b) Whenever M € M and u € X, then either u C M, or unM =

c) Let M be closed under the complement operation, ie.,
X\ M € M for any M € M. Then

W= ﬂ M= ﬂ M whenever uGXM,zeuu

MEM MgMM
wl M €M

d) o(M) is a covering of X and ~u equals to ~o(M)-

Proof. Proof of a), b), c) is left to the reader. For sketch of
the proof one can consult Rohlin (1947) or Samorodnickij (1990),
Chapter 1, §4.

For a proof of d) we consider z,y € X.

If 2 ~5(m) y then z ~ 4y since aA(M) M.

If £ ~p y then there exists u € X such that z,y € u.

As {M C X |uC MoruCX)\ M}isa o-field, for each
M € o(M) we have either u C M or u C X \ M. Therefore = ~o(M) Y-

3. Factorization of SV-measures. In this section we show
that both SV-measure and target set could be modified in order to
ensure that points of the new target are distinguishable by means of
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the modified SV-measure. The construction is called factorization.
It is possible to reconstruct the original SV-measure from its factor-
measure.

Factorization can be applied to simplify both description and
characterization of a particular SV-measure.

It seems natural to call points z,y € u(Q) p-separable if there
exists A € A such that z € u(A4) and y ¢ p(A), and in the opposite
case to call them y-inseparable. Certainly, it defines an equivalence
on u(Q). Clearly, points outside p(Q2) form a special class which can
be omitted (cf. Corollary 1).

DEeFinITION 3. The factor space p?ﬁ)“(A) is denoted by IAI(p).
. The class in H(u) containing z € p(f) is denoted by #. For any
A€ A we set

A4) = (2] 2 € w(A).

It makes no problems to see from preceding results that the
following holds.

Proposition 1. The tetrad (Q,A, H(s), /i) is a space with
SV-measure. Moreover, each different points u,v € H(p) are g-
separable.

Further, it casiiy follows from Lemma 2.

Lemma 4. a) Let A € A and v € H(x). Then either u C u(A),
orunu(A)=90. - .
b) If u € H(u), then u =) sca B(A).

B (A)
In general, the members of new target H(p) may not be u(A)-
measurable, i.e., the inclusion

H(p) C u(A)

may not hold. Namely, consider a measurable space (2,.4) such
that some classes of ~4 equivalence are not .A-measurable. If we
define the space (Q, A, H, u) with identical SV-measure g according



P. Lachout et al. 31

to Example 2, then H(u) equals the set of all ~4-classes and u(A) =
A, i.e., H(s) € p(A) does not hold.

The problem how to ensure that elements of H(u) belong to
u(A) is postponed to the end of the next section.

4. Null-sets, atoms and quasiatoms. Here, the class of
null-sets on an SV-measure is introduced and shown to be a o-
ring. Our null-sets are parallels of null-sets in classical measure
theory. Further, the concepts of an atom and a quasiatom are
defined. Our quasiatoms resemble atoms of ordinary measures.
Several equivalent characterizations of quasiatoms are given. In
the rest of the section it is shown that under the assumption that
the underlying o-field A is countably generated, all classes in the
factor space H(u) introduced above belong to p(A).

DEFINITION 4. A set A € A is called a null-set iff u(A) = 8. The
class of all null-sets will be denoted by N (u). i.e.,

N(w) = {A€A|u(4)=8).
The structure of A'(g) is characterized by the following lemma.
Lemma 5. N(u) is a o-ring.

Proof. a) Let A,B € N(u). Then u(A \ B) C u(A) = 0 by (10)
and consequently A \ B € N (u).

b) Let A, € N(u), n € N. Then y(U:’:l A,.) = A =8
according to (12). Thus | 2, An € N(p).

DerinNiTION 5. Let (X, X) be a measurable space. A measurable
set u € X is called an atom of X iff u # @ and the only proper
measurable (i.e., belonging to X) subset of u is the empty set.

DEFINITION 6. A measurable set A € A is called a quasiatom of
SV-measure p iff 4(A) is an atom of u(A).

If Ais an atom of A and p(A) # # then A is a quasiatom
of u. (Namely, if u € p(A), then there is B € A with u(B) = u.
Thus either A C B, or ANB = @, i.e., either y(A4) C u(B) = u or
8 = p(A) Nu(B) = p(A) Nu).
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On the other hand a quasiatom A of p may exist such that
u(A) # p(B) holds for all atoms B of A. E.g., in Example 3 all
atoms of A are singletons of @ and p({z}) =0 # H = u(A) holds for
all z € Q and for all quasiatoms 4 of p.

There are several equivalent characterizations of quasiatoms:

Lemma 6. Let A € A. The following statements are equiva-
lent

A is a quasiatom of {(15)
w(A)#£0 and forany AD B€A we have either (16)
u(B)=u(A), or u(B)=9

u(A)#8 and forany C€.A we have either (17)
p(A) S u(C) or p(A)Nu(C)=18
u(A) € H(p). (18)

Proof. a) Using (10) we easily derive that (15) implies (16).

b) Suppose that A satisfies (16) and consider a set C € A.
Hence the statement (16) yields (17) taking B = CN A and using

c) We prove that (17) imply (18). Let z € p(A). We shall
show that z = u(4). Immediately we have z C p(A) according to .
Lemma 4. Conversely take another point y € u(A). Using (17) one
has either {z,y} C 4(A4) € 4(C) or {z,y} Nu(C) C u(4)Nu(C) = § for
each C € A. Hence y ~,(4) z, i.e., y € Z and consequently u(4) C 2.

d) Let u(A) € H(u). We shall show that A is a quasiatom
of py. Necessarily u(A) # 0. Suppose that B € A, u(B) # 6 and
u(B) C p(A). Taking z € u(B) we have 2 C pu(B) C p(A) = #
according to Lemma 4. Hence u(B) = p(A) and A is a quasiatom
of u.

The preceding lemma easily implies the following corollary.

CoRoOLLARY 2. If A, B € A are quasiatoms of p, then we have

either p(A) = p(B) or p(A) N p(B) . 8 (19)
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and

either #(AAB)=0 or u(ANB)=0. (20)

The following lemma enables us to derive an easy sufficient
conditions for measurability of all classes of the factor space H(u).

Lemma 7. Let X,X) be a measurable space. If a o-field X is
countably generated, then X is the union of all atoms of X.

Proof. Let D be a countable collection of generators of X. As-
sume without any loss of generality that D is a covering of X which
is closed under the complement operation (i.e., X \ D € D for any
DeD). Hence, it suffices to show that Xp C X since X = Usrex, 4

Take A € Xp. By Lemma 3, parts c and d, we get A = nfEB D.

But D is a countable set, thus consequently A € X.

COROLLARY 3. Let A be countably generated. Then H(u) C
u(A). Moreover. there exists a collection {T; | i € I} of atoms of A
- such that u(T;} # 8 holds for any i € I and

wA) = ) u(T)

€7
T,GA

takes place for each A € A.
Proof. By Lemma 7, Q = |J,cj u; for the collection {u; | i € I}
of all atoms A. Let us select a collection of atoms A such that

{Tiliel} = {u |pw)#0 iel}
Consider z € u(2). Let us denote W = {D € D |z € u(D)} and

B="1}D (21)
Dew
We prove that B € A and z € p(B) hold. If D € D, then
Q\ DeD, thus z € () = p(D)Up(Q \ D), i.e., W # 8. The
set D is countable and W C D, i.e., B € A by (21), thus u(B) =
N pex p(D) 2 {z}.

2€x (D)
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We prove that B is an atom of A. It holds ~4=~p by Lemma
3d, thus it suffices to prove that if D € D, then either B C D, or
BND =0. If z € u(D), then D e W, i.e.,, BC D by (21). If z ¢ u(D),
then z € (2 \ D),i.e., Q\ D€ W,sothat BC Q\ D,ie., BND =4§.
Thus B € {T; | i € I} and z € U;; #(T3) = p(Q)-

We have proved that {T; | i € I} is a collection of atoms .4
with property u(Q) = U, #(Ti). Let A € A. Obviously, u(A4) 2
U er, #(T;) and p(Q \ 4 D U s p(T,) take place. Moreover

WA U@\ 4) = w@) = U-ezﬂ(T.) and u(4) N (@ \ 4) =
Consequently, u(A) = ﬂriie;xA #(T;). Hence we have lmmedlately
H(p) = {u(T3) | i € I} C p(A) which concludes the proof.

The assumption that A is countable generated cannot be omit-
ted in Corollary 3. E.g., in Example 3 atoms of A coincide with
singletons of Q. and u({z}) = @ for any singleton z € Q. Thus if
u(A) # 0, then p(4) = Ur‘-f;'A u#(T;) cannot hold for any collection
{T; | i € I} of atoms of A. ;

5. The characterization of s-quasiatomic SV-measures.
A special class of SV-measures called ¢-quasiatomic SV-measures is
introduced. A complete characterization of o-quasiatomic measures
is given. This type.of SV- measures is closely related to description
of uncertainty in ¢xpert systems {see Introduction). They are, in
fact, generaliza.tidns of measures introduced by Kramosil (1991), .

cf. Appendlx A.

DEFINITION 7 .An SV-measure g is called o-quasiatomic iff
there is an at most countable collection {T; | i € I} of quasiatoms
of u satisfying :

2 @) = (). (22)
i€l

DEeFINITION 8. A collection {T; | i € I} is called u- admissible iff
{Ti | i € I} is an at most countable colle . tion of mutually disjoint
quasiatoms of y and (22) takes place.

Lemma 8. The SV-measure p is o-quasiatomic iff a y-admi-
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ssible collection exists.

Proof. Let {T! | i € I} be at most countable collection of quasi-
atoms of p satisfying |J;., u(T!) = p(Q). Without a loss of generality
we can assume that u(7!), i € I are different sets. Thus if i o,
then u(T) N u(T}) = 8 by Corollary 2. We set T; = THN U,ex Tj for
all i€ I. Then T;, i € I are mutually disjoint. Moreover T CT
and

wT) = u(T)) \ | (T = w(1@),

1€l
23

L.e., T; are quasiatoms of u and (22) takes place.
A full characterization of ¢-quasiatomic SV-measures is given
in the rest of the section.

Theorem 2. Let (A4, H,pi) be a space with o-quasiatomic
SV-measure y and {T; | i € I} be a p-admissible collection.

Let us denote B = N(p) and H; = u(T;) for all i € 1.
Then

T, ¢B forany i€l (23)
o\ T es, o5 (24)
3
forany Be€B, i€l wehave BNT;€B, (25)
A=0c(BU{T; |iel}), (26)
VA€ A:p(A)= |J Hi, where Ii={iel|ANT ¢B). (27)
i€l,

Proof. (23) and (24) immediately follow from the definitions of
o-quasiatomic SV-measure and of null-sets. (25) is obvious by (8).
Thus (26) and (27) remain for a proof. Let us put

Yo =eNwU{Ti|iel})
for that goal. Of course, I C A takes place.
Take A € A. For each i € I we have either p(ANT;) = u(T3)
or u(ANT;) = @ because of T; is a quasiatom. Since I is at most
countable set it follows
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u(A) = Up(AnT.-)up(A\ UT.) = |J wanT),

i€l i€l I

thus

w4 = ﬂ(ﬁ)=#( U T.)

§€14 f€l,

and (27) is true.

_ Using Lemma 2 we derive AA(lJ;;, Ti) € N{(p) and hence
A\ Uier, Tis Uier, Ti \ A € N(u) according to (10). Consequently

A €Y and therefore AC 5.

Theorem 2 and Lemma 5 describe o-quasiatomic SV-measure
completely as the following Proposition 2 shows. Proposition 2
builds o-quasiatomic SV-measure with prescribed collection of qu-
asiatoms, with given values on them and with given o-ring of null-
sets. Only in this Proposition we leave the assumption that (Q, A4,
H, p) denotes a space with SV-measure.

Proposxtlon. 2. Let Q@ # @, H be a set. Suppose that the
following entities hre given:

-1 ... at most countable index set,
- {T.,: € I} .,. a collection of mutually disjoint nonempty
subsets of Q,

—‘{H;,i € I} ... a collection of mutually disjoint nonempty
subset of H,

- BCexpQ ... a o-ring of subsets of Q.

Assume that conditions (23), (24) and (25) are fulfilled. Finally let
A be defined by (26) and p: A — exp H by (27).

Then (Q, A, H, p2) is a space with o-quasiatomic SV-measure u.
Moreover {T;,i € I} is a p-admissible collection, the o-field p(A) is
generated by {H; |i € I}, and N(u) =
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Proof. Let us denote

§:={AgQ|A\LJne3wwez
i€l (28)

[i\A€eB or ﬂnAem}.

We prove that ¥ is a o-field (part a), Y = A (part b), u satisfies
(4) (part d), p satisfies (5) (part e) and M (p) = B (part f).

a) Let A € ¥ It holds (@ \ 4) \ Ui, = (@ \UsesT) \ (4 \
UierTi) € B, as follows from (24), (28) and the fact that B is a
o-ring. Moreover, T; \ (Q\ A)=TiNnAand T, N(Q\ A)=T; \ A is
true for all i € I, so that @ \ A€ ¥ by (28).

Let A, € }_ forallne N. Hence {J,cn4n \ UierTi = Unen(4n \
Uie1Ti) € Bsince Bis a o-ring. It remains to prove that T; \ U, ny4n
€ B or that T; N Unen4n € B. We distinguish two cases.

i) Let TN A, € Bfor all n € N. Hence T; N{J,cnAn =
"Unen(4n NT;) € B since B is a o-ring.

ii) Let there be an index ng such that 7; \ A,, € B. It
holds

T\ UJ4n= ) @\ 4)\ [) (Tin4a),
neN neN; neEN,

whenever N; is nonempty and N; UN, = N. Taking N; = {n €
N |T:\ A, € B} and N = {n € N | T; N A, € B} we find that
T; \ UnEN A" € B.

b) Let us prove that - = A. The o-field }_ contains any
A € B (cf. (24), (25) and‘$28)) as well as any T;, ¢ € I. Thus
Y Do(BU{T;|iel})=A

Conversely, let us take A € 3. We have A \ U-elT € B C A
Moreover ;NA€BC Aor T; \ A€ BC A, and always T; € A, i.e.,
TiNA € Aforall i € I. Therefore A = (A \ U, Ti)UU;e(TiN4) € A.

c) We observe that if A € J_ and i € I, then either T; \ A € B,
or ;NAe€B(fT; \A € Band T;NA € B, then T; € B, which
contradicts to(23)).
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cl) Moreover T; N A € B holds iff u(T; N A) = 0 takes place;
Ti \ A € B holds iff u(T; N A) = H; takes place.
" ¢2) Using these two facts we find that

wA) =Jumna) = |J

i€l I
holds for any A4 € A.
d) Let A, B € A be disjoint. It suffices to prove that I,NIg = 0.
Let i€ I. It holds T; = T; \ (ANB) = (T; \ A)U(T; \ B) and T; ¢ B,
l.e., at least one of T; \ 4 and T; \ B does not belong to B, so that at
- least one of T;NA, T;NB lies in B, ie., i ¢ I4NIg. Thus Iy,NIp = 0.
e) Let A, € A for all n € N. Then

,1< U An) =Uu<T.-n U A,,),

neN i€l neN
and

U #4n) = U s(@n4,),

neN i€l neN 42 4
as follows from ¢Z. Thus it is enough to prove

,u(T,'ﬂ U A,,) = |J u(TinAn) | (20)

neN neN

for each 1 € I. We distinguish the same two cases as in part a. In
the case i) both sides of {29) equal @, as follows from cl. In the
case ii) both sides of (29) equal H;, as follows from cl.

f) If A € B then I, = @ by (25). Thus A € N(u) by (27). If
A € N(p) then I, =0 by (27), so that ANT; € B holds for all i € I.
Therefore AN (¢, 7i) € B and A \ Uie,ﬁ €EBsince A€ A=Y, So
AE€B. ;

6. SV-measure ranging in at most countable target.
SV-measures ranging in a countable target H and satisfying u(Q) =
H are equivalent to the so-called nonstandard B-valued probabil-
ity measures introduced in Kramosil (1991), cf. Appendix A for
details.
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An aim of the chapter is to completely characterize SV-measu-
res ranging in at most countable target.

REMARK 1. Let (X,X) be a measurable space with X at most
countable. Then X is a union of at most countable collection of
atoms of &', thus &' is countably generated.

Recall that R = (Q, A, H, 1) denotes a space with SV-measure.

Lemma 9. Let H be at most countable. Then pu is o-quasiat-
omic.

Proof. We have u(Q) C H, thus p(Q) is at most countable, i.e.,
#(€) is a union of at most countable collection {H; | i € I} of atoms
of u(A) according to Remark 1 (in fact {H; |i € I} = }?(p)). For
any i € I there is 7; € A such that u(T;) = H;. Of course, T;, i € I
are quasiatoms of y and (22) takes place.

CoroLLARY 4. An SV-measure g is o-quasiatomic ift (2, A4, 4,
H(u)) is a space with SV-measure ranging in at most countable
target.

Proof. a) Let p be a o-quasiatomic SV-measure. There is a
p-admissible collection {T; | i € I}. Thus H(u) = {u(T) | i € I}, as
follows from Lemma 6, and hence Fl(p) is at most countable set.

b) Let the set H(p) be at most countable. Then Ji is a o-
quasiatomic SV-measure according to Lemma @ and thus y is o-
quasiatomic .

We derived a complete description of ¢-quasiatomic SV-measu-
res in the preceding Chapter 5 (namely in Theorem 2 and Propo-
sition 2). It can be easily concretized to get a complete character-
ization of SV-measures ranging in a countable target. Details are
left to the reader.

If we assume that the o-field A is countably generated then we
obtain a special type of SV-measures.

Lemma 10. Let H be at most countable set and A be count-
ably generated o-field. Then there is at most countable collection
{T: | i € I} atoms of A such that pu(T;) # @ holds for any i € I and
#(Q) = Ujen(Ty). Moreover N(p) is a o-field of subsets of @ \ |J;¢,Ti.
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Proof. We have derived at Corollary 4 that there is a collection
{T: | i € I} of mutually disjoint atoms of A such that

p@=UnT), wT)#£0.
i€l

Hence I is at most countable since u(2) is at most countable set
and u(T;), i € I are mutually disjoint. Thus u(Q \ U;,T;) = 0 and
Q\ U.'yTi is the maximal null-set in A.

Thus if H is at most countable and A is countable generated,
then Q has the following structure. There is the null-set B and at
most countable collection {T; | i € I} of atoms of A such that

a=8ul T,
i€l

B and |J;,T; are disjoint and u(T;) # @ for all i € I.

Appendix A. The concept of nonstandard B-valued proba-
bility measure (n. B-v.p.m.) is introduced in Kramosil (1991),
Definition 2, and recalled below.

We shall show that such a measure can be interpreted as SV-
measure ranging m a countable target set. Namely, we represent
any n. B-v.p.m. by some SV-measure.

Let us consider a measurable space (Q,.4) and a nonempty set °
H. The symbol {0,1}” denotes the set of all mappings from H
into {0,1}. Finally, the symbol @ denotes coordinatewise addition
defined on {0,1}#. It means that if i € H and M C {0,1}¥, then

seM /i seM
reaches values from {0,1,2,...} U {+o0}.

Infinite binary sequences are considered in Kramosil (1991),
i.e., the special case with H = N = {1,2,3,. .} is investigated.

DEFINITION 9. A mapping P which takes A into {0,1}% is called
a nonstandard B-valued probability measure if P(Q) = (1,1,1,...)
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and if for each countable system A, C A of mutually disjoint sets
it holds

P( U A) = P P(a).

A€A, A€EA,

We shall represent nonstandard B-valued probability measures
by means of SV-measures. Roughly speaking, whenever a sequence
S-€ {0,1}" is used we substitute it by a set 5’ € exp N satisfying

lieN|S=1)=5"

Let My be the set of all mappings from A into exp H, M} be
the set of all mappings from A into {0,1}¥.
We introduce a mapping v:My' — My as follows. For every

Pe Mfl'l we set
WP)A)={ie H|P(A) =1}, VA€cA (30)

Then, as could be easily seen, ¢ is a bijection between M
and My. Moreover, the following proposition holds.

ProPosITION 3. Let P € My'. Then 4(P) is an SV-measure iff

P( D A,,) %= éP(A,.) (1)
n=1 n=1

holds for any system A, € A, n € N of mutually disjoint sets.
Proof. a) Let ¢(P) be an SV-measure, denoted by u. We con-

sider mutually disjoint sets 4, € A4, n € N and the set A = 5 g oA
Let :

M = u(A).

Then

M= U #(An)

n=1
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and p(A,), » € N are mutually disjoint, as follows from (4) in
Definition 1.

Ifie€ H\ M, then P(A4); = 0 and P(A4,); = 0 hold for any n € N.
So that

P(A); = €D P(4n):. (32)
n=1
If i € M, then there is just one n(i) € N such that i € u(A.q)),
because p(A,), n'€ N are mutually disjoint. Therefore 1= P(A); =
P(Aniy)i and P(A,); = 0 for any n € N \ {n(i)}. Thus (32) holds
for i € M as well. So that P satisfies (31).
7 b) Let P fulfil (31) and u denote y(P). We shall prove that
P(®); = 0 holds for any i € H. We set § = A; = Ay = 43 = ...
into (31). Then P(8); = @, P(8);, so that P(8); = 0.

Let A,B € A be mutually disjoint. We set A; = 4, A, = B
and @ = A3 = A4 = ... into (31). Then P(AU B) = P(A) @ P(B).
Let i € H. If i € p(A), then P(A); = 1, so that P(B); = 0, therefore
i € u(B). Thus p(A)Nu(B) = 8 and (4) is satisfied.

If A, € A, n € N are mutually disjoint, then (5) follows from
(4) and (31).

It results from Proposition 3 and Definition 1 that if P is an

n. B-v.p.m., thexﬁ ¥(P) is an SV-measure. Conversely if yx is an
SV-measure and (Q) = N, then ¥~!(x) is an n. B-v.p.m. ‘

"‘Appendix B. Compositions of a nonstandard B-valued prob-
ability measure with probability measures (called induced proba-
bility measures with respect to given n. B-v.p.m.) are studied in
Kramosil (1991). There is an open question in Kramosil (1991)
whether such a measure is discrete or not. We shall give an affir-
mative answer here.

To do that it suffices to prove that the composition of SV-
measure p ranging in a countable target set with a measure is a
discrete measure.

REMARK. We call a probability measure v defined on a measur-
able space (X, X} discrete iff there is an at most countable collection
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{Ai | i € I} of measurable sets such that for any A € ¥ it holds

v(A) =) v(ANA4).

1€l

Lemma 11. Let (Q,A4,H,pu) be a space with SV-measure, p
be a measure on (u(), u(A)). Then pop is a measure on (Q,A).

Proof. Let A, € A, n € N be mutually disjoint sets. Then
#(UnZy 4n) = U2, #(An) and u(A,), n € N are mutually disjoint
sets again. Therefore

,,o,,( U An) :,,( U u(An)) = (1o p)(An).

n=l

8

Let the target H be countable. Then () is the union of
at most countable collection of atoms of u(A), because y is o-
quasiatomic by Lemma 9. Of course, any measure p on (1(2), u(A))
. must be discrete. Therefore the composed measure o is discrete
as well.
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