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The aim of the chapter

In this chapter, the concept of conditional independence (CI) is recalled and an
overview of both former and recent results on the description of CI structures
is given. The classic graphical models, namely those ascribed to undirected
graphs (UGs) and directed acyclic graphs (DAGs), can be interpreted as special
cases of (statistical) models of CI structure. Therefore, an overview of Markov
properties for these two basic types of graphs is also given.

1.1 Introduction: history overview

In this section some of earlier results on CI are recalled.

1.1.1 Stochastic conditional independence

Already in the 1950s, Loève [20] in his book on probability theory defined
the concept of CI is terms od σ-algebras. Phil Dawid [7] was probably the
first statistician who explicitly formulated certain basic formal properties of
stochastic CI. He observed that several statistical concepts, e.g. the one of
sufficient statistics, can equivalently be defined in terms of generalized CI and
this observation allows one to derive many results on them in an elegant way,
using the formal properties. These basic formal properties of stochastic CI
were later independently formulated in the context of philosophical logic by
Spohn [41], who was interested in the interpretation of the concept of CI and
its relation to causality. The same properties, this time formulated in terms of
σ-algebras, were also explored by Mouchart and Rolin [31]. The author of this
chapter was told that the conditional independence symbol ⊥⊥ was proposed
by Dawid and Mouchart during their joint discussion in the end of the 1970s.

The significance of the concept of CI for probabilistic reasoning was later
recognized by Pearl and Paz [35], who observed that the above basic formal
properties of CI are also valid for certain ternary separation relations induced
by undirected graphs. This led them to the idea describe such formal ternary
relations by graphs and introduced an abstract concept of a semi-graphoid.
Even more abstract concept of a separoid was later suggested by Dawid [8].
Pearl and Paz [35] also raised a conjecture that semi-graphoids coincide with
probabilistic CI structures, which has been refuted by myself in [43] using
some tools of information theory.

A lot of effort and time was devoted to the problem to characterize all
possible CI structures induced by four discrete random variables. The final
solution to that problem was achieved by Matúš [29, 26, 27]; the number of
these structures is 18478 [55] and they decompose into 1098 types.
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1.1.2 Graphs and local computation method

However, the idea to use graphs whose nodes correspond to random vari-
ables in order to describe CI structures had appeared in statistics earlier than
Pearl and Paz suggested that in the context of computer science. One can dis-
tinguish two basic traditional trends, namely using undirected and directed
(acyclic) graphs. Note that statistical models described by such graphs can be
understood as the models of (special) CI structures.

Undirected graphs (UGs) occurred in the 1970s in statistical physics as
tools to describe relations among discrete random variables. Moussouris [32]
introduced several Markov properties with respect to an UG for distributions
with positive density and showed their equivalence with the factorization con-
dition. Darroch, Lauritzen, and Speed [6] realized that UGs can be used to
describe statistical models arising in the theory of contingency tables, intro-
duced a special class of (undirected) graphical models and interpreted them
in terms of CI. Parallel occurrence of UGs was in the area of multivariate
statistical analysis. Dempster [9] introduced covariance models for continuous
real random variables, which were interpreted in terms of CI by Wermuth [56].

In the 1980s, directed acyclic graphs (DAGs) found their application in the
decision making theory in connection with influence diagrams. Smith [40] used
above formal properties of CI to show easily the correctness of some opera-
tions with influence diagrams. Substantial impact on propagation of graphical
methods in artificial intelligence had Pearl’s book [34] on probabilistic reason-
ing in which he defined a directional separation criterion (d-separation) for
DAGs and pinpointed the role of CI.

The theoretical breakthrough leading to (graphical) probabilistic expert
systems was the local computation method. Lauritzen and Spiegelhalter [19]
offered a methodology to perform efficiently computation of conditional mea-
sures for (discrete) distributions which are Markovian with respect a DAG.

1.1.3 Conditional independence in other areas

Nevertheless, the probability theory and statistics is not the only field in which
the concept of CI was introduced and examined. An analogous concept of
embedded multivalued dependency (EMVD) was studied in the 1970s in theory
of relational databases. Sagiv and Walecka [36] showed that there is no finite
axiomatic characterization of EMVD structures. Shenoy [39] observed that
one can introduce the concept of CI within various calculi for dealing with
knowledge and uncertainty in artificial intelligence (AI), including Spohn’s
theory of ordinal conditional functions, Zadeh’s possibility theory and the
Dempster-Shafer theory of evidence.

This motivated several papers devoted to formal properties of CI in various
uncertainty calculi in AI. For example, Vejnarová [53] studied the properties
of CI in the frame of possibility theory and it was shown in [44] that there
is no finite axiomatization of CI structures arising in the context of natural
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conditional functions. Various concepts of conditional irrelevance have also
been introduced and their formal properties were examined in the theory of
imprecise probabilities; let us mention the concept of epistemic irrelevance
introduced by Cozman and Walley [5].

1.1.4 Geometric approach and methods of modern algebra

The observation that graphs cannot describe all possible discrete stochastic CI
structures led me to a proposal of a linear-algebraic method of their description
in [47]. In this approach, certain vectors whose components are integers and
correspond to subsets of the set of variables, called (structural) imsets , are
used to describe CI structures. The approach allows one to apply geometric
methods of combinatorial optimization to learning graphical models and to
approaching the CI implication problem. Hemmecke et al. [15] answered two of
the open problems related to the method of imsets and disproved a geometric
conjecture from [47] about the cone corresponding to (structural) imsets.

The application of methods of modern algebra and (polyhedral) geometry
to problems arising in mathematical statistics lead recently to establishing a
new field of algebraic statistics. Drton, Sturmfels and Sullivant [10] in their
book on this topic devoted one chapter to advanced algebraic tools to describe
statistical models of CI structure. Thus, the theme of probabilistic CI became
naturally one of the topics of interest in that area.

1.2 Notation and elementary concepts

In this section, notation is introduced and elementary notions are recalled.
Throughout the chapter N is a finite non-empty index set whose elements
correspond to random variables (and to nodes of graphs in graphical context).
The symbol P(N) := {A : A ⊆ N } will denote the power set of N .

1.2.1 Discrete probability measures

This section mainly deals with the discrete case and needs no special previous
reader’s knowledge.

Definition 1 A discrete probability measure over N is defined as follows:

(i) For every i ∈ N a non-empty finite set Xi is given, which is the individual
sample space for the variable i. This defines a joint sample space, which
is the Cartesian product XN :=

∏
i∈N Xi.

(iii) A probability measure P on XN is given; it is determined by its density,
which is a function p : XN → [0, 1] such that

∑
x∈XN

p(x) = 1. Then
P (A) =

∑
x∈A

p(x) for any A ⊆ XN .
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A general probability measure over N is defined analogously, but instead of a
finite set Xi a measurable space (Xi,Xi) is assumed for any i ∈ N . The joint
sample space is endowed with the product σ-algebra

⊗
i∈N Xi. Some measures

on (XN ,
⊗

i∈N Xi) cannot be determined by densities in the general case.

Given A ⊆ N , any list of elements [xi]i∈A such that xi ∈ Xi for i ∈ A will
be named a configuration for A. The set XA of configurations for A is then
the sample space for A. Given disjoint A,B ⊆ N , we will use concatenation
AB as a shorthand for (disjoint) union A ∪ B. Given disjoint configurations
a ∈ XA and b ∈ XB the symbol [a, b] will denote their joint, that is the joint
list. If the joint configuration is an argument of a function, say of a density
p : XAB → R, then brackets will be omitted and we will write p(a, b) instead of
p([a, b]); similarly in case of the joint of three or more disjoint configurations.

In case A ⊆ B and b ∈ XB the symbol bA will denote the restriction of the
configuration b for A, that is, the restricted list. The mapping from XB to XA

ascribing bA to b ∈ XB is the corresponding marginal projection. In particular,
the symbol b∅ is the empty configuration, that is, the empty list of elements.

Given i ∈ N the symbol i will often be used as an abbreviation for the
singleton {i}. In particular, if i ∈ A ⊆ N and a ∈ XA then the symbol ai will
be a simplified notation for the marginal configuration a{i}; of course, it is
nothing but the i-th component of the configuration a.

Given disjoint A,B ⊆ N and configuration sets A ⊆ XA, B ⊆ XB , we
introduce A× B := {[a, b] : a ∈ A & b ∈ B}. Note that A× B is typically the
Cartesian product but if A = ∅ and A �= ∅, that is, if A = {a∅} consists of the
empty configuration, then one has A×B = B; analogously in case B = ∅ �= B.

Definition 2 GivenA ⊆ N and a probability measure P overN , themarginal
measure for A is a measure PA over A defined by the relation

PA(A) := P ({x ∈ XN : xA ∈ A }) for A ⊆ XA (A ∈⊗
i∈A Xi in general).

In the discrete case, the marginal density for A is the density of PA; it given
by the formula

pA(a) = P ({x ∈ XN : xA = a }) =
∑

c∈XN\A

p(a, c) for a ∈ XA,

where p is the (joint) density of the probability measure P .

Note that a simple vanishing principle for marginal densities will be tacitly
used in § 1.3.1: if x ∈ XN , C ⊆ B ⊆ N then pC(xC) = 0 implies pB(xB) = 0.
The next elementary concept in the discrete case is that of a conditional
probability, where the conditioning objects are (marginal) configurations.

Definition 3 Given disjoint sets A,C ⊆ N of variables and a discrete proba-
bility measure P over N , the conditional probability on XA given C is a (par-
tial) function of two arguments denoted by PA|C(∗|∗), where ∗ is a substitute
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for the respective arguments. Specifically,

PA|C(A|c) :=
PAC(A× {c})
PC({c})

≡ PAC(A× {c})
pC(c)

where A ⊆ XA and c ∈ XC with pC(c) > 0.

The conditional density for A given C is also a (partial) function, in this case
both arguments are the respective marginal configurations:

pA|C(a|c) :=
pAC(a, c)

pC(c)
≡ PA|C({a}|c) for a ∈ XA, c ∈ XC with pC(c) > 0.

Observe that the marginal measure can be viewed as a special case of the
conditional probability, where the conditioning configuration is empty, that
is, C = ∅. Another observation is that, for any positive configuration, that is,
c ∈ XC with pC(c) > 0, the function A ⊆ XA �→ PA|C(A|c) is a probability
measure over A. It is clear that PA|C(∗|∗) only depends of the marginal PAC .

In computer science community, the conditional density is sometimes
named a conditional probability table. Let us emphasize that the ratio defin-
ing the conditional density is not defined for conditioning zero configuration
c ∈ XC with pC(c) = 0, which important detail is, unfortunately, omitted or
even ignored in some machine learning (text)books. Note that the assumption
that the density is strictly positive, that is, p(x) > 0 for any x ∈ XN , is too
restrictive in the area of probabilistic expert systems because it does not allow
to model functional dependencies between random variables.

In the discrete case, one does not need to extend the conditional probability
to zero configurations in order to define the notion of CI; however, in the
general case, one has to consider different versions of conditional probability,
which makes the general definition of CI more technical (see § 1.3.2).

1.2.2 Continuous distributions

In this section, which can be skipped by beginners, we assume that the reader
is familiar with standard notions of measure theory. The meaning of the term
of a probability distribution in the literature depends on the field. In probability
theory, it usually means a (general) probability measure, while in statistics its
meaning is typically restricted to measures given by densities and in computer
science it is often identified with the concept of a density function.

In statistics, one typically works with real continuous distributions and
these are defined through densities. There is quite wide class of probability
measures for which the concept of density (function) has sense.

Definition 4 A probability measure over N is marginally continuous if it
is absolutely continuous with respect to the product of its one-dimensional
marginals, that is, if

(
⊗
i∈N

Pi)(A) = 0 implies P (A) = 0 for any A ∈⊗
i∈N Xi,
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in notation P � ⊗
i∈N Pi, where the symbol ⊗ is used to denote both the

product of (probability) measures and the product of σ-algebras.

An equivalent definition of a marginally continuous measure is that there
exists a (dominating) system of σ-finite measures μi on (Xi,Xi) for i ∈ N
such that P �⊗

i∈N μi (see [47, Lemma 2.3]). It is easy to verify that every
discrete probability measure over N is marginally continuous: the dominating
system of measures is the system of counting measures, that is, μi(A) = |A|
for any i ∈ N and A ⊆ Xi. Another standard example is a regular Gaussian
measure over N in which case, for any i ∈ N , Xi = R is the set of real numbers
endowed with the Borel σ-algebra and μi the Lebesgue measure.

Having fixed individual sample spaces and a dominating system of σ-finite
measures, every marginally continuous measure P can be introduced through
its joint density f , which is the Radon-Nikodym derivative of P with respect
to μ :=

⊗
i∈N μi. For any A ⊆ N , we put XA :=

⊗
i∈A Xi and accept a

convention that X∅ := {∅,X∅} is the only (trivial) σ-algebra on X∅.
The marginal density for A ⊆ N is then defined as the Radon-Nikodym

derivative fA of the marginal PA with respect to μA :=
⊗

i∈A μ
i, where μ∅

is the only probability measure on (X∅,X∅) by a convention. Recall that it
is an XA-measurable function satisfying PA(A) =

∫
x∈A

fA(x) dμ
A(x) for any

A ∈ XA. The marginal density fA can be understood as a function on the
joint sample space XN depending only on the marginal configuration xA. The
joint and marginal densities are determined uniquely in sense μ-everywhere.

1.2.3 Graphical concepts

By a graph over N we will understand a graph which has the set N as the set
of nodes. Graphs considered in this chapter have no multiple edges and two
possible types of edges.

Undirected edges are unordered pairs of distinct nodes, that is, two-element
subsets of N . We will write i−− j to denote an undirected edge between
nodes i and j from N ; the pictorial representation in figures is analogous. An
undirected graph (UG) is a graph in which every present edge is undirected; if
i−− j in an undirected graph G then we say that i and j are neighbors in G.
The symbol neG(i) := {j ∈ N : i−− j in G} will denote the set of neighbors
of i ∈ N in G. A set of nodes A ⊆ N is complete in an UG G if i−− j in G
for every distinct i, j ∈ A. Maximal complete sets in G with respect to set
inclusion are named cliques of G.

Directed edges , also named arrows, are ordered pairs of distinct nodes. We
will write i→ j to denote an arrow from a node i to a node j in N ; similarly
in figures. A directed graph is a graph in which every present edge is an arrow.
If i → j in a directed graph G then we say that i is a parent of j in G or,
dually, that j is a child of i. The symbol paG(j) := {i ∈ N : i→ j in G} will
denote the set of parents of j ∈ N in G.

A route in a graph G over N (either directed or undirected) is a sequence
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of nodes i1, . . . , ik, k ≥ 1, such that every consecutive pair of nodes in the
sequence is adjacent by an edge in the graph G. The end-nodes of the route
are i1 and ik; if k ≥ 3 then the remaining nodes i�, 1 < � < k, are internal
nodes. The number of edges in the route, that is, k− 1, is called the length of
the route. A route in G is called a path if i1, . . . , ik are distinct; it is called a
cycle if k ≥ 4, i1 = ik and i1, . . . , ik−1 are distinct. In case of a directed graph
G, a path or a cycle is called directed if i� → i�+1 for � = 1, . . . , k − 1.

A directed graph G is called acyclic if it has no directed cycle. Di-
rected graph that are acyclic are conventionally named directed acyclic graphs
(DAGs). A well-known equivalent characterization of an DAG is that it is a
directed graph G which admits an enumeration of nodes i1, . . . , i|N | which is
consonant with the direction of arrows: that is, if i� → ik in G then � < k.

1.3 The concept of conditional independence

In this section, several equivalent definitions of probabilistic CI in the discrete
case are presented; the general case is discussed in the end of the section.

1.3.1 Conditional independence in discrete case

The following symmetric definition of CI was chosen as the basic one because
it is analogous to the definition of stochastic independence, which is the re-
quirement that the joint distribution is the product of marginal ones.

Definition 5 Let A,B,C ⊆ N be pairwise disjoint sets of variables and P a
discrete probability measure over N . We say that A and B are conditionally
independent given C with respect to P and write A ⊥⊥ B |C [P ] if

∀A ⊆ XA ∀B ⊆ XB ∀ c ∈ XC such that pC(c) > 0

PAB|C(A× B|c) = PA|C(A|c) · PB|C(B|c). (1.1)

It follows from the definition that the validity of A ⊥⊥ B |C [P ] only de-
pends on the marginal measure PABC . Clearly, a modified formulation of (1.1)
is that, for every positive configuration c ∈ XC , the conditional probability
PAB|C(∗|c) is the product of some measures over A and B. The condition (1.1)
has natural interpretation of conditional irrelevance: once the value c ∈ XC

for C is known the variables in A and B do not influence each other, i. e. the
occurrence of a value b ∈ XB does not influence the probability of occurrence
of a ∈ XA and conversely. Also, (1.1) can be extended to a general case, as
explained in § 1.3.2. On the other hand, (1.1) is not suitable for verification.

Fortunately, there are elegant equivalent conditions in term of densities.
Specifically, given pairwise disjoint A,B,C ⊆ N and a discrete probability
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measure P over N , the CI statement A ⊥⊥ B |C [P ] has the next equivalent
formulation in terms of marginal densities:

∀x ∈ XABC pC(xC) · pABC(x) = pAC(xAC) · pBC(xBC) , (1.2)

which easily implies a seemingly weaker condition

∀x ∈ XABC with pABC(x) > 0 pABC(x) =
pAC(xAC) · pBC(xBC)

pC(xC)
. (1.3)

Using the vanishing principle, the reader can easily see that (1.1)⇒(1.2)⇒(1.3);
the implication (1.3)⇒(1.1) follows from the next fact.

Observation 1.3.1 There exists a probability measure P̄ on XABC such that

P̄AC = PAC , P̄BC = PBC , and A ⊥⊥ B |C [P̄ ].

The measure P̄ is uniquely determined and satisfies PABC � P̄ .

Proof 1 We define the value p̄(x) of the density of P̄ by the formula on the
RHS of (1.3) for x ∈ XABC with pC(xC) > 0 and p̄(x) = 0 in case pC(xC) = 0.
The remaining statements are left to the reader as an exercise.

Observation 1.3.1 even holds for any pair of discrete probability measures
Q on XAC and R on XBC satisfying QC = RC in place of PAC and PBC .
The measure P̄ can then be called the conditional product of Q and R and
the result implies that, for any such consonant pair of measures Q and R, a
distribution P over ABC exists having them as marginals, namely P̄ .

To verify (1.3)⇒(1.1) use the construction in the proof of Observation 1.3.1
and apply (1.3) to see that p̄(x) = pABC(x) in case pABC(x) > 0. Then
realize that the values of both p̄ and pABC sum to 1 to extend the equality
p̄(x) = pABC(x) to the case pABC(x) = 0.

Further CI characterization in terms of marginal densities appeared in [32];
it can be interpreted as a cross-exchange condition for configurations:

∀ a, ā ∈ XA, ∀ b, b̄ ∈ XB , ∀ c ∈ XC one has

pABC(a, b, c) · pABC(ā, b̄, c) = pABC(a, b̄, c) · pABC(ā, b, c) . (1.4)

To verify (1.2)⇒(1.4) distinguish the cases pC(c) = 0, when (1.4) is evident,
and pC(c) > 0. In the latter case derive (1.4) whose both sides are multiplied
by pC(c) · pC(c) from equalities (1.2) applied to x = [a, b, c], x = [ā, b̄, c],
x = [ā, b, c], and x = [a, b̄, c]. The implication (1.4)⇒(1.2) can be shown by
summation over ā and b̄ in (1.4). The condition (1.4) is particularly easy to
verify in the binary case when |Xi| = 2 for any i ∈ N .

An elegant characterization of a CI statement is in term of factorization:

∃ f : XAC → R, ∃ g : XBC → R such that

∀x ∈ XABC pABC(x) = f(xAC) · g(xBC) , (1.5)
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where the functions f and g are called potentials. To show (1.2)⇒(1.5) put

f = pAC and g(z) = pBC(z)
pC(zC) in case pC(zC) > 0 and g(z) = 0 otherwise.

To show (1.5)⇒(1.2) introduce marginal potentials fC(c) =
∑

a∈XA
f(a, c),

gC(c) =
∑

b∈XB
g(b, c) for c ∈ XC and observe by summing in (1.5) that

pAC = f · gC , pBC = fC · g and pC = fC · gC . Then substitute these equalities
and (1.5) to both sides of (1.2). In comparison with the condition (1.3), the
factorization condition (1.5) does not require the potentials to be expressed in
terms of marginal densities, which makes (1.5) more suitable for verification.

The concept of CI is often introduced in terms of conditional densities. An
elegant symmetric definition of CI in these terms is the following one:

∀x ∈ XABC such that pC(xC) > 0, one has

pAB|C(xAB |xC) = pA|C(xA|xC) · pB|C(xB |xC) . (1.6)

To see it is equivalent to the previous conditions observe (1.2)⇒(1.6)⇒(1.3).
However, the most popular definition in terms of conditional densities is the
next asymmetric one, which basically says that the conditional distribution
PA|BC does not depend on the variables in B:

∀x ∈ XABC with pBC(xBC) > 0 pA|BC(xA|xBC) = pA|C(xA|xC) . (1.7)

One can easily show (1.2)⇒(1.7)⇒(1.3). The interpretation of the condition
(1.7), which is common in the theory of Markov processes, is that the future
A does depend on the past B only through the present C. Of course, there
are lots of modifications of this condition, for example that pA|BC(∗|∗) only
depend on AC, but these modifications are omitted in this chapter.

1.3.2 More general CI concepts

This section, to be skipped by beginners, assumes that the reader is familiar
with notions of measure theory. Its aim is to explain how probabilistic CI is
defined in terms of σ-algebras and how this abstract definition reduces to the
cases of general and marginal continuous probability measures over N .

A crucial concept is that of conditional probability, where the conditioning
object is a σ-algebra. Let P be a probability measure on a measurable space
(X,X ), C ⊆ X a σ-algebra and Ã ∈ X an event. A version of conditional
probability of Ã given C (= conditioned by C) is any C-measurable function
h : X → [0, 1], denoted by P [Ã|C], such that

∀ C̃ ∈ C P (Ã ∩ C̃) =

∫
C̃

h(x) dP (x) ≡
∫
C̃

P [Ã|C](x) dP (x) . (1.8)

The existence of such function h and its uniqueness in sense P C-everywhere
follows from the Radon-Nikodym theorem, where P C denotes the restriction
of P to the measurable space (X, C). One can introduce the concept CI for



Conditional Independence Concept and Markov Properties for Basic Graphs 11

σ-algebras as follows: given σ-algebras A,B, C ⊆ X we say that A and B are
conditionally independent given C and write A ⊥⊥ B | C if

∀ Ã ∈ A ∀ B̃ ∈ B
P [Ã ∩ B̃|C](x) = P [Ã|C](x) · P [B̃|C](x) for P C-a.e x ∈ X . (1.9)

Note that the validity of (1.9) does not depend on the choice of versions of
conditional probabilities and its equivalent formulation is the condition

∀ Ã ∈ A there exists C-measurable version of P [Ã|B ∨ C] ,

where B ∨ C is the σ-algebra generated by B ∪ C; see [47, LemmaA.6]. This
condition can be interpreted as an analogue of the discrete condition (1.7).

Let us describe how the CI definition (1.9) works in case of a (general)
probability measure P over N mentioned in Definition 1. In this case we put
(X,X ) := (XN ,

⊗
i∈N Xi), P := P . Recall from § 1.2.2 that, for A ⊆ N ,

XA ≡
⊗

i∈A Xi denotes the product σ-algebra on XA, with X∅ ≡ {∅,X∅}. It can
be ascribed the respective coordinate σ-algebra A := {A × XN\A : A ∈ XA}
of subsets of X = XN ; one then has A ⊆ X .

Given disjoint A,C ⊆ N , let C denote the coordinate σ-algebra for XC .
Any event A ∈ XA can be ascribed its cylindric extension Ã := A × XN\A;
the conditional probability x ∈ XN �→ P [Ã|C](x) then depends on xC and
can be identified with an XC-measurable function on XC , to be denoted by
c ∈ XC �→ PA|C(A|c). Thus, (1.8) allows one to introduce the concept of
conditional probability on XA given C as a function PA|C : XA×XC → [0, 1] of
two arguments such that, for any A ∈ XA, the function c ∈ XC �→ PA|C(A|c)
is XC-measurable and satisfies

PAC(A× C) =

∫
C

PA|C(A|c) dPC(c) for any C ∈ XC .

Observe that this is a natural generalization of the concept from Definition 3.
Given pairwise disjoint A,B,C ⊆ N , the condition A ⊥⊥ B | C from (1.9) then
turns into the requirement

∀A ∈ XA ∀B ∈ XB

PAB|C(A× B|c) = PA|C(A|c) · PB|C(B|c) for PC-a.e. c ∈ XC .

which directly generalizes (1.1) and can be considered as a definition of the
CI statement A ⊥⊥ B |C [P ] in case of a (general) measure P over N .

In case of a marginally continuous measure P over N (see § 1.2.2) one can
introduce CI in terms of marginal densities. Specifically, it was shown in [47,
Lemma2.4] that, provided a dominanting system of measures μi on (Xi,Xi),
i ∈ N , is fixed one has A ⊥⊥ B |C [P ] for pairwise disjoint A,B,C ⊆ N iff

fC(xC) · fABC(xABC) = fAC(xAC) · fBC(xBC) for μ-a.e. x ∈ XN ,
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where fD, D ⊆ N , denotes the marginal density for D. This condition gener-
alizes (1.2) and one can also generalize the other equivalent conditions from
§ 1.3.1 in terms of densities. For example, (1.5) takes the form: there exist
XAC-measurable h : XAC → R and XBC-measurable g : XBC → R such that

fABC(x) = h(xAC) · g(xBC) for μ-a.e. x ∈ XN .

1.4 Basic properties of conditional independence

In this section, we introduce (probabilistic) CI structures and recall their basic
formal properties. We also relate formal CI models to classic statistical models.

1.4.1 Conditional independence structure

A disjoint triplet over N is an ordered triplet A,B,C ⊆ N of pairwise dis-
joint subsets of N . Notation 〈A,B|C〉 will be used to indicate the intended
interpretation of such a triplet as a formal statement that the variables in A
are in/dependent on the variables in B conditionally the variables in C. The
system of all disjoint triplets over N will be denoted by T (N).

A formal independence model over N is a subset M of T (N), whose ele-
ments are interpreted as independence statements. We write A ⊥⊥ B |C [M]
to indicate that 〈A,B|C〉 ∈ M is interpreted as an independence statement
and A �⊥⊥ B |C if 〈A,B|C〉 is interpreted as a dependence statement.

The conditional independence structure induced by a probability measure
P over N is a formal independence model (over N) composed of those triplets
which represent valid CI statements with respect to P :

MP = { 〈A,B|C〉 ∈ T (N) : A ⊥⊥ B |C [P ] } .

Not every formal independence model is a CI structure. The next proposition
presents basic formal properties of CI structures.

Observation 1.4.1 Let P be a probability measure over N . Then one has
for (pairwise disjoint) A,B,C,D ⊆ N :

(i) ∅ ⊥⊥ B |C [P ],

(ii) A ⊥⊥ B |C [P ] ⇔ B ⊥⊥ A |C [P ],

(iii) A ⊥⊥ BD |C [P ] ⇔ {A ⊥⊥ D |C [P ] & A ⊥⊥ B |DC [P ] }.

Moreover, if P has a strictly positive density then

(iv) {A ⊥⊥ B |DC [P ] & A ⊥⊥ D |BC [P ] } ⇒ A ⊥⊥ BD |C [P ] .
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Recall that a discrete measure P on XN has (strictly) positive density if
p(x) > 0 for any x ∈ XN . In the general case (see § 1.2.2) a measure P over
N has positive density if it is marginally continuous and a dominating system
μi, i ∈ N , of σ-finite measures exists such that μ ≡⊗

i∈N μi � P .

Proof 2 The arguments valid in the discrete case are only given, but the
result holds in general. To verify (i) use (1.1) and realize that in case A = ∅
one has either A = ∅ = A × B or {A �= ∅ & A × B = B }. The condition
(ii) is evident. To verify (iii) combine (1.2) and (1.3). For the implication
A ⊥⊥ BD |C ⇒ A ⊥⊥ D |C use (1.2): the summation over B-configurations
in pC · pABDC = pAC · pBDC gives pC · pADC = pAC · pDC . As concerns
A ⊥⊥ BD |C ⇒ A ⊥⊥ B |DC we multiply the above equalities (the latter with
exchanged sides) to get pC · pABDC · pAC · pDC = pC · pADC · pAC · pBDC .
Because canceling is possible here for positive ABDC-configurations one gets
∀ pABDC > 0 pABDC · pDC = pADC · pBDC , which is, by (1.3), A ⊥⊥ B |DC.
The proof of {A ⊥⊥ D |C & A ⊥⊥ B |DC } ⇒ A ⊥⊥ BD |C is analogous.

To verify {A ⊥⊥ B |DC & A ⊥⊥ D |BC } ⇒ A ⊥⊥ BD |C in (iv) we use
(1.3) for both CI statements and get by canceling (because of pBDC > 0):

pADC · pBDC

pDC
= pABDC =

pABC · pBDC

pBC
⇒ pADC

pDC
=
pABC

pBC
.

Choose and fix a configuration b ∈ XB and write

∀ [a, d, c] ∈ XADC pA|DC(a|d, c) =
pADC(a, d, c)

pDC(d, c)
=
pABC(a, b, c)

pBC(b, c)
,

which means that pA|DC does not depend on d ∈ XD. By the condition (1.7)
one has A ⊥⊥ D |C [P ]. By (iii), this together with A ⊥⊥ B |DC [P ] implies
A ⊥⊥ BD |C [P ].

Note that the property in Observation1.4.1(iv) need not be valid for a
discrete distribution which not strictly positive. For example, consider |N | = 3,
Xi = {0, 1} for i ∈ N and density p such that p(0, 0, 0) = 1

2 = p(1, 1, 1) and
p(x) = 0 for remaining configurations x ∈ XN . Then one has i ⊥⊥ j | k [P ]
while i �⊥⊥ j | ∅ [P ], which implies i �⊥⊥ {j, k} | ∅ [P ].

Example: relational databases

However, formal independence models satisfying the conditions (i)-(iii) from
Observation 1.4.1 occur also beyond statistics. For example, analogous formal
models were studied in the theory of relational databases.

In that area, the elements of N are called attributes, and every attribute
i ∈ N is ascribed a finite (individual) sample space Xi of possible values. A
relational database over N is simply a set of configurations over N .

On can introduce natural operations with relational databases, some of
which were already mentioned in § 1.2.1. Given A ⊆ B ⊆ N and a relational
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database D ⊆ XB over B, the projection of D onto A is a relational database
over A defined by DA := {bA : b ∈ D}. The second important operation
is that of combination, which is an analogue of the operation of conditional
product for discrete probability measures from Observation 1.3.1. Specifically,
given a disjoint triplet 〈A,B|C〉 over N and databases D1 ⊆ XAC , D

2 ⊆ XBC

its combination is a relational database over ABC defined as follows:

D
1 �� D2 := { [a, b, c] ∈ XABC : [a, c] ∈ D

1 & [b, c] ∈ D
2 } .

There is an analogy of CI concept: given 〈A,B|C〉 ∈ T (N) and a database D

over N , we say that an embedded multivalued dependency (EMVD) statement
A ⊥⊥ B |C [D] holds if DABC = DAC �� DBC , in words, if the projection of D
onto ABC is the combination of its projections onto AC and BC.

We leave it to the reader to verify that the formal independence model
induced by D satisfies the conditions (i)-(iii) from Observation 1.4.1.

1.4.2 Statistical model of a CI structure

This is to explain that formal independence models can be interpreted as
common statistical models. Recall that by a (mathematical) statistical model
is meant a class of probability measures M on a prescribed sample space,
which is a measurable space (X,X ). In multivariate statistical analysis, one
usually has a joint sample space (XN ,XN ) in place of (X,X ).

Typically, a statistical modelM is a parameterized class of measures and all
of them are absolutely continuous with respect to some given σ-finite measure
μ on (X,X ), being a product measure μ =

⊗
i∈N μi in case of (XN ,XN ). Each

probability measure in M is then determined by its density with respect of μ
and, quite often, they are assumed to be mutually absolutely continuous. The
parameters usually belong to a convex subset Θ ⊆ R

n for some n ≥ 1.

Assume that a distribution framework is specified, that is, a collection Ψ
of probability measures on the sample space is determined from which the
probability measures in M should be chosen. For example, in the discrete
case, Ψ could be the class of all measures with positive density, while in the
continuous case with Xi = R for i ∈ N , one can have the class of regular
Gaussian distributions on R

N in place of Ψ. Then, every formal independence
model M⊆ T (N) over N can be ascribed a statistical model

M = {P ∈ Ψ : A ⊥⊥ B |C [P ] whenever 〈A,B|C〉 ∈ M} ,

which can be called the statistical model of CI structure given by M.

Note that this concept generalizes the classic concept of a graphical model
[57, 17]. Indeed, the reader can learn in § 1.6 that every UG G over N induces
the class MG of Markovian measures over N , which statistical model can also
be defined using a formal independence model induced by G.
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1.5 Semi-graphoids, graphoids, and separoids

The notions discussed in this section have been inspired by the research on
stochastic CI, but they more belong to the area of discrete mathematics. Pearl
and Paz [35] introduced in 1987 the following concept.

Definition 6 A disjoint semi-graphoid over N is a formal independence
model M over N satisfying the following conditions/axioms:

∅ ⊥⊥ B |C [M] triviality,
A ⊥⊥ B |C [M] ⇒ B ⊥⊥ A |C [M] symmetry,
A ⊥⊥ BD |C [M] ⇒ A ⊥⊥ B |DC [M] weak union,
A ⊥⊥ BD |C [M] ⇒ A ⊥⊥ D |C [M] decomposition,
A ⊥⊥ D |C [M] & A ⊥⊥ B |DC [M] ⇒ A ⊥⊥ BD |C [M] contraction.

A disjoint semi-graphoid M will be called a graphoid (over N) if it satisfies

A ⊥⊥ B |DC [M] & A ⊥⊥ D |BC [M] ⇒ A ⊥⊥ BD |C [M] intersection.

GivenM⊆ T (N) its semi-graphoid closure is the smallest semi-graphoid over
N containing M. Analogously, the graphoid closure of M can be introduced.

Semi/graphoid closures are correctly defined because every set intersection
of semi/graphoids over N is a semi/graphoid over N . The CI implications in
Definition 6 are nothing but detailed conditions from Observation 1.4.1, which
basically says that every probabilistic CI structure is a disjoint semi-graphoid
and even a graphoid if the distribution has positive density.

There are other areas than the probability theory in which semi-graphoids
have occurred. We have seen in the example from § 1.4.1 that every relational
database can be ascribed a disjoint semi-graphoid. An undirected separation
criterion from § 1.6.1 allows one to ascribe a graphoid to every UG over N .
Let us give three more examples; their verification is left to the reader.

A class of subsets: take T ⊆ P(N) ≡ {A : A ⊆ N} and define

A ⊥⊥ B |C [T ] := ∀ T ∈ T T ⊆ ABC ⇒ [T ⊆ AC or T ⊆ BC ].

An ordinal conditional function: given a finite joint sample space XN ,

this is a function κ : XN → Z such that min {κ(x) : x ∈ XN} = 0.
Introduce a marginal (function) for any A ⊆ N by the formula:

κA(y) := min {κ(y, z) : z ∈ XN\A } for any y ∈ XA. Define

A ⊥⊥ B |C [κ] := ∀x ∈ XN

κC(xC) + κABC(xABC) = κAC(xAC) + κBC(xBC) .

Note that this is a concept taken over from [42].
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A supermodular function: this is a set function m : P(N)→ R such that

m(D ∪ E) +m(D ∩ E) ≥ m(D) +m(E) for any D,E ⊆ N . Define

A ⊥⊥ B |C [m] := m(C) +m(ABC) = m(AC) +m(BC) .

Note that semi-graphoids defined in this way coincide with structural
semi-graphoids mentioned in § 1.8.1.

Some authors do not regard the restriction to disjoint triplets over N as
necessary and consider a general semi-graphoid over N , which is a set of
ordered triplets A ⊥⊥ B |C of (not necessarily disjoint) subsets of N , which
satisfies the following three conditions:

• B ⊆ C ⇒ A ⊥⊥ B |C,

• A ⊥⊥ B |C ⇔ B ⊥⊥ A |C,

• A ⊥⊥ B ∪D |C ⇔ {A ⊥⊥ D |C & A ⊥⊥ B |D ∪ C }.

A general semi-graphoid is induced by a discrete probability measure P over
N through the condition (1.2) where non-disjoint triplets are allowed. Then
A ⊥⊥ A |C [P ] means that ∀ pAC > 0 one has pAC = pC , which corresponds to
functional dependency of A on C; note that an axiomatic characterization of
probabilistic functional dependency structures was given by Matúš [23]. Thus,
general semi-graphoids are broader than disjoint semi-graphoids because they
involve functional dependency relations modeling.

Dawid took even more general point of view and introduced an abstract
concept of a separoid; the following is a simplification of his definition [8].

Definition 7 Let S be a joint semi-lattice, that is, a partially ordered set in
which every two elements a, b have a supremum (= joint), denoted by a ∨ b.
A set of ordered triplets a ⊥⊥ b | c of elements of S will be named a separoid if

• b ∨ c = c ⇒ a ⊥⊥ b | c,

• a ⊥⊥ b | c ⇔ b ⊥⊥ a | c,

• a ⊥⊥ b ∨ d | c ⇔ { a ⊥⊥ d | c & a ⊥⊥ b | d ∨ c }.

Of course, every general semi-graphoid over N is a separoid on the lattice
(P(N),⊆). Another prominent example requires the reader being familiar with
measure theory: given a probability measure P on a measurable space (X,X ),
let S be the set of all σ-algebras contained in X , ordered by inclusion. Then
the ternary relation A ⊥⊥ B|C introduced in § 1.3.2 is a separoid.
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1.5.1 Elementary and dominant triplets

To represent a (disjoint) semi-graphoid over N in the memory of a computer
one does not need all |T (N)| = 4|N | bits.

Definition 8 A disjoint triplet 〈A,B|C〉 over N will be named trivial if either
A = ∅ or B = ∅; it will be called elementary if |A| = 1 = |B|. The system of
elementary triplets over N will be denoted by Tε(N).

Clearly, the trivial triplets can always be excluded from considerations
because they are contained in any semi-graphoid. On the other hand, the
elementary triplets are substantial and because of the following fact.

Observation 1.5.1 Let M be a disjoint semi-graphoid over N . Then, for
every disjoint triplet 〈A,B|C〉 ∈ T (N), one has A ⊥⊥ B |C [M] iff

∀ i ∈ A ∀ j ∈ B ∀K with C ⊆ K ⊆ ABC \{i, j} i ⊥⊥ j |K [M] . (1.10)

In particular, for two disjoint semi-graphoids M1 a M2 over N , one has
M1 ⊆ M2 iff M1 ∩ Tε(N) ⊆ M2 ∩ Tε(N), which implies that any semi-
graphoid M is uniquely determined by its elementary trace M∩ Tε(N).

Proof 3 The necessity of (1.10) is easily derivable using the decomposition
and weak union properties combined with the symmetry property. For the
converse implication suppose that 〈A,B|C〉 is not trivial and use induction on
|AB|; the case |AB| = 2 is evident. Supposing |AB| > 2 either A or B is not a
singleton. Owing to the symmetry property one can consider without the loss
of generality |B| ≥ 2, choose b ∈ B and put B′ = B \ {b}. By the induction
assumption, (1.10) implies both A ⊥⊥ B′ |C [M] and A ⊥⊥ b |B′C [M]. Hence,
by application of the contraction property A ⊥⊥ B |C [M] is derived.

One can also show easily that N ⊆ Tε(N) is a trace of a semi-graphoid iff
the symmetry condition i ⊥⊥ j |K [N ] ⇔ j ⊥⊥ i |K [N ] and the exchange
property i ⊥⊥ j | kL [N ] & i ⊥⊥ k |L [N ] ⇔ i ⊥⊥ k | jL [N ] & i ⊥⊥ j |L [N ]
hold. Thus, the semi-graphoid closure can be described in terms of elementary
triplets. Since |Tε(N)| = |N |·(|N |−1)·2|N |−2 it is enough to have

(|N |
2

)
·2|N |−2

bits to represent a semi-graphoid over N .
Matúš [28] was interested in the intricacy of the semi-graphoid implication

between elementary CI statements and showed that the length of the deriva-
tion sequence can be exponential in |N |. However, there is an alternative way
to represent semi-graphoids in the memory of a computer.

Definition 9 We say that 〈A,B|C〉 ∈ T (N) dominates 〈A′, B′|C ′〉 ∈ T (N)
if A′ ⊆ A, B′ ⊆ B and C ⊆ C ′ ⊆ ABC. The triplets in a semi-graphoid which
are maximal with respect to this partial order on T (N) are called dominant.

If one restricts oneself to non-trivial triplets then elementary triplets in a
(fixed) semi-graphoidM are minimal with respect to the dominance ordering;
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thus, dominant and elementary triplets are somehow opposite to each other.
An alternative way to represent a semi-graphoid in the memory of a computer
is by the list of its non-trivial (symmetrized) dominant triplets.

One can also implement the semi-graphoid and graphoid closures in these
terms, as shown by Baioletti, Busanello and Vantaggi [1]. Dominant triplets
were also an useful tool in [45] to show that the semi-graphoid closure of two
disjoint triplets over N is always a probabilistic CI structure. This can be
interpreted as a result on relative completeness of semi-graphoid implications
for probabilistic CI inference if the input list has at most 2 items (see § 1.9).
Semi/graphoids over a fixed set N can also be classified according to their
semi/graphoid complexity, by which is meant the minimal cardinality of a
semi/graphoid generator [46].

For a reader familiar with (advanced) polyhedral geometry we mention two
interesting equivalent geometric definitions/interpretations of the concept of
a semi-graphoid, which were offered by Morton [30]. They both come from the
semi-graphoid description in terms of elementary triplets.

The first equivalent definition is related to a special polytope, called a per-
mutohedron, which had already been introduced by Shouté in 1911 [37]. The
idea is that all permutations over a set N = {1, 2, . . . , n} ≡ [n] are interpreted
as vectors in R

N and their convex hull is taken. There is a certain standard
way to label one-dimensional faces (= geometric edges) of this polytope by
elementary triplets over N . Thus, N ⊆ Tε(N) is identified with a set of geo-
metric edges of the permutohedron. The two above-mentioned conditions on
N characterizing a semi-graphoid then have an elegant geometric interpreta-
tion. Every two-dimensional face of the permutohedron is either a square or a
regular hexagon. The symmetry condition can be then interpreted as a square
axiom requiring that if a geometric edge of a square belongs to N then the
opposite edge does so. The exchange property corresponds to a hexagon axiom
which says that if a pair of touching edges of a hexagon belongs to N then
the same holds for the pair of opposite edges in the hexagon.

The second equivalent definition is in terms of (complete) polyhedral fans,
which are certain collections of polyhedral cones partitioning R

N . There is a
prominent polyhedral fan induced by a special equivalence of vectors in R

N ,
where u, v ∈ R

N are equivalent if ∀ i, j ∈ N one has ui ≤ uj ⇔ vi ≤ vj .
That fan is called the Sn-fan (for n = |N |) by Morton or braid arrangement
by other authors. Then semi-graphoids are in one-to-one correspondence with
polyhedral fans which coarsen the prominent Sn-fan.

1.6 Markov properties for undirected graphs

This section contains some theoretical results concerning undirected graphical
models, named Markov networks in the context of probabilistic reasoning [34].
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1.6.1 Global Markov property for an UG

Given an undirected graph G over N and a disjoint triplet 〈A,B|C〉 ∈ T (N),
we say that A and B are separated by C in G and write A ⊥⊥ B |C [G] if every
route in G from a node in A to a node in B contains a node in C. Of course,
this is equivalent to the same condition with paths in place of routes. Another
formulation is that after the removal of the set of nodes in C (including the
edges leading to those nodes) there is no path between A and B.

Thus, every undirected graph G over N induces a formal independence
model over N by means of the undirected separation criterion

MG = { 〈A,B|C〉 ∈ T (N) : A ⊥⊥ B |C [G] } ,

which appears to be a (disjoint) graphoid. A probability measure P over N
with MG ⊆ MP is then called Markovian with respect to G; an alternative
terminology is that P satisfied the global Markov property relative to G:

(G) if A and B are separated by C in G then A ⊥⊥ B |C [P ].

The (statistical) undirected graphical model MG then consists of Markovian
distributions with respect to G. As explained in § 1.4.2, the class MG can be
interpreted as the statistical model of the CI structure given by MG.

A probability measure P over N is called perfectly Markovian with respect
to G if MG =MP . The existence of a discrete perfectly Markovian measure
with respect to any given UG G was shown by Geiger and Pearl in [13, Theo-
rem11]. In particular,MG is indeed a probabilistic CI structure for any UG G
and the statistical model MG is non-empty (in case non-trivial sample spaces
Xi, i ∈ N). Another related result is that formal independence models induced
by UGs can be described in an axiomatic way, that is, they are characterized
in terms of finitely many CI implications [35].

1.6.2 Local and pairwise Markov properties for an UG

Verification whether a probability measure over N is Markovian with respect
to an UG over N can be difficult because the number of CI statements to be
tested may be very high. Nevertheless, in case of a measure with a (strictly)
positive density reasonable sufficient conditions exist.

We say that a probability measure P over N satisfied the local/pairwise
Markov property relative to G if

(L) for any i ∈ N i ⊥⊥ N \ (i ∪ neG(i)) | neG(i) [P ],

(P) for any distinct i, j ∈ N with ¬(i−− j) in G i ⊥⊥ j |N \ {i, j} [P ].

It is easy to verify using Observation 1.4.1(iii) that (G)⇒(L)⇒(P); however,
examples that (P) �⇒(L) �⇒(G) for discrete distributions are available [17].

Observation 1.6.1 Assume that a probability measure P over N has strictly
positive density. Then one has (G)⇔(L)⇔(P) for P .
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Proof 4 The key fact is the property in Observation 1.4.1(iv), which implies
that the CI structure induced by G is a graphoid. Thus, it is enough to show
that the graphoid closure of the set of triplets of the form 〈i, j|N \ {i, j}〉 for
non-edges i, j ∈ N , ¬(i −− j in G), contains the whose formal independence
model MG. This observation is left to the reader as an exercise.

Note that the undirected separation criterion from § 1.6.1 was a result
of some evolution in theory of Markov fields, which stemed from statistical
physics. The authors who had developed this theory in the 1970s restricted
their attention to positive discrete probability distributions. Several types of
Markov conditions were proposed in [32]: the original pairwise Markov prop-
erty was strengthened to the local and global one. The reader can ask whether
one can possibly even strengthen the global Markov property. Note that it fol-
lows from the result on the existence of a perfectly Markovian positive discrete
measure [13] that the global Markov property cannot be strengthened. More-
over, it also occurs to be the strongest possible Markov property within the
framework of regular Gaussian measures.

1.6.3 Factorization property for an UG

There is another sufficient condition for the global Markov property, which
does not demand the distribution to have a positive density. Specifically, we
say that a marginally continuous measure P over N factorizes according to
an UG G over N if a dominating system of σ-finite measures μi, i ∈ N , exists
such that, for the respective joint density f , one has

(F) there exists potentials ψC : XC → [0,∞), C ∈ CG, with

f(x) =
∏

C∈CG

ψC(xC) for μ-a.e. x ∈ XN ,

where CG denotes the collection of cliques of G.

Note that one always has (F)⇒(G), which observation can be derived
from repeated application of the fact that the factorization condition (1.5)
is an equivalent definition of CI; see [18, Proposition 1]. On the other hand,
examples of discrete measures showing (G) �⇒(F) exist [24]. Nevertheless, the
conditions are quite often equivalent. The following result, whose proof is
omitted, is known as the Hammersley-Clifford theorem, see [17, Theorem3.9].
It is very useful observation as discussed in chapter 3 of this book.

Observation 1.6.2 Assume that a probability measure P over N has strictly
positive density. Then one has (F)⇔(G) for P .
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1.7 Markov properties for directed graphs

This section deals with directed acyclic graphical models, named Bayesian
networks in the context of probabilistic reasoning [34].

1.7.1 Directional separation criterion

In the directed case, there are different but equivalent separation criteria to
decide whether a disjoint triplet is represented in a graph. In this chapter,
only a straightforward directional separation criterion for routes is presented,
which is probably the simplest one. In this subsection we assume that G is a
directed graph over N ; it is not substantial whether G is acyclic or not.

Let ρ : i1, . . . , ik, k ≥ 1, be a route in G. We say that a node i� in ρ occurs
as a collider in ρ if it is an internal node in ρ and i�−1 → i� ← i�+1 in G. Other
occurrences of nodes in ρ, including its end-nodes, are named non-colliders.
We say that ρ is blocked by a set of nodes C ⊆ N if

either a node exists which occurs as a non-collider in ρ and belongs to C,

or a node exists which occurs as a collider in ρ and is outside C.

Thus, the blocking condition for non-colliders is the same as in the undirected
case (see § 1.6.1), while the condition for colliders is completely converse. It
also follows from the definition that if a route has a node with both collider
and non-collider occurrences then it must be blocked by any C ⊆ N . A route
in G which is not blocked by a set C ⊆ N will be called C-free.

Given 〈A,B|C〉 ∈ T (N), we say that A and B are directionally separated
by C in G if every route in G from a node in A to a node in B is blocked
by C and write A ⊥⊥ B |C [G] then. Note that one has to consider all routes
from A to B, not just paths. For example, in a graph over N = {i, j, k, l} with
arrows i→ l, l → k and j → l the only path from i do j is i→ l ← j, which
is blocked by the set C = {k}. However, a route i→ l → k ← l ← j exists in
the graph which is C-free.

Since the criterion is formulated in terms of routes a natural question
arises whether it is decidable. Indeed, there exists a propagation Bayes-ball
algorithm [38] which, for given disjoint sets of nodes A and C, finds the set Ā
of nodes to which a C-free route exists from a node in A. Thus, if B is disjoint
with Ā, then directional separation holds, otherwise not.

The directional separation criterion is close to the d-separation criterion,
which was proposed by Pearl [34]. An equivalent moralization criterion was
suggested by Lauritzen and his co-authors [17]; it is based on transformation
of the directed graph to a certain UG and using undirected separation. The
equivalence of these criteria (in case of a DAG) was shown in [17, Proposi-
tion 3.25]. There are other criteria, for example Massey [22] offered another
criterion based on a (different) transformation of the graph into an UG.
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1.7.2 Global Markov property for a DAG

Every directed acyclic graph G over N induces a formal independence model
over N through the directional separation criterion

MG = { 〈A,B|C〉 ∈ T (N) : A ⊥⊥ B |C [G] } ,

which is a disjoint graphoid. A probability measure P over N withMG ⊆MP

is called Markovian with respect to G and we also say that P satisfied the
directed global Markov property relative to G:

(DG) if A and B are directionally separated by C in G then A ⊥⊥ B |C [P ].

The statistical directed graphical model MG consists of Markovian measures
with respect to G. The class MG can be interpreted as the statistical model
of the CI structure given by MG (see § 1.4.2).

A probability measure P over N is called perfectly Markovian with respect
to a DAG G if MG =MP . The existence of a perfectly Markovian measure
with respect to any given DAG was shown by Geiger and Pearl [12].

Note that formal independence models induced by DAGs cannot be de-
scribed completely in an axiomatic way. The reason is that these models are
not closed under marginalization operation; see [47, Remark 3.5].

1.7.3 Local Markov property for a DAG

In the directed case several variations of both local and pairwise Markov
properties exist. One can distinguish ordered versions, when an enumeration of
nodes consonant with the direction of arrows is given and the Markov property
is relative to it, and unordered versions; see [4, § 5.3]. In this section, a basic
unordered version of the local Markov property is presented.

To formulate it an additional graphical concept is needed. If there exists a
directed path in G from a node i ∈ N to a node j ∈ N then we say that i is
an ancestor of j in G, or, dually, that j is a descendant of i in G. The set of
descendants of a node i ∈ N in G will be denoted by dsG(i).

A probability measure P over N satisfied a directed local Markov property
relative to a DAG G over G if

(DL) for any i ∈ N i ⊥⊥ N \ (dsG(i) ∪ paG(i)) | paG(i) [P ].

Observation 1.7.1 For any probability measure P over N , (DG)⇔(DL).

Proof 5 Given any enumeration i1, . . . , i|N | of nodes which is consonant with
the direction of arrows G, it was shown in [54] that MG is the semi-graphoid
closure of the list of triplets of the form 〈i�, {i1, . . . , i�−1} \ paG(i�)|paG(i�)〉,
� = 2, . . . , |N |. Hence,MG can be shown to be the semi-graphoid closure of the
set of triplets of the form 〈i, N \(dsG∪paG(i))|paG(i)〉; use Observation 1.4.1.
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1.7.4 Factorization property for a DAG

Recursive factorization condition is a necessary and sufficient condition for
a marginally continuous measure being Markovian with respect to a directed
acyclic graph. In case of a discrete measure P over N it has the form

(DF) p(x) =
∏
i∈N

pi|paG(i)(xi|xpaG(i)) for every x ∈ XN ,

where a convention is accepted that pA|C(a|c) = 0 whenever pC(c) = 0 for
a ∈ XA, c ∈ XC , A,C ⊆ N disjoint.

The definition is analogous in case of a marginally continuous measure,
but one has to introduce correctly conditional densities and the equation in
(DF) is meant in μ-a.e. sense, where μ is a dominating joint product measure.
One can show that (DF)⇔(DG) then; see [18, Theorem1].

Since the statistical model MG for a DAG G coincides with the class of
recursively factorizable distributions there is a natural parameterization of
this class in the discrete case; the elementary parameters are interpreted as
(the values of) conditional probabilities [47, Lemma8.1].

1.8 Imsets and geometric views

In this section we mention the method of structural imsets, which offers a
geometric point of view on (the description of) CI structures.

1.8.1 The concept of a structural imset

Although graphs offer an elegant and intuitive interpretation of (some of) CI
structures, they are not able to describe all possible probabilistic CI structures.
This motivated a proposal for a non-graphical method of their description by
means of vectors, whose components are integers indexed by subsets of N ;
such vectors are called imsets.

A starting point is the concept of an elementary imset from [47, § 4.2.1],
which is a vector in R

P(N) encoding an elementary CI statement i ⊥⊥ j |K
corresponding to 〈i, j|K〉 ∈ Tε(N) (see § 1.5.1). Specifically, we put

u〈i,j|K〉 := δijK + δK − δiK − δjK ,

where δA ∈ R
P(N) denotes the zero-one vector identifier of a set A ⊆ N .

One can consider the cone S(N) in R
P(N) generated by (all) elementary

imsets over N . Structural imsets, used to describe CI structures, can equiv-
alently be introduced as vectors in S(N) ∩ Z

P(N) [16]. There was an open
problem whether every structural imset is also a combinatorial imset, that
is, a combination of elementary imsets with non-negative integer coefficients.



24 Book title goes here

This is true if |N | ≤ 4 but Hemmecke et al. [15] gave an example of a structural
imset over N with |N | = 5 which is not a combinatorial one.

The next step is to ascribe a formal independence model over N to any
structural imset u over N . There is a certain linear-algebraic criterion to
decide, for every 〈A,B|C〉 ∈ T (N), whether A ⊥⊥ B |C [u] holds; the criterion
is omitted in this chapter and can be found in [47, § 4.4.1]. The criterion can
be viewed as an analogue of separation criteria used in graphical description
of CI structures. The formal independence models

Mu = { 〈A,B|C〉 ∈ T (N) : A ⊥⊥ B |C [u] } for u ∈ S(N) ∩ Z
P(N)

appear to be semi-graphoids, called structural semi-graphoids. Every such
semi-graphoid is, in fact, induced by a combinatorial imset, which means that
one can limit oneself to combinatorial imsets. Following the analogy with
graphical models, one can introduce, for any structural imset u, the corre-
sponding statistical model Mu of Markovian distributions P with respect to
u satisfying Mu ⊆ MP . Moreover, it was shown [47, Theorem4.1] that, for
marginal continuous measure P over N the Markov property with respect to
a structural imset u is equivalent to a certain factorization property, which
generalizes the recursive factorization for DAGs mentioned in § 1.7.4.

The crucial result concerning structural imsets is that, for any probability
measure P over N with finite multiinfomation, that is, with finite relative
entropy of P with respect to

⊗
i∈N Pi, the CI structure induced by P is a

structural semi-graphoid [47, Theorem5.2]. In other words, any such distribu-
tion is perfectly Markovian with respect to some combinatorial imset u, which
meansMu =MP . Note that any discrete measure and any regular Gaussian
measure over N has finite multiinformation.

Structural semi-graphoids also coincide with semi-graphoids ascribed to
supermodular functions mentioned in § 1.5. A remark, which may interest a
reader familiar with advanced polyhedral geometry, is that one can extend the
observation that semi-graphoids correspond to polyhedral fans coarsening the
Sn-fan (see § 1.5.1). Morton [30] also showed that a semi-graphoid is structural
iff the corresponding polyhedral fan is a normal fan of a polytope.

1.8.2 Imsets for statistical learning

Imsets can also be applied in the context of learning Bayesian network (BN)
structure. There is a certain standard translation of a DAG G over N into
a combinatorial imset uG, called the standard imset (for G), which has the
property that usual criteria for learning BN structure become affine functions
(= sums of linear functions with constants) of the standard imset [51]. Thus,
the learning task can be transformed into a linear programming (LP) problem;
a mathematical task is then to characterize the domain in the form of finitely
many linear inequalities.

It is sometimes advantageous in combinatorial optimization to work with
zero-one vectors. Therefore, standard imsets were transformed by a linear
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invertible self-transformation of ZP(N) into characteristic imsets, which are
zero-one vectors with elegant graphical interpretation [14], and these vectors
were applied to learning BN structure by tools of integer linear programming
[50]. This approach seems to be particularly suitable for learning decomposable
models [49], in which case there is hope that the corresponding polytope will
be characterized completely by linear inequalities.

1.9 CI inference

This section is concerned with the following task: given an input list L of
CI statements over N , characterize its probabilistic CI closure, which is the
smallest CI structure containing L. A traditional aim is to obtain the CI
closure as the result of application of interpretable formal CI implications,
analogous to the semi-graphoid inference rules from Definition 6. Although
there is no finite set of inference rules characterizing CI inference [43] one
can find such an axiomatic characterization in some special cases. The semi-
graphoid implications are enough in case |L| = 2 [45] or if L consists of special
CI statements, like the marginal CI statements A ⊥⊥ B | ∅ [11, 25] or saturated
CI statements A ⊥⊥ B |C with ABC = N [21, 13].

Matúš [27] characterized the CI closure for discrete measures if |N | = 4;
in this case 24 formal properties are enough [48]. Several methods to derive
implications among CI statements can be used. The method of structural
imsets [47, § 6.2] provides a sufficient condition for probabilistic CI implication;
the respective linear-algebraic criterion can be tested using a computer [3]. The
most efficient methods for computer testing of that sufficient condition seems
to be linear programming methods [2, 33]. On the other hand, there are linear-
algebraic tools to derive CI implications based on different principles [52]. On
the top of that, advanced methods of modern algebra can be used to derive
CI implications; chapter 3 gives more details on this topic.
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I am indebted to Fero Matúš for his cooperation on the topic of CI. Our work
is supported from the grant project GAČR n. 16-12010S.
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learning Bayesian network structure. Internat. J. Approx. Reason.,
53:1336–1349, 2012.

[15] R. Hemmecke, J. Morton, A. Shiu, B. Sturmfels, and O. Wienand. Three
counter-examples on semi-graphoids. Combin. Probab. Comput., 17:239–
257, 2008.

[16] T. Kashimura, T. Sei, A. Takemura, and K. Tanaka. Cones of elementary
imsets and supermodular functions: a review and some new results. In
Proceedings of 2nd CREST-SBM International Conference, pages 357–
363. World Scientific, 2012.

[17] S. L. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.

[18] S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H.-G. Leimer. Inde-
pendence properties of directed Markov fields. Networks, 20(5):491–505,
1990.

[19] S. L. Lauritzen and D. J. Spiegelhalter. Local computation with proba-
bilities on graphical structures and their application to expert systems.
J. R. Stat. Soc. Ser. B. Stat. Methodol., 50(2):157–224, 1988.
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