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ABSTRACT 

The concept of conditional independence (CI) within the framework of  natural 
conditional functions (NCFs) is studied. An NCF is a function ascribing natural 
numbers to possible states of  the world; it is the central concept of Spohn's theory of 
deterministic epistemology. Basic properties of  CI within this framework are recalled, 
and further results analogous to the results concerning probabilistic CI are proved. 
Firstly, the intersection of  two CI-models is shown to be a CI-model. Using this, it is 
proved that Cl-models for NCFs have no finite complete axiomatic characterization (by 
means of  a simple deductive system describing relationships among Cl-statements). The 
last part is devoted to the marginal problem for NCFs. It is shown that (pairwise) 
consonancy is equivalent to consistency iff the running intersection property holds. 

K E Y W O R D S :  natural conditional function, conditional independence, ax- 
iomatic characterization, marginal problem, running intersection property 

1. INTRODUCTION 

Several recent works in AI  have dealt with the concept of irrelevance, in 
particular conditional irrelevance among attributes. Pearl and Paz intro- 
duced the concept of  a dependency model  to describe such conditional 
irrelevance structures within various frameworks (undirected graphs, di- 
rected acyclic graphs, probability theory). In the probabilistic framework 
(we have probabilistic reasoning in expert systems in mind) the conditional 
irrelevance was interpreted as conditional independence (CI) among ran- 
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dom variables (describing attributes). Although the concept of CI has been 
studied in probability theory and statistics for more than fifteen years [2, 
21, 13, 17], its importance for probabilistic expert systems was highlighted 
relatively recently [14]. Pearl and Paz [15] proposed describing CI struc- 
tures in an axiomatic way, i.e. by means of a simple deductive mechanism 
handling information about the CI structure. They conjectured that the CI 
structures for strictly positive measures coincide with a special type of 
dependency models, namely graphoids (which were introduced as depen- 
dency models closed under five concrete inference rules). This hypothesis 
was supported by several partial results, in that some substructures of CI 
structure were characterized in this way. Independently Matfig [12] and 
Geiger, Paz, and Pearl [3] characterized ordinary (unconditional) proba- 
bilistic independence; Geiger and Pearl [4] and Malvestuto [10] indepen- 
dently found an axiomatization for the class of so-called "fixed-context" 
CI-statements. Nevertheless, the original conjecture was refuted firstly by 
finding a further property of probabilistic CI [24] and finally by showing 
that the CI structures within the probabilistic framework cannot be char- 
acterized as dependency models closed under a finite number of inference 
rules [26]. For comprehensive survey see the recent paper of Geiger and 
Pearl [5]. 

Another framework in which the concept of CI was introduced in 
Spohn's theory of ordinal conditional functions [22]. This theory, motivated 
from a philosophical point of view, provides a tool for the mathematical 
description of the dynamic handling of deterministic epistemology, and in 
this sense it is a counterpart of the probabilistic description of an epis- 
temic state. 1 As soon as the concept of CI for ordinal conditional functions 
was introduced, researchers began to study its properties, especially for a 
special class of natural conditional functions (NCF) called "disbelief func- 
tions" in [19] or "ranking functions" in [6]. Hunter in [7] showed that any 
model of CI structure given by an NCF is a graphoid. After publishing the 
paper [25] with a further property of CI for strictly positive measures, the 
group of researchers around J. Pearl found that the new property also 
holds for NCFs. All these facts, together with the alleged homomorphism 
of NCFs to nonstandard probability measures, made Pearl formulate the 
hypothesis that the formal properties of CI for strictly positive measures 
and for NCFs coincide. Nevertheless, as recently shown by Spohn [23], the 
inference rule from [24] does not hold for NCFs (see also [27]). 

The concept of CI can also be studied in other frameworks for dealing 
with uncertainty in AI, namely in the Dempster-Shafer theory of belief 
functions and possibility theory--for details see [20, 27]. 

I Nevertheless, there exists a homomorph i sm between the class of  ordinal conditional func- 
tions and the class of nons tandard  probability m e a s u r e s - - f o r  explanation see [22]. 
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In this article we try to extend some results from probabilistic CI into 
the framework of NCFs. Firstly, we recall basic concepts and results and 
give some equivalent definitions of CI within this framework. By examples 
we will show that in the case of three attributes all graphoids are repre- 
sentable in the framework of NCFs. In the third section we give a 
construction of an NCF allowing us to prove that the class of CI-models 
within the NCF framework is closed under intersection. This is used to 
prove the main result saying that CI-models within the NCF framework 
have no finite complete axiomatic characterization--i .e. ,  the result analo- 
gous to the result from [26] for the probabilistic framework. We even show 
this by means of the same collection of inference rules. 

In the fourth section we deal with the marginal problem for NCFs. We 
give a simple method for solving the problem of the existence of a 
simultaneous (multivariate) NCF with a prescribed set of marginal (less-di- 
mensional) NCFs. This question has a far simpler solution than its coun- 
terpart in the probabilistic framework. Finally, we show that the running 
intersection property is a necessary and sufficient condition for the equiva- 
lence of the existence of a simultaneous NCF with the consonancy of 
marginal NCFs (this result is completely analogous to the probabilistic 
case). 

2. BASIC CONCEPTS AND FACTS 

We start with slightly modified definitions from [22]. 

DEFINITION I (Natural conditional function) Let X be a nonempty set, 
and exp X denotes the class of  all its subsets. Then a natural conditional 
function ( NCF)  on X is a nonnegative integer set function K : (exp X) \ 
{Q} -~ {0, 1, 2 . . . .  } such that 
(a) K(X) = O, 
(b) K ( U ~ r A ~ )  = m i n ~  r K(A~) whenever• # A~ c X, 3' ~ F 

(F is an arbitrary nonempty index set). 

Having A, B c X with A f3 B -4= Q and an NCF K on X, the symbol 
K(AIB) will be used to denote the difference K(A f3 B) - K(B). 

Of course, an NCF is uniquely determined by its values on singletons. 
We can even define an NCF equivalently as a set function K :(exp X) \ 
{Q} -~ {0, 1, 2 . . . .  } extending some point function K : X -* {0, 1 . . . .  } with 
min{s:(x); x ~ X} = 0 by the formula 

K(A) = m i n { K ( a ) ; a  ~ A }  for Q # A c X .  

The most general definition of CI (with respect to NCFs) introduces this 
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concept  for  complete  algebras. In  this paper  we restrict our  a t tent ion to 
perpendicular  collections of  algebras2: 

DEFINITION 2 (Comple te  algebras, perpendiculari ty,  independence)  A 
class S:  of  subsets of a nonempty set X is a complete  algebra on X iff it 
contains X and is closed under complement (S ~ ~ =~ X \ S ~ 5 : )  and 
arbitrary union (S~ ~ S : ,  3' ~ F ~ U ~ r S ~  ~ S : ) .  

A nonempty set A ~ 50 is an a tom of a complete algebra S:  iff its only 
proper subset belonging to S :  is the empty set (B ~ 2;:, A ¢ B c A ~ B = 
0) .  The collection of atoms of a complete algebra S:  will be denoted by 
at(S:).  3 

A collection of complete algebras {~¢~; y ~ F} on X is perpendicular  iff 
N{Av; y ~ F'} v~ O whenever A~ ~ at(~¢~), 3' ~ F' ,  and F' c F isfinite. 

Having an NCF K on X and three perpendicular complete algebras ~', 
~ ,  ~ on X (i.e. forming a perpendicular collection), we shall say that ~¢ is 
conditionally independent  o f  ~ '  given ~ with respect to K and write 

~¢ -1- ~ ' I~ ' (K)  iff VA ~ at(~¢), B ~ a t (~ ' ) ,  C ~ a t ( ~ ) ,  

K(A r-1 B N C) + K(C) = K(A rq C) + K(B rq C). 4 

REMARK The  definition o f  CI can be formula ted  equivalently in appar-  
ently s t ronger  form: VA ~ ~¢ \ {•}, B ~ ~ \ {Q}, C ~ a t (~ ) ,  

K(A n a n C) + K(C) = K(A n C) + K(B n C). 

Indeed,  owing to perpendiculari ty,  we can write 

K(A ¢q B N C) = m i n { r ( A '  n B' n C); A' ~ at(~¢), 

A' c A, B' ~ a t ( ~ ' ) ,  B' c B} 

and estimate each term f rom below (using the definition of  CI): 

K(A' n B' n C) = K(A' n C) + K(B' n C) - K(C) 

>_ K(A n C) + K(B n C) - K(C). 

Thus K(A rq B rq C) >__ K(A :q C) + K(B C1 C) - K(C), and the inverse in- 
equality can be shown similarly by choosing A' ~ at(~¢), A' c A with 

2Our reasons are explained in Remark 1 concluding this section. 
3Note that every complete algebra S': is atomic in the sense that (different) atoms are 
mutually disjoint and every set from 5 a is decomposed into them: VS ~2. c# S = U{A; A ~ at 
(S'0, A c S} 
4We can also write K(A N BIC) = K(AIC) + K(BIC) or K(AIB N C) = r(ALC). 
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K(A n C) = K(A' ¢q C) and B' • at(~') ,  B' c B with K(B n C) = K(B' rq 
C). 

However, we warn the reader that the condition 

V A • , ~ \  {Q},B • . ~ \  {O},C • ~ \  {0} ,  

K(AN B fq C) + K(C) = K(Arq C) + K(B n C) 

is strictly stronger than ~ ' -L~ ' I~ (K) .  It implies CI-statements ~¢± 
~ ' I~ ' (K)  for all complete subalgebras ~ '  of ~.  [In general, ~¢ ± ~ ' I ~ ' ( K )  
is not implied by ~ ± ~ ' I ~ ( K ) w i t h  ~" c ~.] 

Nevertheless, when the NCF-theory is applied in the area of AI a special 
framework is accepted: certain elementary variables or attributes are 
distinguished and the concept of (conditional) irrelevance among them is 
studied. Thus, in the following we will often consider this special situation: 

A nonempty finite set N of attributes is given. A nonempty finite set 
X i of possible states corresponds to each attribute i • N (to avoid 
trivialities we suppose card X i > 2). Whenever O ~ S c N, the 
symbol X s will be used to denote the cartesian product 1-Ii~ sXi, i.e. 

(S) the set of states for S. Moreover, we introduce the coordinate algebra 
~ s  for every set of attributes S c N: 

d~ = {0,  XN}, ~N = exp X N, 

d s = {T × X N \ S; T c Xs} for the remaining S. 

Note that whenever sets of attributes S 1 . . . . .  S k are pairwise disjoint, the 
collection of corresponding coordinate algebras {ZaCs,,..., Js,} is perpendic- 
ular. We can apply the general definitions above to the situation (S) and 
introduce (conditional) independence for attributes: 

DEFINITION 3 (Dependency model, induced CI-model, graphoid) Sup- 
posing (S), the symbol T ( N )  will be used to denote the set o f  triplets 
( A ,  B IC) ofpairwise disjoint subsets o f  N where the first two sets A and B 
are nonempty. Every subset o f  T( N )  will be called a dependency model 
over N. 

By an NCF over N we will understand an N C F  on X N. Having an NCF 
K over N, then its marginal NCF K s (where 0 4: S c N )  is an N C F  over 
S defined as follows ( K N = K): 

KS(T) = min{K(X); x • T X X N \  s} = K(T × X N \ S ) ,  

where Q 4= T c X s. 

Whenever ( A ,  BIG) • T ( N )  and K is an N C F  over N,  we will write 
A _L BIC(K) ins teadofsd  A J_ ~¢BI~Cc(K). The dependencymodel {(A, BIC)  
• T(N); A J_ BIC(K)} is then called the CI-model induced by K. 
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By an inference rule with r antecedents (r > 1) we understand an 
(r + 1)-ary relation on T( N ) (specified concretely for every set of attributes 
N).  We say that a dependency model I c T ( N )  is closed under an 
inference rule ~ iff for each instance of ~ (i.e. every collection 
[tl . . . . .  tr + 1] of elements of T ( N )  belonging to ~q~) the following statement 
holds: whenever the antecedents (i.e. t l , . . . ,  t r) belong to I, then so does 
the consequent (i.e. tr+ 1)" 

Usually, an inference rule is expressed by an informal schema, firstly 
antecedents and after an arrow the consequent. Thus, the schemata 

( A ,  BIC ) -o ( B, AIC ) (symmetry), 
(A,  B u CID) -~ (A,  CID) (decomposition), 
(A,  B U CID) -o (A, B[C U D)  (weak union), 
[(A, B[C U D)  & (A,  C[D)] ~ (A, B U CJD) (contraction), 
[(A, B[C U D ) & ( A ,  C[B U D)] ~ (A, B U CID) (intersection) 

describe five inference rules. According to [15], we will call every depen- 
dency model closed under these inference rules a graphoid. 

As suggested below Definition 1, every marginal NCF (over Q ¢ S c N)  
can be identified with a point function K s :X s ~ {0,1,2 . . . .  }. We can 
formulate several equivalent definitions of CI (with respect to) in terms of 
these point functions. 

LEMMA 1. Supposing (S), let r be an NCF over N and ( A , B [ C )  
T( N).  Then the following three conditions are equivalent to A ± BIC(K): 
(a) V a ~ X  A , b ~ X B , c ~ x  o 

KAuBUC(abc) + KC(c) = KAUC(ac) + KnUC(bc). 

(b) Va, a ' ~ X  A, b,b' ~ X  B , c  ~ X  o 

KAUBUC(abc) + KAuBUC(a'b'c) = KAuBUC(ab'c) + KAuBUC(a'bc). 

(C) 3 f : X A u  C "--> {0,1 . . . .  }, g : X B u  C --* {0,1,...}, 

Va ~ X  A , b  ~ X s ,  c ~ X  c, K AUBUc(abc ) = f ( a c )  + g ( b c ) .  

The reader has probably noticed that the conditions in the preceding 
lemma are analogous to well-known equivalent definitions of probabilistic 
CI: condition (b) can be interpreted as "cross interchangeability" and 
condition (c) as "factorization". 

Proof Condition (a) is a simple transcription of the definition A ± 
BIC(K) in terms of marginal NCFs. To see ( a ) ~  (b), express the 
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K A u 8u C(.), s using (a) and substitute them into (b). For ( b ) ~  (a), fix 
a, b, c and write, using (b), 

KAul~UC(abc) + tcC(c) 

= m i n { K A u B U C ( a b c )  + KAuBUC(a 'b ' c ) ;  a' ~ X A, b' ~ X B} 

= m i n { K A u B U C ( a b ' c )  + KAUBUC(a 'bc);  a' ~ XA,  b' ~ X B} 

= m i n { K A u B U C ( a b ' c ) ;  b' ~ X B} + m i n { K A u B U C ( a ' b c ) ;  a' ~ X A} 

= KAUC(ac) + KBUC(bc). 

For (a) ~ (c), put f ( a c )  = KAVC(ac)  -- KC(c), g (bc)  = ~:BUC(bc). To see 
(c) ~ (a), fix a, b, c and, using (c), write 

KAUC(ac) = m i n { f ( a c )  + g (b ' c ) ;  b' ~ X n} 

= f ( a c )  + m i n { g ( b ' c ) ;  b' ~ XB}, 

K s U C ( b c )  = m i n { f ( a ' c )  + g (bc ) ;  a' ~ X A} 

= m i n { f ( a ' c ) ,  a' ~ X A} + g ( b c ) ,  

KC(c)  = m i n { f ( a ' c )  + g (b ' c ) ;  a' ~ X A, b' ~ X B} 

= m i n { f ( a ' c ) ;  a ~ X A} + min{g (b ' c ) ;  b' ~ XB}, 

and substitute these expressions together with (c) into (a). • 

Formal properties of CI arising in the NCF-theory are in many respects 
similar to the properties of probabilistic CI, namely, some basic properties 
are valid in both frameworks. 

LEMMA 2 Let  K be an N C F  on a set X vs Q,  and ~¢, ~ ,  ~ ,  ~ be a 
perpendicular collection o f  complete algebras on X. Let  ~¢ + ~ denote the 
complete algebra generated by za¢ U ~ . 5  Then 

(a) {®,X} ±~1~(,<), 
(b) ~¢ ±~1~( ,~)  ~ , ~  ±~I~(K),  

= ~ "  ± ( ~ '  + ~ ) I ~ ( K ) .  

The proof is left to the reader, who can also consult [22] or [7] [in the 
case of the special situation (S)]. Hence, we can easily deduce as a 
consequence the fact already mentioned in the Introduction. 

5That is, the least complete algebra on X containing J u ~-~. 
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COROLLARY 1 Suppos ing  (S), let K be an N C F  over N .  Then  the 

C I - m o d e l  induced  by K is a graphoid.  

One may ask which graphoids are CI-models in the NCF-theory. It is of 
interest to us that in the case of three attributes every graphoid is a 
CI-model (the same holds for probabilistic CI). The following example 
proves this claim. 

EXAMPLE 1 (The case of three attributes) Firstly note that every graphoid is 
uniquely determined by its intersection with the set of elementary triplets: 

E ( N )  = {({a},{b}lC); a , b  ~ N, a 4: b, C c N, {a,b} A C = ~} 

(for details see [11]). Thus, we leave it to the reader to verify that in the 
case N = {1, 2, 3} there exist exactly 18 graphoids, which can be divided 
into eight groups (if we group together graphoids mutually transformable 
by means of a permutation of attributes). 

In the following list we choose one representative of each group and 
give an example of an NCF inducing it as CI-model. Note that X 1 = {a, a'}, 
X2 = {b, b'}, X 3 = {c, c'} in all eight items, and NCFs are given as point 
functions o n  X 1 ~ X 2 X X 3. 

1. The empty graphoid is the CI-model induced by the following NCF: 

K ( a b c )  = K ( a b c ' ) =  K ( a b ' c ) =  K ( a ' b c )  = O, 

K ( a ' b ' c )  = K ( a b ' c ' )  = K ( a ' b c ' )  = K ( a ' b ' c ' )  = 1, 

2. The graphoid {({1}, {2}IQ), ({2}, {1}IQ)} is induced by 

K( a b c )  = K ( a ' b c )  = K ( a b ' c )  = K ( a ' b ' c ' )  = O, 

K ( a b c ' )  = K ( a ' b ' c ) =  K ( a ' b c ' ) =  K ( a b ' c ' )  = 1. 

3. The graphoid {({1}, {2}1{3}), ({2}, {1}1{3})} is the CI-model induced by 
K: 

K ( a b c )  = K ( a ' b c ) =  K ( a b c ' ) =  K(ab '  c ' )  = O, 

K ( a ' b ' c ' )  = K ( a ' b ' c )  = K ( a ' b c ' ) =  K ( a b ' c )  = 1. 

4. The graphoid {({1}, {2}10), ({1}, {3}IQ) + sym. triplets} is the CI-model 
induced by the following NCF: 

K ( a b c )  = K ( a b c ' )  = K ( a b ' c ' )  = O, 

K ( a ' b ' c ' )  = K ( a ' b ' c )  = K ( a ' b c ' )  = K ( a ' b c ) =  K ( a b ' c )  = 1. 
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5. The graphoid {({1},{2}10), ({1},{2}1{3}) + sym. triplets} is the CI- 
model induced by K: 

K(abc) = K(abc')= K(ab'c)= K(a'bc)= K(a'b'c) = O, 

K(ab'c') = K(a'bc') = 1, 

K(a'b'c') = 2. 

6. The graphoid {<{1}, {2}10), <{1}, {3}10), ({2}, {3}10) + sym. triplets} is 
the CI-model induced by the following NCF: 

K(abc) = K(ab' c')= K(a'bc')= K(a'b' c)= K(a'b' c') = O, 

K(abc') = K(ab'c)= K(a'bc) = 1. 

7. The graphoid generated by the triplet ({1}, {2, 3}10) is the CI-model 
induced by the following NCF: 

K(abc) = K(abc')= K(ab' c) = K(a'bc)= K(a'b' c)= K(a'bc') = O, 

K(a'b' c') = K(ab' c') = 1. 

8. The full graphoid T(N)  is the CI-model induced by K = 0. 

However, there are graphoids which are not CI-models in NCF-theory. 
Spohn in [23] claims that every CI-model induced by an NCF has to be 
closed under three further independent inference rules: 

[(A, BIC U D)  & (C, DIQ) & (C, DIA)  & (C, DIB)] --, (C, DIA u B),  

[<A,BIC u D> & <C, DIQ> & <C, DIA> & (C, DIA u B>] -o <C, DIB>, 

[ (A,BIC u D> & <C, DIA> & <C, DIB> & <C, DIA u B>] --, <C, DIQ>. 

(The set of antecedents of such an inference rule can then give rise to an 
example of a graphoid which is not a CI-model in the NCF-theory). 
Nevertheless, the same result holds for probabilistic CI-models induced 
by strictly positive measures. This fact supported the hypothesis that CI- 
models arising in the NCF-theory coincide with probabilistic CI-models 
corresponding to strictly positive measures. But this hypothesis is incor- 
rect, as the inference rule 

[ (A,BIC U D)  & (C, DIA)  & (C, DIB) & ( A ,  BIQ)] -o (C, DIQ>, 

which "holds" for each probabilistic CI-model (see [24]), fails in the case of 
CI-models induced by NCFs. A counterexample can be found in [23] or 
[27]. 
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We conclude the section with a remark explaining why we restrict 
ourselves to perpendicular collections of algebras. 

REMARK 1 Attempts to extend the definition of CI for nonperpendicular 
collections of algebras lead to unpleasant problems. 

The first possibility is to accept the "weak definition" (Definition 10 in 
[22]): ~" ± ~ ' I ~ ( K )  -= for all A ~ at(~¢), B ~ a t ( 2 ) ,  C ~ a t ( ~ ) w i t h  A n 
B N C :/: Q it holds that K(A C~ B N C) + K(C) -- K(A A C) + K(B C~ C). 
But in the case of this definition the "intersection" property so' _L ~q~[~ & 

.~ J_ ~ [ ~  ~ d  J_ ( ~ '  + ~ ) [ ( ~  Cl ~ )  does not hold. The counterexample 
is easy: take X = {a, b, c, d} with an NCF given by a point function 
K(a) = 1, K ( b )  = K ( c )  = K ( d )  = O, and consider the following algebras 
given by decompositions: a t (~ )  = {{a, b}, {c, d}}, a t (~ ' )  = {{a, c}, {b, d}}, 
a t (~ )  = {{b}, {a, c, d}}. Note for explanation that Theorem 13 from [22], 
claiming that the "intersection" property holds, implicitly uses the assump- 
tion of perpendicularity. 

The second possibility is the "strong definition" (this approach is used in 
Definition 8 of [22]--the definition of unconditional independence): ~ _L 
oq~'[~(K) - for all A ~ a t (~) ,  ~ '  ~ a t ( ~ ) ,  C E a t (~ )  it holds that [A n B 
n C :# O & K(A A B N C) + K(C) = K(A C~ C) + K(B C~ C)]. Neverthe- 
less, in the case of this definition even the "weak union" property ~ ± (~q~ 
+ ~) [ .~  ~ J_~' [ (~ + 2 )  fails. To see this take X = { a , b , c , d } ,  K - 0 

and consider the following algebras: a t ( ~ ) =  {X}, a t ( ~ ' ) =  a t ( ~ ) =  
{{a, b},{c, d}}, a t ( ~ )  = {{a, c},{b, d}}. Note that the "trivial" property 
{0, X} J_ ~ ' [ ~  also fails in this case. 

3. NONAXIOMATIZABILITY OF CI-MODELS ARISING IN THE 
NCF-THEORY 

In this section we show that CI-models induced by NCFs cannot be 
characterized as dependency models closed under a finite number of 
inference rules. This result has an analogy both in the probabilistic case 
[26] and in the case of EMVD-models  in the theory of database relations 6 
[181. 

Firstly we give a construction allowing us to generate CI-models in the 
NCF-theory very simply. The result also has an analogy in the probabilistic 
case- -see  [4, 26]. 

6The abbreviation EMVD means embedded multivalued dependency. It has an analogous 
meaning for relational databases as CI for probability measures. 
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PROPOSITION 1 Having fixed a nonempty finite set of attributes N, the 
intersection of two CI-models induced by NCFs is a CI-model induced by 
an NCF. 7 

Proof  Suppose that  two N C F s  over N are given: K 1 : X N ~ {0, 1 . . . .  } 
and K 2 :YN --~ {0, l , . . . } ,  where X u = ~ I i ~ u X i ,  Y N  = I~i~uYi - a s  in the 
situation (S). Put Z i = X i × Yi for i ~ N, and define on Z N = I-[i~ NZi  the 
funct ion K: 

K ( [ x i , Y i ] i E N )  = Kl([Xi] i~N)  @ K2([Yi]i~N) , X i E X i ,  Yi E Yi" 

Of course,  K defined as N C F  (over N) .  Moreover ,  it is no problem to see 
that for each Q 4= S c N it holds that  

KS([xi,Yi]i~s ) = KS([xi]i~S ) + KS([yi]i~S ), Xi ~ Xi, Yi ~ Yi" 

Now, to show [A _L BIC(K 1) & A 3- BIC(K2)] ~ A 3_ BIC(K) for an arbi- 
trary ( A ,  BIC) ~ T (N) ,  use the equivalent definition of  CI (b) f rom 
I ~ m m a  1. The  implication ~ is then a simple summing of  equat ions for 
K 1 and K2; the implication A 3_ BIC(K) ~ A ± BIC(K 1) is evident if we 
eliminate terms with i< 2 by a p roper  choice of  states for K 2 (for example 

[ Y i ] i E A  = [Y~]i~A = [Y ' i ] iEB  = [Y~]i~B)" The  same idea yields A ± BIC 
(K) ~ A ± BIC(K2). • 

Moreover ,  we shall need  two special construct ions of  NCFs.  

LEMMA 3 Supposing that N is a finite set of attributes and • ~ S c N, 
there exists an NCF K over N such that: 
(a) -~[A ± BIC(K)] whenever ( A ,  BIC) ~ T ( N )  with 

S c A U B U C  & A A S - ~ f ~ 4 : B ; ~ S ;  

(b) A _L BIC(K) for the remaining (A,B[C) E T(N). 

Proof  P u t X  i = {0,1} for each i ~ N a n d  

K([Xi]i~N)=(lO otherwise.if [ V i ~ S ,  x i = l ]  , 

To verify (a) use L e m m a  l(b): consider  a ~ X A, b ~ X 8, c E X c to be 
made  of  units (i.e., a i = 1 for all i ~ A)  and a' ~ X A, b' ~ X B to be made  
of  zeros (i.e., a' i = O  for all i ~ A ) .  Then  KAUBUC(abc ) =  1 but 
KAuBuC(a'b'c) = KAUBUC(a'bc) = KAuBud(ab'c)  = 0. Whenever  Q 4: 

T c N with S \ T 4~ Q, then K T =- 0. Thus, we have A ± BIC(K) for  each 

7Here we have in mind intersection in ordinary set-theoretical sense--that is, simply 
intersection of subsets of T(N). 
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( A ,  BIC)  ~ T ( N )  with S \ (A  U B  U C) ~ O. In the case [S c A  U B  
u C & A n S = O] we have S c B U C and, using L e m m a  l(c), conclude 

A 3- BIC(K).  Similarly in the dual case B ~ S = O. • 

LEMMA 4 Supposing N = {0, 1 . . . . .  n} where n > 3, there exists an NCF K 
over N such that: 
(a) {0} _L {i}[{j}(K) f o r j  > i > 1, 
(b) -~[{0} 3_ {j}l{i}(K)] forj  > i > 1, 
(c) -~[{i} 3_ {j}I{0}(K)] f o r i  4~j, i , j  >_ 1, 
(d) -~[K 3- LIO(K)] forKs-/= 0 ~ L, K O L = 0 ,  K , L  c N. 

Proo f  Put  X i = {0, 1} for  each i ~ N, and define K as follows: 

0, i f x  0 =  I & [ V i > _  1, x i= O ] ,  

1, i f x  0 =  l & [ 3 i > _  1, x i =  1], 

K([Xi]i~N)= 1, i f x o = O & [ 3 1 < _ j < n ,  x j = l & x j + ] = O ] ,  

0, i f x  0 = 0 & [ v j < n , x j < x j + l ] .  

It is easy to verify that  the marginal  on S = {0, i, j} for  j > i > 1 has the 
form 

Ks(000) = Ks(100) = KS(001) = KS(011) ---- 0, 

KS(111) = KS( l l0 )  = KS(101) = KS(010) = 1. 

Hence ,  by definition, we get {0} ± {i}l{j}(K), but --1[{0} _L {j}I{i}(K)], -~[{i} 
± {j}I{0}(K)], -~[{0} 3- {i}[O(K)], -~[{0} 3- {j}IO(K)], and -~[{i} J_ {j}IO(K)]. 
Thus  condit ions (a), (b), (c) are satisfied [we use symmetry in (c)]. Also 
condi t ion (d) is valid; otherwise,  by the decomposi t ion  proper ty  (see 
Corollary 1) we can derive {k} 3_ {I}IO(K) for  k =~ l, and this contradicts  
the conclusions above [either {k, I} = {0, i} or {k, l} = {i, j}]. • 

In the rest of  this section we will deal with the set of  attr ibutes 
N = {0, 1 . . . . .  n} where  n > 3. In this situation we use the following 
successor opera t ion  suc:{1 . . . . .  n} ~ {1 . . . . .  n}: 

suc( i )  = i +  1 whenever  i =  1 , . . . n -  1; suc(n)  = 1. 

COROLLARY 2 Supposing N = {0, 1 . . . . .  n} (n > 3) and s ~ {1 . . . .  , n}, 
there exists an NCF K over N such that the dependency model 

I,.J {( {0}, { j} l{suc( j )}) , ({ j} ,  {0}l{suc(j)}> } 
j ~ { 1  . . . .  , n } \ { s }  

is the CI-model induced by K. 
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Proof As the successor operation permutes {1 . . . . .  n}, we can suppose 
without loss of generality s = n. Put -~ =-~1 U.@2, where 

-~1 = {D c N,  card D >_ 4}, 

-~2 = {D c N; card D = 3 & D  :~ {0,j ,  suc(j)} for every j = 1 . . . . .  n - 1}. 

For each D ~_~ we find by Lemma 3 (where we put S = D) the corre- 
sponding NCF K[D] over N, and similarly apply l_emma 4 to find an NCF 
K[-] over N. Finally, using Proposition 1, construct an NCF K over N 
whose induced CI-model is the intersection of CI-models induced by K[-] 
and K[D]'s for D ~_~. Clearly, triplets ({0}, {j}l{suc(j)}} for j = 1 . . . . .  n - 
1 [and ({j}, {0}[{suc(j)}}] belong to all these CI-models. It suffices to verify 
that no other triplet ( A ,  BIC} ~ T ( N )  does so: 

if A U B U C ~_~, then ( A ,  BIC} is not induced by K[A U B U C] 

if C = Q (especially card A u B u C = 2), then ( A ,  B IC} is not in- 
duced by K[-]. 

Thus, only ( A , B [ C }  ~ T ( N )  with A U B U C = {0,j, suc(j)} for some 
j = 1 , . . . ,  n - 1 and with C :/: • remain. By Lemma 4(b),(c) we simply get 
that (A ,  BIC} is not induced by K[-]. • 

The second important step is to prove that CI-models arising in the 
NCF-theory are closed under the collection of inference rules from [26] 
and [18]. This can be obtained as a consequence of the following proposi- 
tion. 

PROPOSITION 2 Let {d,  ~1 . . . .  , ~'~n} (n > 3) be a perpendicular collec- 
tion of  complete algebras on a nonempty set X, and ~c be an NCF on X. 
Then it holds that 

[Vi = 1 . . . . .  n , ~  ±~.~i]~.~suc(i)(K) ] =:~ [Vi = 1 . . . .  , n , d  ±~'sucu)l~i(K) ] 

The proof is in the Appendix (the fifth section). We were inspired in the 
proof  by ideas from [23], where an uncomplete proof (in a special case) is 
given. 

COROLLARY 3 Supposing (S), let N = {0 . . . . .  n} (n > 3), and let ~c be an 
N C F  over N. Then the following conditions are equivalent: 
(a) Vj = 1 . . . . .  n, {0} _t_ {j}l{suc(j)}(K) 
(b) Vj = 1 . . . . .  n, {0} ± {suc(j)}l{j}(K). 

Now, the main result can be proved. 

THEOREM 1 Every system ~ o f  inference rules characterizing the CI- 
models induced by NCFs as dependency models closed under S ° has to 
be infinite. 
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Proof  Suppose by contradiction that S :  is finite, and find r >_ 3 which 
exceeds the maximal number of antecedents in S ~. Put 

I = I,.J {( {0}, {j}l{suc(j)}), ({j}, {0}l{suc(j)})}. 
j~{l ..... r} 

To show that I is closed under some inference rule ~ from S:, consider a 
set of triplets K c I which can be the set of antecedents of an instance of 
~';  let t ~ T ( N )  be the corresponding consequent. As card K < r, by 
Corollary 2 find a CI-model J (induced by some NCF) such that K c J c I. 
Necessarily J is closed under ~ '  (by the assumption that S :  characterizes 
the CI-models induced by NCFs) and hence t ~ J c I. Thus, I is closed 
under each inference rule ~ '  from S:. Nevertheless, by Corollary 3, I is 
not a CI-model, and this contradicts the assumption about S:. • 

REMARK 2 Nevertheless, the CI-models induced by NCFs can be charac- 
terized by a countable system of inference rules with one consequent 8 
under the platonic assumption that all CI-models arising in NCF-theory 
are known. One can then construct these inference rules from so-called 
min imal  sound inference instances 9 exactly as in Proposition 2 in [26], where 
the proof  is made for the probabilistic case. The property from Proposition 
1 of this paper is the crucial fact enabling that construction. 

4. MARGINAL PROBLEM 

Dealing with the integration of knowledge in probabilistic expert sys- 
tems [16, 8], we naturally meet  with the problem of how to recognize 
whether for a system of prescribed less-dimensional probability measures 
there exists a "simultaneous" multidimensional probability measure having 
the prescribed measures as marginal measures, often called the marginal 
problem. The same process can be expected when we try to model epis- 
temic states using the NCF-theory. Therefore  this section is devoted to the 
analogous problem in the framework of NCFs. 

DEFINITION 4 (Consistency, consonancy, solvability) Suppose (S) and 
Q 4: _~ c (exp N)  \ {•}. A system o f N C F s  {KZ; Z ~ } ,  where K z is an 
N C F  on X z ,  is called consistent i f f  there exists an N C F  K on X N having 
{Kz; Z ~ . 2  ~} as marginals, i.e., V Z  ~ . ~ ,  K z = K z. 

8Inference rules with one consequent are also called Horn clauses in the literature [5]. 
9It is a collection [t 1 .. . . .  tr+ 1] ~ T(N)r+ 1 (r > 1), where {tl . . . . .  tr} "implies" tr+ 1 (i.e., each 
CI-model containing {tl,... , tr} also contains tr+ 1) but no proper subset of {tl,..., t r} does so. 
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A system {Kz; Z ~ _7} is called consonant  iffits marginals coincide, i.e., 
for each couple S, T ~_7 with S ¢~ T ~ • it holds that (Ks) s n T =  
( K r ) s n  T. Supposing that N 4= f~ is a finite set of attributes, we shall say 
that a class O ~ _7 c (exp N )  \ {~2~} is reduced  iff each pair of  its sets 
incomparable. 1° Moreover, a class .7  will be called solvable iff for each 
assignment of  sets of possible states X i, i ~ N (i.e. in any corresponding 
situation (S)) every consonant system of NCFs {Kz; Z ~ -7}, where K z is 
an NCF on X z for Z ~ .7, is also consistent. 

By the margina l  p rob l em we shall unders tand  the task of  recognizing 
whe the r  a given system of  NCFs  { K z; Z ~ _7} is consistent.  O f  course,  the 
condi t ion of  consonancy,  which can be easily verified, is a necessary 
condition.  However ,  it is not  sufficient, as the following example  shows: 

EXAMPLE 2 (Nonsolvable class) Put  N = {1, 2, 3} and _7 = {{1, 2}, {1, 3}, 
{2, 3}}. T h e n  _7 is not  solvable. T o  this end consider  X 1 = {a, a'}, X 2 = 
{b, b'}, X 3 = {c, c'} and the following NCFs  (given as point  functions):  

K(1,2)(ab) = K{1,2}(a'b') = 1, K{1,2}(ab') = K(l,2)(a'b) = O, 

K{1,3i(ac) = K(1,3I(a'c') = 1, Kfl,3}(ac') = K{1,3l(a'c) = 0, 

K{2,3}(bc) = K{2,3}(b'c') = 1, K{2,3}(bc') = K{2,3}(b'c) = 0. 

As their  one-d imens iona l  marginals  are zero,  { Kz; Z ~_7} is consonant .  
However ,  supposing that  K is an N C F  on X 1 × X 2 x X 3 having {Kz; 
Z ~ _7} as marginals ,  we derive by the definit ion of  the marginal  N C F  that  
K(abc) > K(l'2}(ab) = K{1,2}(a , b)  = 1, and similarly for  the o ther  points  of  
X 1 × X 2 x X 3. Thus  K > 1, and this contradicts  the p r imary  condit ion on 
NCFs,  min{K(x),  x ~ X 1 x X 2 × X3} = 0. 

Thus,  as in the probabil is t ic  case, we face the p rob lem of  how to 
recognize whe the r  a consonant  system is consistent.  The  solution of  this 
p r o b l e m  in the probabil is t ic  f r a m e w o r k  can be ob ta ined  asymptotically:  the 
m e t h o d  defines by the so-called iterative proportional fitting procedure a 
sequence  of  mul t id imens ional  probabi l i ty  measures ,  and this sequence  is 
shown [1] to converge  iff there  exists a " s imul taneous"  measu re  and even 
converges  to one  of  the possible solutions. 

l°That is, neither A c B  nor B c A  for A,B ~_U. 
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Nevertheless, the marginal problem in the NCF-theory has much sim- 
pler so lu t ion- -we  need not make iterations: 

PROPOSITION 3 Supposing (S), /et {Kz; Z ~ } ,  where .U c ( e x p N )  \ 
{0} and [3.U = N, be a system of  NCFs (K z is an NCF on Xz).  Then 
{Kz; Z G_U} is consistent iff the formula 

K ( [ X i ] i ~ N )  : m a X { K z ( [ X i ] i ~ Z )  ; Z E . ~ }  for [Xi] i~ N E X N 

defines an NCF on X N having {Kz; Z G.U} as marginals. 

Proof  Supposing that K is an NCF on X N having {Kz; Z ~.2"} as 
marginals, for each [Xi]i~N ~ XN and Z ~_U we have K([xi]i~ N) > 
K Z{[x i] i~  Z)  = Kz([Xi]  i ~ Z ) and therefore K(x) > k(x)  for x ~ X N. Hence  
min{K(x); x ~ X N} = 0 implies min{k(x);  x ~ X N} = 0, i.e., r is an NCF 
on X N, and also KZ(y) > kZ (y )  for Z G.U, y ~ X z. Nevertheless, it is 
not hard to see that k Z ( y )  > Kz(y)  for Z ~ . ~ ,  y ~ X z. Thus KZ(y) > 
f~Z(y) > Kz(y ) = KZ(y) implies that k has {rz; Z ~.U} as marginals. • 

REMARK Note that it may happen that k is an NCF but it does not have 
{Kz; Z c.U} as marginals. We can obtain an example through a modifica- 
tion of Example 2, by changing K{2,3 } as follows: K{2,3)(b'c') = 1, K(2,3l(bC) 
= K{2,3l(bC') = K{2,3I(b'c) = O. 

It is a well-known old result of probability theory [9] that for a system 
.U c (exp N )  \ {Q} the (probabilistic consonancy) is equivalent to (prob- 
abilistic) consistency iff the system .U satisfies so-called running intersec- 
tion property [8]: 

there exists an ordering Z 1 , . . . ,  Z n of  elements of  .U such that 

( * ) 1  V j > 2 ,  3 i X < i < j  Z J N ( [ " J Z k )  , 

The same characterization of solvable systems holds in the f ramework of 
NCFs. We will show it below, 11 where the following notation will be used. 

NOTATION Having a class O 4: .U c (exp N )  \ {0} and i ~ N, we use 
the abbreviation t~ ( i )  for card{Z ~ _U; i ~ Z}. Moreover, the contraction 
of  ~-~ to a nonempty set S c N, denoted by .U A S, is defined as the class of  
maximal sets o f  {Z N S; Z ~ .U, Z A S ~ Q~}. 

l lWe were inspired by the method from [9]. We observed the main features of Kellerer's 
proof and simplified it a little. The essence of the method does not depend on a particular 
formalism--in fact we used it in [28] to prove an analogous result also for other calculi for 
dealing with uncertainty in AI. 
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LEMMA 5 Whenever O 4= -7 c (exp N)  \ {0} is a solvable class, then its 
contraction to a set 0 4= S c N is also solvable. 

Proof  Having a consonant system of NCFs {KT; T ~-7 /X S}, consider 
the system {K~; Z c -7} ,  where we put [x i ~ X i for i ~ Z]: 

K R) ([Xi]iEZA S) for Z n S c R ~_ 7  A S, 

K'z([Xi]i~z) = if Z n S ~ O, 
i f Z n S = O .  

The definition does not depend on the choice of R, as {KT; T ~ - 7  A S} is 
consonant. Clearly, {K~; Z ~-7} is consonant, and as .2" is solvable, there 
exists an NCF K over N having { K~; Z ~-7} as marginals. Of course, it 
also has {Kr; T c -7 A S} as marginals. • 

LEMMA 6 Suppose that O 4=-7 c (exp N)  \ {0} contains a sequence 
Z 1 . . . . .  Z n (n _> 3) where for a l l j  = 1 . . . . .  n i tholds 
Zj O Zj+ 1 \ U ( . ~ \  {Zj, Zj+l}) -~ 0 (Zn+ ' ~ Z l ) .  Then -T is not solv- 
able. 

Proof  For every J ~ { 1  . . . . .  n} choose zj ~ Z j  A Z j +  1 \ U ( - 7 \  
{Zj, Zj+I}) and put S = { z j ;  j = l , . . . , n }  (zn+ l - z ] ) .  By Lemma 5 it 
suffices to show that . 7  A S = {{zj, Zj+l}; j ~ {1, . . . ,  n}} is not solvable. To 
this end consider X i = {0, 1} for i ~ S and the following system of NCFs: 

KT(O0) = KT(l l )  = O, KT(O1) = KT(IO) = 1 

for T = {Zj, Zj+I} , j v~ n, 

K r = 0 for T = {Zl, Zn}. 

As the one-dimensional marginals are zero, {KT; T ~ -7 m S} is consonant. 
Nevertheless, the NCF k over S (see Proposition 3) expressed by 

= [0  i f [ V i ~ S , x  i=O]or[Vi~S,x i=1], 
~([xi] i~s)  

1 otherwise 

has a nonzero marginal over {Zl, zn}, and therefore {KT; T ~ - 7  A S} is not 
consistent. • 

LEMMA 7 Let O 4= -7 c (exp N)  \ {0} be a reduced class satisfying 

V i , j ~  U - 7  3 Z ~ - 7  i , j ~ Z .  

Then -7 is solvable iff card -7 = 1. 

Proof  Suppose card - 7 > 2 ,  and put S = N \  f)-7.  By Lemma 5 it 
suffices to show that -7 A S is not solvable, i.e., we can suppose f3 .7  = Q. 
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Thus,  consider  X i = {0, 1} for  i ~ N, and put  for  each Z ~ _7 

0 if ~,  x i = 1, 
K z ( [ X i ] i ~  Z )  ~" i ~ Z  

1 otherwise.  

It  is no p r o b l e m  to see that  for  each  T c Z,  • 4= T 4= Z,  it holds that  

0 if ~ x i < 1, 
( ~ z ) r ( [ x i ] i ~ r )  = i ~  

1 otherwise ,  

and the re fo re  { Kz; Z ~ .2"} is consonant .  Never theless ,  it is no p rob lem to 
see that  the funct ion ~ f rom Propos i t ion  3 is in this case identically equal  
to 1 and the re fore  { K z; Z ~ _7} is not  consistent.  • 

LEMMA 8 Let  .2" c (exp N ) \  {Q} be a reduced solvable class and 
i ~ O -~. I f  k ~ N satisfies t~. ^ Uv -.{i}) (k )  = 1, then at most  one set 
K ~ _7 with i, k ~ K may exist, and the inequality t~-(k) < 2 holds. 

Proo f  Cons ider  ~ '  = . ~ / x  ( N  \ {i}); clearly there  exists a unique B c 
~ '  with k ~ B and a unique Z ~ _ ~  with B = Z • ( N  \ {i}) [as _7 is 
reduced].  Now, suppose  the existence of  I ~-2" with i, k ~ I ,  and put  
C =  U { I ~ - ~ ;  i , k ~ I } .  O f  course  C \ { i } c B c Z ,  and hence  . 2 " A C  
satisfies the assumpt ion  of  L e m m a  7. T h e r e f o r e  there  exists K ~ - 7  with 
_7 A C = {K n C}, i.e., C c K - - a s  . ~  is reduced,  and that  implies the first 
conclusion. To  see t_r(k) < 2 it suffices to realize that  the only I ~ _7 with 
k ~ I,  i ~ I would have to be  Z. • 

LEMMA 9 Let  .2" c (exp N ) \  {Q} be a reduced solvable class with 
card .~  > 2. Then there exist two different sets I, J ~ -7  with 

min t~.( i )  = 1 = min  t_ r ( j ) .  
i ~ l \ J  j E J \  I 

P r o o f  We  will p rove  this l e m m a  by induct ion on n = card U .2. In  the 
case n < 2 it is trivial; the re fo re  suppose  n > 3. The  conclusions will be  
der ived in th ree  steps. 

I. Supposing min i ~ u .zt.z (i)  > 1, there exists z ~ N with t~.(z)  = 2, and 
for  each such z the uniquelY determined pair Z~, Z 2 ~ .2" with z ~ Z 1 n Z 2 

satisfies min i ~ z~ \ z2 t~.(i) = 2 = mini  ~ z: \ z, t~.(j) .  Indeed ,  choose  z 
N with t : ~ ( z ) =  min i~  u . r  t~.(i), and put  ~ = - 7  A ( N  \ {z}). The  hy- 
pothesis  card ~ '  = 1 leads to the  conclusion (U  _ 7 ) \  { z } -  I ~ .U .  As 
t :z(i)  > t :z(z)  > 2 for  each  i ~ I ,  and -7  is reduced,  we simply derive that  
the condit ion f rom L e m m a  7 is fulfilled. H e n c e  card .2" = 1, and this 
contradicts  the assumpt ion.  T h e r e f o r e  ~ '  is a reduced,  solvable ( L e m m a  5) 
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class with card 5~' > 2, and by the induction hypothesis there exist K, L 
~ '  and k ~ K \ L, l ~ L \ K with t in(k) = 1 = t ~(1). Clearly, by Lemma  
8, t~.(k) < 2, and hence t ~ ( z )  = 2. Now, again by Lemma 8, we see that 
there exists exactly one set Z 1 ~ .2" with z, k ~ Z 1 [the existence follows 
f rom t.~(k) > 2 and t ~ ( k )  -- 1]. Similarly, the only Z 2 ~ .U contains both 
z and l. Moreover,  Z 1 ~ {Z} C K and Z 2 \ {z} c L gives k ~ Z 2 and 
I ~ Z ~ .  

II. There exists i ~ N with t~ ( i )  = 1. Indeed, by contradiction we sup- 
pose min i ~ u -~ t~.(i) > 1, and by repeated application of step I we find a 
sequence of sets Z 1 , . . . ,  Z k ~ .U (k _> 3) with mini ~ z ,  n zm+l t ~ ( j )  -- 2 for 
m = 1 . . . .  , k (Z~+~ - Z1). By Lemma  6 this contradicts the assumption 
that ~ is solvable. 

I lL There exist I, J ~ .U, I ~ J, with 

min t~-(i) = 1 = min t~-( j) .  
i ~ l x ,  J j ~ J \ l  

Indeed, suppose card .2" > 3 (otherwise the result is trivial), and by step II  
find i ~ N  with t ~ - ( i )=  1 and put ~ = _ ~ A N \ { i } .  As c a r d 6 ~ ' > 2  
(otherwise card _~ < 2), by the induction assumption there exist K, J ~ ~ '  
and k ~ K \ J, j ~ J \ K with t ~ ( k )  = 1 = t~ ( j ) .  We can choose j in 
such a way that j ~ I,  where I is the only set f rom .2" containing i. Then 
necessarily J ~ .2 ~ and j ~ I implies t .~(j) = t ~ ( j )  -- 1. • 

THEOREM 2 A nonempty class .~  c (exp N ) \  {Q} is solvable iff it 
satisfies the running intersection property: 

I there exists an ordering Z 1 . . . .  , Z~ of  elements o f  Z such that 

( * ) 1  V j > 2  3 i l < i < j  Z J n ( U Z k )  , 

Proof  As a class is solvable iff the class of its maximal sets is, and the 
same principle holds for validity of ( * ), we can suppose that -~ is reduced. 
To show the necessity of  (*),  suppose card .~  > 2. The sequence in (* )  
can be constructed (backwards) if we show the existence of I, J ~ _~, I :~ J 
with I n (U(-2" \ {I})) c J  (the class .~  \ {I} is solvable by Lemma 5). 
To this end put S = {i ~ N; t~ ( i )  > 2}. Suppose S 4: ~ (otherwise the 
conclusion is clear), and put ~ '  = .2" A S. By Lemma  9 there exist j ~ N 
covered by a unique set B ~ ~ .  Find some J ~.~" with B = J ~ S. But 
t.~(j) > 2 implies the existence of I ~ .2", 1 4: J, with j ~ I. Nevertheless 
I ~ U(-o~ \ {I}) c I ~ S ~ B c J gives the desired conclusion. 

To show the sufficiency of (*),  first realize that a pair of sets {I, J} is 
always solvable: whenever { ~ , ~ }  is a consonant system of NCFs, the 
formula I ( ( [  X i ] i ~ I U J )  "~ max{ ~ l([ x i ]i ~ 1), If J ([  X i ]i ~ J)} defines an NCF o v e r  
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I O J having {K1, K]} as marginals. Now, having an ordering {Z 1 . . . . .  Z,} 
from (*) ,  consider a consonant system of NCFs {Kz; i = 1 . . . . .  n}. By 
induction on k = 1 . . . . .  n we can construct an NCF K k over O i<_~Zi 
having {Kz,; i < k} as marginals: put K 1 - KZ,, and for k >_ 2 construct K k 
from K k-1 and Kz~ [K k- I  and Kz~ are consonant owing to (*)], as 
{ U i<_ ~- 1Zi, Z~} is a solvable class. • 

5. APPENDIX: PROOF OF PROPOSITION 2 

LEMMA 10 Let  {5a¢, ~ ,  ~'} be a perpendk:ular collection o f  complete 
algebras on X -~ (~, and K be an N C F  on X. Then VA ~ at(~¢), B ~ a t ( ~ ' )  
one has 

min{K(AIB n C); C E a t (~ )}  

< K(AIB) _< max{K(AlB n C) ,  C c a t (~ )} .  

Proof  Find C O c a t ( ~ )  with ~c(A n B) = K(A n B N Co), and write 

K(AIB) = {K(A n B n C O ) - K(B N Co)} + {K(B N C O ) - K(B)} 

> K(AIB n C 0) > min{K(AIB n C), C ~ a t (~ )} .  

Analogously, find C1 ~ a t ( ~ )  with K(B) = K(B n C1), and write 

K(AIB) = {K(A  n B) - K ( A  n B n C1) } + {K (A  N B n C 1) - K ( B  N C1) } 

_< K(AIB n C 1) < max{K(AIB n C),C ~ at(~)} .  • 

LEMMA 11 Let  {~ ,  ~1 ,  . . . , ~ , }  ( n >_ 3) be a perpendicular collection o f  
algebras on X ~ f~, and K be an N C F  on X. Suppose that for  each 
i = 1 . . . . .  n the class o f  atoms o f  ~ i  is nontrivially decomposed into two 
parts: 

a t ( ~ / )  = 2 / - u  ~/+ where ~i-=/: f~ ~ i  + and ~ i - n ~ i  += •,  

and consider the successor operation on {1 . . . . .  n} (defined just  before 
Corollary 2). Then VA ~ at(~ ¢) one has 

min min{K(A n B - N  B+); B-E~q~ i , B+E,~su+c(i)} 
i = 1  . . . .  , n  

= min min{K(A n B+A B - ) ;  B+~q~j +, B - ~ s u c ( j )  }. 
j = l  . . . .  , n  
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Moreover 

min min{K(B-N B+); B-E,_~i- , B+~s+c(i)} 
i = l , . . . , n  

= min min{K(B+N B-) ;  B + ~  +, B-E~suc(j)}. 
j = l , . . . , n  

Proof Consider the set Y made of "mixed" atoms of ~q~l + "'" + ~ . :  

Y= U ( ('l Bk;[VkBk~at (2k)]&[3iBi~i -]&[3jBj~J+]}  " k = l  

Owing to the perpendicularity assumption for all A ~ at(~') it holds that 

A N Y =  U ( AN &Bk;k=] 

[Vk B k ~ at(~'k)] & [3i B i E ~ / - ]  & [3 E~ ~.~].+]}. 

Nevertheless, for each set S = A N n ~= 1Bk included in this union there 
exists i ~ {1,. n} with B i ~ ~ / -  and Bsuc(i) .~suc(i), i.e., S c A N B-N 
B ÷ for some B - E ~ , - ,  B+~ + ., ~'suc(i), i E {1,.. n}. Hence 

n 

E + A n Y = U U { A n  B-n B+; B-~,~'i-, B + "-'~,u~(i)}- (1) 
i=1 

Quite analogously we derive 

t t  

A N Y =  U U {AN B +n B-;B +~S~j +,B-~SSc(j)}. (2) 
j = l  

Thus, if we express K(A N Y) considering (1), then we get the left-hand 
side of the first desired equality, while if we express K(A n ¥) using (2) we 
get its right-hand side. The same consideration, this time with omitted A, 
proves the second desired equality. • 

Proof of Proposition 2 This will be performed in three steps. Suppose 
that the collection {~¢, ~ '1 , . . . ,  ~n} is perpendicular and Vi = 1 . . . . .  n, 

I. Introduce for each A E at(~¢) and i ~ {1 . . . . .  n} 

li(A) = min{K(AIB); B ~ a t (~i )} ,  ui(A) = max{K(AIB); B ~ at(~/)}  
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Then 

VA ~ at(~¢), 

ll(A) . . . . .  I,(A) -- I(A), Ul(A) . . . . .  u , (A) - u(A). 

Indeed, having fixed A, i, and B ~ a t (~/ )  wri te--by ~ '  ±~il~'suc(i)(K), 
Lemma 10, and again 5ae" Z ~'il~'suc(O(K)-- 

lsuc(o(A) = min{K(AIB'); B' ~ at(~'sucU)) } 

= min{K(AlB n B'); B' ~ at(~suc(i)) } < K(AIB) 

_< max{K(AlB n B'); B ' ~  at(~suc(i)) } 

= max{K(AIB'); B' ~ at(~suc(i)) } = Usuc(i)(A). 

Hence, by minimizing, respectively maximizing, through B ~ at(~'i) we get 

VA ~ at(~¢) Vi ~ {1, . . . ,  n}, lsuc(i)(A) < li(A) < ui(A) _< Usuc(i)(A). 

AS the successor operation is "cyclic", this implies the equalities to be 
proved. 

II. Introduce for  each A ~ at(e~) and i ~ {1 . . . .  , n} 

~ / - ( A )  = {B E at(~'i);  K(AIB) = li(A)}, 

~'i+(A) = {B ~ a t (~ / ) ;  K(AIB) > li(A)}. 

Then for  each A ~ at(A) there exists i ~ {1 . . . . .  n} with ~.~i+(A) = Q. In- 
deed, fix A ~ at(~) ,  and suppose by contradiction that ~'i+(A) :~ Q for all 
i ~ {1 . . . . .  n}. Thus, at(~q~i) =~ ' i - (A)  o ~ i + ( A )  is a nontrivial decomposi- 
tion of at(~q~i), and we can apply Lemma 11 in the following. By step I 
there exists a shared value for li(A), i = 1 . . . . .  n, denoted by I(A). Thus, 
owing to ~¢ ± ~l~s~cu-)(r)  and the definition of ~q~suc(j), we get 

Vj ~ {1 . . . . .  n} V B + ~  + VB-E,~suc(j), 

K(AIB+n B - )  = ~:(AIB-) = I(A),  

i.e., K(A r~ B+r~ B - )  -- K(B+r~ B - )  + I(A) for j ~ {1 . . . . .  n}, B + ~  +, 
B- ~ ~uc(j).  Now, denoting 

x =  min min{K(A~ B+n B - ) ; B + ~  + ,B+~suc( j )} ,  
j = l  . . . . .  n 

y = min min{r(B+rh B- ) ;  B + ~  +, B - ~ ' ~ ( j ) } ,  
j= l , . . . , n  
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we easily get by minimization x = y +/ (A) .  Nevertheless, owing to oae _L 
~/l~'suc(i)(K) and the definition of + ~'suc(/), we can write 

Vi  ~ {1 , . . . , n}  V B - ~ . ~ i -  V B + ~  + "-~suc(i), 

K(AIB-c3 B +) = K(A[B +) > I(A) + 1, 

i.e., 

K (AN B-•  B +) > K(B-•  B +) + I ( A ) +  1 

for i ~  {1,. ,n}, B ~ i - ,  la+~c~+ . . . .  suc(i)" 

Hence, by minimization (now we actually use the equalities in ]_.emma 11) 
we derive x > y + / ( A )  + 1, and this contradicts the previously derived 
equality. Thus, necessarily [3i ~ {1 . . . . .  n} 5~'i+(A) = Q]. 

111. Vi ~ {1 . . . . .  n}, s¢ 3-~'suc(/)l~/(K). Indeed, having fixed A ~ a t (d )  
by step 11, there exists i ~ {1 . . . . .  n} with/i(A) = u i ( A )  (see the notation in 
step I). But this, by step I, means that Vi ~ {1 . . . . .  n}, /i(A) = ui(A), i.e., 
there exists a number I(A) such that 

V i =  1 , . . . , n  VB ~ a t ( ~ ) ,  K(AIB) = / ( A )  

i.e., 

K(A  f3 B) = I (A )  + A(B). 

The condition above means just N i 3-~iI{Q,X}(K) for all i =  1 , . . . , n  
[clearly K(A)=  I(A)]. Thus ~'3_~uc(/)]{O,X}(K)with ~¢±~'il~'~uc(/)(K) 
gives, by Lemma 2(c), oae ± (~/+~'su~(i)I{Q,X}(K), and hence by Lemma 
2(c) we finally get ~¢ 3_~su~(/)l~(K). • 

6. CONCLUSION 

The significance of the main results proved here is as follows. Theorem 
1 has above all a theoretical value. It says that, although in the NCF-theory 
different CI-models from those in probabilistic reasoning can arise (an 
example is in [27] or [23]), they cannot be characterized by means of a 
simple finite axiomatic system (similarly to the probabilistic case). Thus, 
the description of all CI-models in the NCF-theory seems to be a rather 
complicated problem. 

On the other hand, one can restrict attention to special classes of 
CI-models. For example, Hunter  [7] is interested in CI-models described 
by influence diagrams (i.e. directed acyclic graphs). Another possible 
approach to the description of CI-models (practiced in probabilistic rea- 
soning) is to use undirected graphs, especially so-called triangulated or 
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chordal graphs, which give rise to the class of decomposable models (for 
details see [14]). These models correspond uniquely to (or can be equiva- 
lently described by) classes satisfying the running intersection property. In 
fact, this identification of triangulated graphs (or classes satisfying the 
running intersection property) with probabilistic CI-models is also possible 
owing to the result from [9] which is analogous to our Theorem 2. Thus, 
our second main result suggests that the very useful tool of decomposable 
models can be also transferred to the framework of NCFs. 
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