
KYBERNETIKA | VOLUME 2 9 ( 1 9 9 3 ) , NUMBER 2 , PAGES 18 0 { 2 00CONVEX CONES IN FINITE{DIMENSIONAL REALVECTOR SPACESMilan Studen�yVarious classes of �nite-dimensional closed convex cones are studied. Equivalent char-acterizations of pointed cones, pyramids and rational pyramids are given. Special classof regular cones, corresponding to \continuous linear" quasiorderings of integer vectors isintroduced and equivalently characterized. It comprehends both pointed cones and rationalpyramids. Two di�erent ways of determining of vector quasiorderings are dealt with: es-tablishing (i. e. prescribing a set of `positive' vectors) and inducing through scalar product.The existence of the least �nite set of normalized integer vectors establishing every �nitelyestablishable (or equivalently �nitely inducable) ordering of integer vectors is shown. Forevery quasiordering of integer vectors established by a �nite exhaustive set there exists theleast �nite set of normalized integer vectors inducing it and elements of this set can bedistinguished by corresponding `positive' integer vectors.1. INTRODUCTIONVarious classes of closed convex cones in �nite-dimensional real vector spaces formthe topic of this paper. The source of motivation for this study is in apparentlyremote area of mathematics, namely in arti�cial intelligence. Within the frame-work of our research project1 we endeavour to develop a convenient mathematicaltheory to describe structures of conditional stochastic independence of �nite num-ber of random variables (this would be of great importance for probabilistic expertsystems, a growingly-popular area of arti�cial intelligence). Nevertheless, the sys-tematic thorough buildup of this theory made in [8] requires some subsidiary resultsconcerning the above mentioned cones (more concretely, several results concerning\continuous linear" quasiorderings on the set of integer vectors are needed and theseresults stem from other results about convex cones of real vectors). Though theseproperties of geometric nature look natural, precise proofs require adequate space.As they are rather speci�c in the theory on conditional independence structures theywould complicate the main text.On the other hand, we don't know any publication where the theory of �nitely-di-mensional convex cones (especially of rational pyramids) is systematically developedup to the degree su�cient for above mentioned purposes (although some particularresults probably can be scattered in the literature).1This research was supported by the internal grant No. 27510 of Czechoslovak Academy ofSciences \Explanatory power of probabilistic expert systems: theoretical background."



Convex Cones in Finite-Dimensional Real Vector Spaces 181Thus, the paper is intended as an adequate treatise (maybe rather technical)on closed convex cones in Rn (= the set of n-tuples of real numbers), i. e. thecones corresponding to continous linear quasiorderings of real vectors. We tried tobase the paper on well-known facts from textbooks of linear algebra, topology andlinear programming. Provided we knew that some properties were shown there andwe haven't really short proofs of them, we preferred to refer to the correspondingsource. Then the property is formulated as Statement in the text. Some evident oreasy properties often used later are named Facts.Every closed cone in Rn corresponds naturally to a quasiordering of n-dimensionalreal vectors. Namely, having a closed cone K � Rn and real vectors u; v 2 Rn writev �K u i� (u � v) 2 K. This de�nes a reexive transitive binary relation on Rn(i. e. quasiordering), which is moreover linear and continous (for details see [6]).Two ways of determining of quasiorderings of vectors are studied in this article:establishing and inducing.The method of establishing consists in prescribing a set of vectors and consider-ing the `minimal' quasiordering making these vectors `positive'. This leads to theconcept of conic hull recalled in x 3. On the other hand, the method of inducing bya given set L � Rn consists in declaring vectors having nonnegative scalar productswith elements of L to be `positive'. This leads to the concept of dual cone treatedin x 4. In case that a quasiordering is moreover antisymmetric, it is called ordering.The corresponding cones, called pointed, are studied in x 5. The next section (x 6)introduces a wider class of regular cones, which are later shown to correspond toquasiorderings of integer vectors. Some facts concerning extreme rays studied in x 7are utilized in x 8 to show several results about further special class of closed cones,namely pyramids and rational pyramids. Finally, quasiorderings of integer vectors,i. e. vectors whose components are integers, are studied in the last section (x 9).More detailed comment of contents starts every section.2. BASIC NOTATIONThe set of real, resp. rational, resp. integer, numbers will be denoted by R, resp. Q,resp. Z, the corresponding subsets of nonnegative numbers (including zero) by R+,resp. Q+, resp. Z+. Similarly, the sets of corresponding n-tuples will be denotedby Rn, resp. Qn , resp. Zn. The set of positive integers or natural numbers (i. e.f1; 2; ::: g) will be denoted by N.The Euclidean norm of a vector x will be denoted by kxk, the scalar productof vectors x and y by hx; yi, their sum by x + y; the product of a scalar � and avector x will be written as � � x. The symbol xk ! x means that the sequence fxkgconverges to the element x.Having a set A � Rn the symbol A denotes its closure (with respect to theEuclidean norm), Lin(A) its linear hull, A? its orthogonal complement, (�A) itsmultiple by (�1), i. e. (�A) = f�a ; a 2 A g. Finally, A � B denotes the directproduct of sets A and B. The other symbols will be introduced in the text.Notice: Throughout the paper only real vector spaces Rn where n � 1 will bedealt with.



182 M. STUDEN�Y3. CONIC HULLBasic concepts of cone, closed cone, conic hull and closed conic hull are recalled inthis section. This is supplied by a familiar result that the conic hull of a �nite set isclosed (Proposition 1).De�nition 1. (cone, closed cone)A set K � Rn is a cone i� it satis�es:u; v 2 K =) u+ v 2 K (1)u 2 K; � 2 R+ =) � � u 2 K: (2)If K is moreover closed with respect the Euclidean topology (i. e. given by norm) itis a closed cone.Remark. Some authors [7] use term `convex cone' for sets satisfying (1), (2),while by `cone' they understand sets satisfying (2). But we are interested in conescorresponding to linear quasiorderings on Rn (see [6]).It is evident that intersection of arbitrary nonempty collection of cones is a cone,too. Similarly for closed cones. As the whole space Rn is a closed cone, for everyL � Rn the collection of (closed) cones containingL is nonempty. Thus, the followingde�nitions are correct.De�nition 2. (conic hull, closed conic hull)Having L � Rn by con(L) denote the least cone containing L. It will be called theconic hull of L. The least closed cone containing L will be denoted by con(L) andcalled the closed conic hull of L.It makes no problem to verify:Fact 1. con(;) = ; and having ; 6= L � Rn it holds:con(L) = fv 2 Rn ; v = Pu2K �u � u where ; 6= K � L is �nite, �u 2 R+ g.Fact 2. Having L � Rn its closed conic hull con(L) coincides with the closure of itsconic hull i. e. con(L).Hint: Verify that the closure of a cone is a cone.To prove the mentioned result about conic hull of �nite sets the following lemmawill be used.Lemma 1. Let ; 6= K � Rn be a closed cone, v 2 Rn n (�K): Thencon(fvg) = f� � v ; � 2 R+ g and con(K [ fvg) = fu+ � � v ; u 2 K � 2 R+ g:P r o o f . Note that the set A = f� � v ; � 2 R+ g is closed. It su�ces tomake sure that B = fu + � � v ; u 2 K � 2 R+ g is closed. Clearly A � B: Letxk = uk+�k �v 2 B converges to x 2 Rn: Suppose that uk 6= 0 for all indices (in case



Convex Cones in Finite-Dimensional Real Vector Spaces 183uk 6= 0 for �nite number of indices x 2 A = A; otherwise consider the correspondingsubsequence of fxkg). Put �k = kukk > 0; k = �k��1k � 0; ~uk = ��1k � uk.Evidently xk = �k � (~uk + k � v) and ~uk 2 K k~ukk = 1: As fu 2 K; kuk = 1gis a compact set there exists a convergent subsequence of ~uk: Thus, without loss ofgenerality, suppose ~uk ! u 2 K; kuk = 1: In case lim supk!1 �k = 1 (considerdirectly �k !1) it holds k~uk+k�vk ! 0 and hence k�v ! �u, i. e. (�u) 2 A = A:This contradicts the assumption v 62 (�K): Thus f�kg is a bounded sequence andhas a convergent subsequence; consider it instead of f�kg: In case �k ! 0 it holds�k � ~uk ! 0 and x 2 A = A: In case �k ! � > 0 get ~uk + k � v ! ��1 � x: Hencek � v ! ��1 �x�u gives ��1 �x�u 2 A = A i. e. x = � � (u+  � v) for some  � 0.2Note that the assumption v 62 (�K) in the preceding lemma is essential. It isillustrated by the following example.Example. Consider n = 3 and putK1 = f (x1; x2; x3) ; x1 � 0; x2 � 0; x3 � 0; x1 � x3 � x22 gK2 = f (0; 0; x3) ; x3 � 0 g(the set K1 is the closed conic hull of the branch x1 � x3 = 1; x1; x3 > 0 of thehyperbola lying in the plane x2 = 1). Both these sets are closed cones, but theirsumK1+K2 = f (x1; x2; x3) ; x1 � 0; x2 � 0; x3 2 R g n f (0; x2; x3) ; x2 > 0 x3 2 R gis not `closed'.Proposition 1. Let L � Rn �nite. Then con(L) = con(L):P r o o f . I. The statement holds under the additional assumption that L is linearlyindependent.Indeed: In case L = ; it is evident. Proceed by induction according to cardL; ifL 6= ; choose v 2 L, put K = con(L n fvg) = con(L n fvg) (use the inductionassumption). As L is linearly independent using Lemma 1 get con(L) = con(L):II. con(L) = Sfcon(T ); T � L T is linearly independentg in case L n f0g 6= ;.Indeed: Clearly 0 2 con(fyg) for any y 2 L n f0g; having 0 6= x 2 con(L) useFact 1 and consider a speci�cation x = Pu2K �u � u (K � L) with minimal numberof strictly positive �u: As T = fu 2 K; �u > 0g 6= 0 it su�ces to show that T islinearly independent. By contradiction, in opposite case write 0 = Pu2T �u � u wheremaxu2T �u > 0: Putting � = maxu2T �u��1u get x = Pu2T �u � u � ��1 � (Pu2T �u � u) =Pu2T(�u � �u��1) � u: As �u � �u��1 � 0 for all u 2 T and at least one of thesenumbers is zero, this contradicts the assumption that card T is the minimal numberof strictly positive coe�cients in speci�cations of x.III. The statement is trivial in cases L = ; or L = f0g; in case L n f0g 6= ; itfollows from I and II as the union of �nite number of closed sets is closed. 2Remark. The reader probably recognized that the operation of closed conichull realizes the idea of establishing mentioned in the Introduction: the situation



184 M. STUDEN�YK = con(E) means that the set E establishes the closed cone K and therefore thecorresponding quasiordering. The previous assertion says that in case of �nite es-tablishing set conic hull gives the same result, i. e. every `positive' vector can bedirectly `combined' from elements of the establishing set.4. DUAL CONEEvery subset of Rn can induce a nonempty closed cone through scalar product asmentioned in the Introduction. The ascribed cone is called dual. The section isdevoted to simple properties of this basic procedure of forming cones.De�nition 3. (dual cone)Let L � Rn. Introduce its dual cone L� as follows:L� = fx 2 Rn; 8u 2 L hx; ui � 0g.Fact 3. Whenever L � Rn then L� is a nonempty closed cone.Hint: In case L 6= ; write L� = Tu2Lfx 2 Rn; hx; ui � 0g and each of these sets is aclosed cone containing 0.Statement 1. Let L be a nonempty closed cone, a 2 RnnL: Then there exists p 2 L�such that hp; ai < 0:Comment: This is a familiar consequence of the Hahn-Banach theorem (see [6] x 14) knownas a conic version of well-known separation hyperplane theorem. The reader can �nd it inthis form in [7] as Consequence 11.7.1 or use Theorem 4.5 in [2] resp. Theorem 2.3 in [1].Some useful facts concerning dual cones follow.Fact 4. Whenever L1 � L2 � Rn, then L�1 � L�2 and hence L��1 � L��2 :Fact 5. Having L � Rn it holds L � L��:Consequence 1. Having K � Rn the following three conditions are equivalent:(i) K is a nonempty closed cone(ii) K = K��(iii) K = L� for some L � Rn.P r o o f . (i)=) (ii) By Fact 5 K � K��: Conversely, having a 2 Rn n K byStatement 1 �nd p 2 K� with ha; pi = hp; ai < 0 i. e. a =2 K��: Together K = K��:(ii)=) (iii) is evident, (iii)=) (i) follows from Fact 3. 2Fact 6. Whenever ; 6= L � Rn it holds L�� = con(L):Hint: con(L) � L�� using Fact 5 and Fact 3. Conversely, having a closed cone K containingL; Fact 4 and Consequence 1 give L�� � K.Fact 7. Whenever L � Rn then L� = L���.Hint: Fact 3 and Consequence 1.



Convex Cones in Finite-Dimensional Real Vector Spaces 185Fact 8. Whenever L � Rn then L� = con(L)� = con(L)�.Hint: Write L � con(L) � con(L) , apply Fact 4; in case L 6= ; Facts 7,6 give L� = L��� =con(L)�.5. POINTED CONEThe antisymmetry condition means that the only simultaneously `positive' and `neg-ative' vector is zero vector. The corresponding cones, called pointed cones, arestudied in this section. Firstly, the corresponding version of separation hyperplanetheorem (Consequence 2) is derived. Then it is used to derive equivalent charac-terizations of pointed cones (Proposition 2) saying that pointed cones are `strictlycontained' in a halfspace.De�nition 4. (pointed cone)A nonempty closed cone K � Rn is called pointed i� K \ (�K) = f0g, i. e.[u 2 K and �u 2 K ] implies u = 0:Note that each nonempty closed cone can be viewed as a direct product of apointed cone and a linear subspace:Fact 9. Given a nonempty closed coneK the set L = K\ (�K) is a linear subspace,K \ L? is a pointed cone and K = (K \ L?)� L:Hint: L? is a nonempty closed cone and Rn = L? � L (see [4] x 66).To derive an important equivalent de�nition of pointed cone Statement 1 needsbe strengthened as follows:Lemma 2. Let K be a nonempty closed cone and a 2 Rn nK. Then there existsq 2 K� such that hq; ai < 0, hq; ui > 0 whenever u 2 K n (�K), hq; vi = 0 wheneveru 2 K \ (�K):P r o o f . Denote L = K \ (�K):I. 8 w 2 K \ L? n f0g 9 p 2 K� hp;wi > 0.Indeed: As (�w) =2 K use Statement 1 to �nd p 2 K� with hp;�wi < 0:II. 9x 2 K� 8w 2 K \ L? n f0g hx;wi > 0.Indeed: Put L0 = L?, U0 = K \ L0: In case U0 = f0g put x = 0: In the oppositecase start the following procedure (for i = 1; 2 . . . ): supposing Ui�1 6= f0g choosewi 2 Ui�1 n f0g � K \ L? n f0g, by I �nd pi 2 K� with hpi; wii > 0 and putLi = fv 2 Li�1; hpi; vi = 0g Ui = K \ Li: As Li is a proper subspace of Li�1, thedimension of Li strictly decreases with i (see [4] x 8) and the procedure will stop withf0g = Uk � Lk for some k � 1. Consider minimal such k and put x = p1 + . . . + pk:By Fact 3 K� is a cone, hence x 2 K�: It makes no problem to verify the requiredproperty.III. 9x 2 K� 8u 2 K n (�K) hx; ui > 0.Indeed: Take x 2 K� from II. Having u 2 K n (�K) by Fact 9 write u = w + vwhere w 2 K \ L?, v 2 L. As w 6= 0 hx;wi > 0; as x 2 K� hx; vi = 0:



186 M. STUDEN�YIV. 9 q 2 K� hq; ai < 0, hq; ui > 0 for u 2 K n (�K), hq; vi = 0 for v 2 K\ (�K):Indeed: Use III. to �nd the corresponding x 2 K� and Statement 1 to �nd p 2 K�with hp; ai < 0: As K� is a cone (Fact 3) q" = p+ " � x 2 K� for every " > 0: Hencehq"; vi = 0 whenever v 2 K\(�K) and hq"; ui � "hx; ui > 0 whenever u 2 Kn(�K):As lim"!0hq"; ai = hp; ai < 0 there exists " > 0 with hq"; ai < 0 . 2Consequence 2. Having a pointed cone K � Rn for every a 2 RnnK there existsq 2 K� such thata) hq; ai < 0,b) hq; ui > 0 whenever u 2 K n f0g .Proposition 2. Having a nonempty closed cone K the following three conditionsare equivalent:(i) K is pointed(ii) 9 q 2 K� 8u 2 K n f0g hq; ui > 0(iii) 8u 2 K n f0g 9 p 2 K� hp; ui > 0.P r o o f . (i)=) (ii) follows from Consequence 2 (the cone K = Rn is not pointedfor n � 1), (ii) =) (iii) is trivial, for (iii)=) (i) consider u 2 K \ (�K), supposingu 6= 0 �nd the corresponding p 2 K�: But �u 2 K implies hp;�ui � 0 and itcontradicts hp; ui > 0: 26. REGULAR CONESIn this section certain class of closed cones involving pointed cones is introduced.It will be shown later (Proposition 6, x 9) to correspond uniquely to (linear) qua-siorderings of integer vectors. Firstly, several technicalities concerning topologicalproperties of dual cones, extreme points and density of Qn in linear subspaces aregathered. Then regular cones are de�ned as cones having Qn dense in its boundarysubspace. Two equivalent characterization are shown (Proposition 3), the �rst onesays that regular cones are cones having Qn dense in their dual cone, the secondone characterizes them by certain separation hyperplane theorem. An example of anonregular cone concludes the section.Lemma 3. LetK be a nonempty closed cone, denoteL = K\(�K):Given q 2 K�satisfying [hq; ui > 0 for u 2 K n (�K)] and a 2 Rn nK with hq; ai < 0; there exists" > 0 such that 8 p 2 L? with kp� qk < " it holds [ p 2 K� and hp; ai < 0 ]:P r o o f . From Fact 9 easily derive K n (�K) = K \ L? n f0g � L: PutS = fy 2 L?; kyk = 1g: Evidently 8 y 2 K\L? nf0g 9� > 0 w 2 K\S y = � �w.Similarly, using Rn = L?�L �nd � > 0; s 2 S; v 2 L with a = � � s+v: As K \Sis compact  = minfhq; ui; u 2 K \ Sg > 0: Put " = minf; jhq; sijg > 0: Thus,supposing p 2 L? kp � qk < " it holds jhp; si � hq; sij < " � jhq; sij, i. e. hp; si < 0and hence hp; ai < 0: Analogously hp; yi > 0 for all y 2 K \ L? n f0g and hencehp; ui > 0 for all u 2 K n (�K): 2



Convex Cones in Finite-Dimensional Real Vector Spaces 187Consequence 3. Let K is a nonempty closed cone and L = K \ (�K):Then K� � L? and K� has nonempty interior in L?:P r o o f . K� � L? is evident. Supposing K n (�K) 6= ; (otherwise K� = L?)take y 2 K n (�K); put a = �y, by Lemma 2 �nd q 2 K� with [hq; ui > 0 foru 2 K n (�K)] and with hq; ai < 0 and apply Lemma 3. 2De�nition 5. (extreme point)A set C � Rn is convex i� [ 8x; y 2 C 8� 2 h0; 1i � � x+ (1� �) � y 2 C ]:Given a convex set C � Rn say that e 2 C is an extreme point of C i�8x; y 2 C [9� 2 (0; 1) e = � � x+ (1� �) � y] implies x = y(i. e. e is an inner point of none segment in C or equivalently C n feg is convex).The set of extreme points of C will be denoted by ex(C):Statement 2. Let C � Rn be a nonempty compact (i. e. closed and bounded) convexset. Then ex(C) 6= ; and C is the convex hull of ex(C); i. e.C = fv 2 Rn; v = Pu2K �u � uwhere; 6= K � ex(C) is �nite�u 2 R+ Pu2K �u = 1g.Comment: This result is well-known as the Minkowski theorem or �nite-dimensional versionof the Krein-Milman theorem. The reader can it �nd almost everywhere: in [1] as Theorem2.13, in [2] as Theorem 5.10, in [7] us Theorem 18.5 or in [6] Theorem 15.1.Statement 3. Given an m � n matrix A = (aij) and m-dimensional column vectorb = (bi) denote P = fy 2 Rn; nPj=1 aij �yj � bi for all i = 1; . . . ;mg (polyhedron givenby A and b, clearly it is a closed convex set). Let x 2 P: Then x is an extreme pointof P i� there exists I � f1; . . . ;mg card I = n such that the \excised" n�n matrixAI = (aij)j=1;...;ni2I is nonsingular and x is the (unique) solution of the correspondinglinear equation system AIx = bI ; i. e. 8 i 2 I nPj=1 aij � xj = bi:Especially: Supposing that all elements of A and b are rational numbers every ex-treme point of P belongs to Qn:Comment: This characterization of extreme points (vertices) of a polyhedron is basics ofthe familiar linear-programming method for �nding all vertices of a polyhedron. We canmention two textbooks where this can be found: in [3] Theorem 18.1 in combination withproblem 18.3, in [1] x 4 of the �rst chapter especially Theorem 2.18. To make sure ofthe second part of the statement realize that the inverse of a matrix composed of rationalnumbers is also composed of them. You can either consider the matrix over the �eld ofrational numbers or apply the well-known direct formula for inverse using determinants.Lemma 4. Let L be a subspace of Rn: Then Qn is dense in L (i. e. Qn \ L = L)i� Qn is dense in L? (i. e. Qn \ L? = L?).P r o o f . I. Qn is dense in L =) L has a basis made up from elements of Qn.Indeed: Take an orthonormal basis w1; . . . ; wk of L (for details [4] x 65); choose" > 0 such that every k � k matrix B = (bij) is nonsingular whenever



188 M. STUDEN�Y(Pij (bij��ij)2) 12 < " (�ij means Kronecker's delta; to �nd it realize that consideringthe matrix norm kCk = (Pij c2ij) 12 the determinant is a continous matrix function anduse the corresponding nonsingularity characterization { [4] x 53). Find vi 2 Qn \ Lwith kvi � wik < "k� 12 and express each vi = kPj=1 aij � wj : By orthonormality offwjg getkvi �wik2 = k kXj=1(aij � �ij) � wjk2 = kXj=1(aij � �ij)2 for i = 1; . . . ; nand hence derive that A = (aij) is nonsingular and v1; . . . ; vk form a basis.II. Qn is dense in L? =) Qn is dense in L.Indeed: According to I choose a basis p1; . . . ; pk 2 Qn of L?: It makes no problemto see L = fv 2 Rn; 8 i = 1; . . . ; k hpi; vi = 0g: Having w 2 L and " > 0 �nd foreach j = 1; . . . ; n numbers aj ; bj 2 Q such that aj � wj � bj and bj � aj < "n� 12 :Consider the polyhedron P = fv 2 Rn; 8 j = 1; . . . ; n vj � bj ; �vj � �aj and8 i = 1; . . . ; k hpi; vi � 0 h�pi; vi � 0g: As P is bounded and nonempty (w 2 P ) byStatement 2 ex(P ) 6= ;: By Statement 3 ex(P ) � Qn. Thus, take some u 2 ex(P ):Clearly u 2 L and ku� wk < ":III. Qn is dense in L =) Qn is dense in L?.Indeed: As L = L?? ([4] x 62) Qn is dense in (L?)? and use II. 2Now, the main de�nition of this section follows.De�nition 6. (regular cone)A closed cone K � Rn is called regular i� Qn is dense in K \ (�K), i. e.Qn \K \ (�K) = K \ (�K).Evidently, it holds:Fact 10. Every pointed cone is regular, empty cone is regular.Fact 11. Having P � Rn such thata) u; v 2 P =) u+ v 2 P b) u 2 P � 2 Q+ =) � � u 2 Pit holds con(P ) = P:Proposition 3. Let K be a closed cone. Then the following three conditions areequivalent:(i) K is regular(ii) 8 a 2 Rn nK 9 p 2 Qn \K� with hp; ai < 0(iii) Qn is dense in K� (i. e. Qn \K� = K�) .P r o o f . (i)=) (ii)By Lemma 2 �nd q 2 K� with hq; ai < 0 and [hq; ui > 0 for u 2 K n (�K)]: UseLemma 3 to �nd the corresponding " > 0 and by (i) and Lemma 4 �nd p 2 Qn \L?with kp� qk < ":



Convex Cones in Finite-Dimensional Real Vector Spaces 189(ii)=) (iii)The condition (ii) says (Qn \K�)� � K: By Fact 4 K� � (Qn \K�)�� i. e. by Fact6 and Fact 11 K� � con(Qn \K�) = Qn \K�, i. e. (iii) was shown.(iii) =) (i)By Consequence 3 consider ; 6= V � K� open set in L?: By (iii) choose v 2 Qn \ Vand �nd " > 0 such that T = fw 2 L?; kv �wk < "g � V: Thus, supposing u 2 L?with kuk < " we have v � u 2 T and by (iii) �nd wk 2 Qn \K� with wk ! v � u,i. e. v�wk 2 Qn \L? converges to u. Any u 2 L? can be multiplied by some � > 0to achieve k� � uk < ": Together, Qn is dense in L? and by Lemma 4 get (i) . 2Thus, the separation hyperplane theorem for pointed cones can be strengthenedas follows.Consequence 4. Having a pointed cone K � Rn, for every a 2 Rn n K thereexists r 2Zn such that [ 8u 2 K hr; ui � 0 ] and hr; ai < 0:P r o o f . Use Fact 10 and Proposition 3, take p 2 Qn \K� from (ii) and considerr = k � p where k 2 N ensures r 2 Zn: 2Nevertheless, to illustrate the previous result an example of a nonregular closedcone K such that Qn is dense in K is given.Example. Consider n = 3 and put K = f(x1; x2; x3); x1 � �x2g , where � is anirrational number. Evidently K is a nonempty closed cone and Qn is dense in Kbut K \ (�K) = f(x1; x2; x3); x1 = �x2g meets Qn in f(x1; x2; x3); x1 = x2 = 0g:7. EXTREME RAYSThe concepts of ray and extreme ray are recalled in this section. It is shown that(only) pointed cones have extreme rays and can be determined by means of the setof extreme rays (Proposition 4).De�nition 7. (ray, extreme ray)Let x 2 Rn n f0g: The set R = f� � x; � � 0g is called the ray generated by x. Notethat every ray is generated by each its nonzero element.Supposing K is a nonempty closed cone we say that a ray R � K is an extreme rayof K i� 8u; v 2 K 12(u+ v) 2 R =) u; v 2 R: (3)Fact 12. Having a nonempty closed cone K a ray R � K is an extreme ray of K i�8u; v 2 K 8�; � > 0 � � u+ � � v 2 R =) u; v 2 R (4)Hint for necessity: Consider ~u = 2� � u, ~v = 2� � v, as ~u; ~v 2 K apply (3).To derive the above mentioned result the following lemma is needed.



190 M. STUDEN�YLemma 5. Let K � Rn be a pointed cone; suppose that q 2 K� satis�es[ hq; ui > 0 whenever u 2 K nf0g] (see Proposition 2). Put T = fy 2 K; hq; yi = 1g:Then T is a compact convex set. Moreover, given e 2 T the following two conditionsare equivalent:(i) e is an extreme point of T(ii) e generates an extreme ray of K.P r o o f . I. T is compact and convexIndeed: Denote S = fy 2 Rn; kyk = 1g, S0 = fy 2 S; hq; yi > 0g, Q = fy 2 Rn;hq; yi = 1g and consider the mapping t : S0 ! Q de�ned by y 7!t hq; yi�1 � y:To verify its continuity realize that y 7! hq; yi�1 is a continuous function. Clearly,T = t(S0 \K): But S0 \K = S \K is compact (a closed subset of the compact setS) and hence T is compact (for details [5], Chap. 5 Thms. 7, 8).Moreover, T = Q \K implies that T is convex.II. (i)=) (ii)Indeed: Suppose R = f� � e; � � 0g u; v 2 K 12(u+v) = � � e � � 0: In case � = 0get u;�u 2 K and as K is pointed u = 0 and hence u; v 2 R: Similarly in case� > 0 and [u = 0 or v = 0]: Having u; v 2 K n f0g and � > 0 put � = hq; ui; x =��1 � u;  = hq; vi; y = �1 � v: Clearly x; y 2 T e = ( 12��1�) � x+ ( 12��1) � v and1 = hq; ei = 12��1�hq; xi + 12��1�hq; yi = 12��1� + 12��1: By (i) x = y = e, i. e.u; v 2 R:III. (ii)=) (i)Indeed: Suppose e =  �x+(1�) �y x; y 2 T  2 (0; 1): As x; y 2 K using Fact 12and (ii) get x; y 2 f� � e; � � 0g: Using x; y; e 2 T derive x = y = e: 2Proposition 4. Let f0g 6= K is a nonempty closed cone. Then K is pointed i� Khas extreme rays. Moreover, supposing that f0g 6= K is a nonempty pointed closedcone and L � K is (any) set generating all its extreme rays it holds K = con(L):P r o o f . I. K is not pointed =) K has no extreme rays.Indeed: Take u 2 K \ (�K) n f0g, consider a ray R generated by x 6= 0 and writex = 12 (x� u) + 12 (x+ u): Supposing that R is extreme get x+ u = � � x for � � 0:But � = 1 implies u = 0 and � 6= 1 gives x 2 Lin(fug) i. e. R is generated by u or(�u): But u = 12 (3u) + 12 (�u) implies that R is not extreme.II. f0g 6= K is pointed, L � K generates extreme rays =) L 6= ; andK = con(L):Indeed: Apply Lemma 5. K 6= f0g implies T 6= ; and by Statement 2 get ex(T ) 6= ;:Clearly 8 e 2 ex(T ) 9ue 2 L �e > 0 e = �e �ue by our assumption about L henceL 6= ;: By Statement 2 8 y 2 T 9M � ex(T ) �nite y = Pe2M �e � e where�e � 0 Pe2M �e = 1 i. e. T � con(L):HenceKnf0g � con(L) and �nallyK = con(L):2We conclude this section by an easy lemma which can be useful when searchingextreme rays.Lemma 6. Suppose that z : Rn �! Rn is a one-to-one linear mapping. A setK � Rn is a pointed cone i� z(K) is a pointed cone. Having a �xed pointed cone



Convex Cones in Finite-Dimensional Real Vector Spaces 191K � Rn a set R is an extreme ray of K i� z(R) is an extreme ray of z(K).P r o o f . As z is continous and z(K) \ z(�K) = z(K \ (�K)) the �rst part iseasy. Evidently R is the ray generated by an element x 2 Rnnf0g i� z(R) is the raygenerated by z(x). Finally, it makes no problem to `shift' the validity of (3) from Rto z(R). 28. PYRAMIDSSpecial types of cones, namely pyramids and rational pyramids are studied in thissection. Firstly, both concepts are introduced and pointed pyramids are character-ized as pointed cones with �nite number of extreme rays (Consequence 5). Thenpyramids are equivalently characterized as dual cones of �nite sets, resp. rationalpyramids as dual cones of �nite sets of rational vectors (Proposition 5). Hence easilyfollows that a closed cone is a (rational) pyramid i� its dual cone is a (rational) pyra-mid and every rational pyramid is a regular cone (Consequence 6, 7). Afterwards,a special separation hyperplane theorem for pointed rational pyramids enabling usto distinguish extreme rays is derived (Consequence 8). The section is concluded bythe concept of exhaustive set which is used to characterize sets whose dual cones arepointed rational pyramids (Lemma 8).De�nition 8. (pyramid, rational pyramid)A set K � Rn is called a pyramid i� K = con(L) where L � Rn is �nite. If thereexists L � Qn �nite such that K = con(L); then K is called a rational pyramid.Note that owing to:Fact 13. 8 q 2 Qn 9 0 6= � 2 Q+ 9 z 2 Zn q = � � zIt is easy to see:Fact 14. K � Rn is a rational pyramid i� K = con(E) for �nite E �Zn.The further fact follows from Proposition 1:Fact 15. Every pyramid is a closed cone.Proposition 4 implies an easy criterion to recognize whether a pointed cone is apyramid:Consequence 5. Let K be a pointed cone. Thena) K is a pyramid i� K has �nitely many extreme rays,b) K is a rational pyramid i� K has �nitely many extreme rays and all of them aregenerated by elements of Qn.P r o o f . Suppose K 6= f0g (otherwise trivial). The su�ciency follows fromProposition 4. For the necessity suppose K = con(L) where L is �nite. To show



192 M. STUDEN�Ythat every extreme ray R (generated by x 6= 0) has nonempty intersection withL n f0g write x = ( Pu2Lnfvg�u � u) + �v � v where �u � 0, v 2 L n f0g; �v > 0and by Fact 12 get v 2 R: As L n f0g has �nitely many nonempty subsets and themapping R! R \ L n f0g is one-to-one, K has �nitely many extreme rays. 2The aim of this section is to prove an important equivalent de�nition of pyramidfor the case that cones are given as dual cones. To show it the following fact will beused.Fact 16. Supposing K is a pyramid (resp. a rational pyramid) it holds K� = L�where L � Rn (resp. L � Qn) is �nite.Hint: In case K = con(L) use Fact 8 to get K� = con(L)� = L�:Proposition 5. Suppose K � Rn: Thena) K is a nonempty pyramid i� K = L� where L � Rn is �nite,b) K is a nonempty rational pyramid i� K = L� where L � Qn is �nite.P r o o f . I. K = L� where L � Rn (resp. L � Qn) is �nite =) K is a pyramid(resp. rational one).Indeed: Put Q = fx 2 Rn; 8 j = 1; . . . ; n � 1 � xj � 1g; P = K \Q. P can bewritten as fv 2 Rn; 8 r 2 L h�r; vi � 0 8 j = 1; . . . ; n vj � 1 � vj � 1g, i. e.P is a nonempty bounded polyhedron. By Statement 3 the set of extreme pointsex(P ) is �nite (resp. ex(P ) � Qn is �nite). Put T = con(ex(P )): Evidently T � K:Conversely, having u 2 K �nd � > 0 and v 2 P with u = � � v: By Statement 2v = Pw2ex(P ) �w � w where �w � 0 Pw2ex(P ) �w = 1 and hence u 2 T: Thus, K = Ti. e. K is a pyramid (resp. rational one).II. K 6= ; is a pyramid (resp. rational one ) =) K = L� where L � Rn (resp.L � Qn) is �nite.Indeed: K is a pyramid (resp. rational one ) implies by Fact 16 thatK� =M� whereM � Rn (resp. M � Qn) is �nite. Using part I get that K� is a pyramid (resp.rational one). Use Fact 16 once more for K� to derive K�� = L� where L � Rn(resp. L � Qn) is �nite. But Fact 15 and Consequence 1 imply K = K��. 2Note that the result saying that every pyramid is a dual cone of a �nite set provedin Proposition 5a is very old (it is an easy consequence of the main theorem from[9]).Consequence 6. Suppose that K � Rn is a closed cone. Then it holds:a) K is a pyramid i� K� is a pyramid,b) K is a rational pyramid i� K� is a rational pyramid.P r o o f . The necessity follows from Fact 16 and Proposition 5. In case K 6= ;the necessity also yields the su�ciency by means of Consequence 1 (K = K�). 2



Convex Cones in Finite-Dimensional Real Vector Spaces 193Consequence 7. Every rational pyramid is a regular cone.P r o o f . Consider a rational pyramid K, by Consequence 6 K� = con(L) whereL � Qn is �nite. Put V = fPt2L�t � t ; �t 2 Q+ g, evidently V = K� i. e. Qn is densein K� and by Proposition 3 K is regular. 2Lemma 7. Let K � Rn be a pointed pyramid and R its extreme ray. Then thereexists t 2 Rn such that [ ht; xi = 0 for every x 2 R ] and [ ht; si > 0 for all sgenerating the other extreme rays ].P r o o f . By Proposition 2 �nd q 2 Rn with [ hq; ui > 0 for u 2 K n f0g ] and putT = fy 2 K; hq; yi = 1g. Take the uniquely determined r 2 R \ T (see Lemma 5)and put ~K = con(E n frg) where E denotes the set of extreme points of T . In caseE n frg 6= ; by Statement 1 �nd p 2 ~K� with hp; ri < 0. It makes no problem to seethat t = p�hp; ri�q satis�es both ht; ri = 0 and ht; ei � �hp; ri > 0 for all e 2 Enfrg .The rest follows from Lemma 5. 2Consequence 8. Let K � Rn be a pointed rational pyramid and R its extremeray. Then there exists q 2 Qn such that [ hq; ri = 0 for all r 2 R ] and [ hq; xi > 0for all x generating the other rays of K].P r o o f . Let r0 generatesR, by Consequence 5bQn is dense in L = f��r0 ; � 2 R gand by Lemma 4 Qn is dense in L?. By Lemma 7 there exists t 2 L? such thatht; si > 0 for all s 2 S where S denotes the set of points s generating the remainingextreme rays and speci�ed by the requirement ksk = 1. Find q 2 Qn \ L? withkq � tk < minfhs; ti ; s 2 S g (S is �nite!) and the inequality jhs; ti � hs; qij �ksk � kq� tk � hs; ti implies hs; qi > 0 for each s 2 S. Whenever x generates anotherray of K write x = Ps2S �s � s + �r � r where �i 2 R+, necessarily �s > 0 for somes 2 S and hence hq; xi � �s � hq; si > 0. 2Note that the preceding result does not hold for general pointed cones:Example. Consider n = 3 and put K = con(L) whereL = f (x1; x2; x3) ; x12 + x22 � 1 x3 = 1 g [ f (�1;�1; 1) ; (�1; 1; 1) g(the base of this cone is a circle with an attached oblong). Consider the ray generatedby r = (0; 1; 1). The only q 2 K� with hq; ri = 0 satis�es hq; xi = 0 for x = (�1; 1; 1)generating another extreme ray of K.De�nition 9. (exhaustive set)A set E � Rn is called exhaustive i� E� \ (�E�) \Zn = f0g, i. e.8 z 2Zn [ 8 e 2 E hz; ei = 0 ] =) z = 0.Lemma 8. a) Whenever E �Zn is �nite exhaustive it holds E� \ (�E�) = f0g.b) Supposing that K � Rn is a closed cone the following conditions are equivalent:(i) K = con(E) where E � Zn is a �nite exhaustive set(ii) K� is a pointed rational pyramid.



194 M. STUDEN�YP r o o f . a) Put K = con(E); it is a rational pyramid. By Fact 8 K� = E�.Using Consequences 6b and 7 derive that K� is a regular cone. The exhaustivityassumption says K� \ (�K�)\Zn = f0g, hence by Fact 13 f0g = K� \ (�K�)\Qnand f0g = K� \ (�K�)\ Qn = K� \ (�K�) = E� \ (�E�).b) The implication (i)=) (ii) has been already proved above; supposing (ii) byConsequence 6b K is a rational pyramid, hence by Fact 14 K = con(E) for some�nite E � Zn; Fact 8 saysK� = E� and hence E�\(�E�)\Zn � K�\(�K�) = f0ggives the exhaustivity. 29. QUASIORDERINGS OF INTEGER VECTORSThe focus of study of this section are restrictions of closed cones (and hence thecorresponding quasiorderings) to Zn { the class of integer vectors. Firstly, intersec-tions of Zn with (general) closed cones are characterized (Lemma 9). Further result(Proposition 6) identi�es them with regular cones and shows that the correspondenceis antitonne.The method of establishing of quasiorderings (see the 9.Introduction) for integervectors leads to the concept of cover (De�nition 10, in fact the set of conical com-binations with rational coe�cients). The cover is shown to be equal to intersectionof Zn with conic hull (Lemma 10). On the other hand, the method of inducing ofquasiorderings for integer vectors suggests to intersect Zn with a dual cone. Propo-sition 7 says that quasiordering on Zn is �nitely inducable i� it coincides with thecover of a �nite set or i� it is given by a rational pyramid. In the second part ofthis proposition the existence of the least set of normalized integer vectors inducingsuch quasiorderings is proved in certain special case, namely that the quasiorderingis established by an exhaustive set. Moreover, elements of this least inducing setcan be distinguished by integer vectors which are positive with respect to the qua-siordering. Certain method to achieve elements of this least inducing set is indicatedby Lemma 12.Finally, Proposition 8 characterizes similarly orderings given by rational pyra-mids. The existence of the least set of normalized integer vectors establishing suchorderings is proved there too.Lemma 9. Supposing L � Zn the following two conditions are equivalent:(i) L = K \Zn for some nonempty closed cone K(ii) L satis�es the following three conditions:u; v 2 L =) u+ v 2 L (�:1)uk 2 L u 2Zn �k; � 2 N ��1k � uk ! ��1 � u =) u 2 L (�:2)0 2 L (�:3)P r o o f . The implication (i)=) (ii) is easy to see. To show (ii)=) (i) put P =f� � v; v 2 L � 2 Q+g. Using (�:1) and Fact 11 get P = con(P ). It remains tosee L = P \Zn. Clearly, L � P \Zn: Conversely, take u 2 P \Zn and consideruk 2 L; �k 2 Q+ with �k � uk ! u: In case u = 0 use (�:3). Supposing u 6= 0 �nda nonzero component uj 6= 0 of u (j 2 f1; . . . ; ng): For large indices k the numbers



Convex Cones in Finite-Dimensional Real Vector Spaces 195(uk)j have the same sign as uj . In case uj > 0 put �k = (uk)j � = uj (otherwise�k = �(uk)j ; � = �uj) and as �k�k ! � > 0 use (�:2) to derive u 2 L: 2Intersections of Zn with closed cones can be understood as quasiorderings on Zn.The following result identi�es them with regular cones. Note that by Consequence1 K is a nonempty closed cone i� it has the form B� for some B � Rn.Proposition 6. a) Whenever L = Zn \ B� where B � Rn then K = (Zn \B�)�is a regular cone satisfying L =Zn\K�.b) Whenever K1;K2 are regular cones, then Zn \K�1 �Zn\K�2 is equivalent withK2 � K1. Especially, the regular cone mentioned in a) is uniquely determined.P r o o f . a) Clearly by Fact 5 Zn\B� � (Zn \B�)�� = K�. Conversely, by Fact4 and Fact 7 Zn\K� � K� = (Zn\ B�)�� � B��� = B�. ThusZn\B� =Zn\K�.Hence, by Fact 4, Fact 6 and Fact 11K� = (Zn\B�)�� � (Qn \K�)�� = con(Qn \K�) = Qn \K�; i. e. K is a regularcone by Fact 3 and Proposition 3(iii).b) By Fact 4 K2 � K1 implies Zn \ K�1 � Zn \ K�2 . Conversely, supposingZn \K�1 � Zn \K�2 consider x 2 K2 nK1. By Proposition 3(ii) �nd p 2 Qn \K�1with hp; xi < 0. Using Fact 13 �nd z 2Zn\K�1 with hz; xi < 0 and this contradictsthe assumption. 2To characterize rational pyramids in Zn the following concept of cover will beused.De�nition 10. (cover)Let L � Zn: Introduce its cover denoted by cov(L) as follows:cov(L) = fu 2Zn; u = Pv2K �v � v where ; 6= K � L is �nite �v 2 Q+ g:Fact 17. Having L � Zn it holdscov(L) = fu 2Zn; k � u = Pv2K �v � v where ; 6= K � L is �nite k 2 N �v 2Z+g.Lemma 10. Suppose that L �Zn.a) Then cov(L) = con(L)\Zn:b) If moreover ; 6= L is �nite, then cov(L) =Zn \ L��.P r o o f . Clearly cov(L) � con(L)\Zn: Conversely, having u 2 con(L)\Zn writeu = kPi=1 �i � vi where vi 2 L �i 2 R+ i = 1; . . . ; k: Fix the vector (�1; . . . ; �k) and�nd (1; . . . ; k), (�1; . . . ; �k) 2 Qk such that 0 � i � �i � �i for i = 1; . . . ; k andput:P = f(x1; . . . ; xk) 2 Rk; 8 i = 1; . . . ; k xi � �i � xi � �i8 j = 1; . . . ; n kPi=1xi(vi)j � uj kPi=1xi(�vi)j � �ujg:As (�1; . . . ; �k) 2 P it is a nonempty bounded polyhedron. By Statement 2 P has anextreme point (�1; . . . ; �k) and by Statement 3 (�1; . . . ; �k) 2 Qk: But (�1 . . . ; �k) 2



196 M. STUDEN�YP means u = kPi=1�i � vi i. e. u 2 cov(L).b) By Proposition 1 and Fact 6 con(L) = con(L) = L��. 2To ensure the uniqueness of the least set of establishing (resp. inducing) integervectors the following concept is needed.De�nition 11. (normalized integer vector)Denote by Znnorm the class of all vectors u 2 Zn such that the collection of itscomponents u1; :::; un has no common prime divisor (especially 0 =2 Znnorm).We mention several facts about Znnorm:Fact 18. 8 z 2Zn n f0g 9m 2 N z 2Znnorm z = m � z.Fact 19. 8 z1; z2 2Znnorm [ k � z1 = l � z2 for k; l 2 N ] =) z1 = z2.Fact 20. Every ray contains at most one element of Znnorm.Lemma 11. Suppose that E �Zn is �nite and exhaustive with E� 6= f0g.a) The following two conditions are equivalent for K � Rn:(i) con(K) = E�(ii) cov(E) =Zn \K�:b) De�ne A as the set of all elements a 2Zn\ E� n f0g satisfying[ k � a = z1 + z2 k 2 N z1; z2 2Zn \E� ] =) [9 l 2 Z+ z1 = l � a ] (5)Then the set A is �nite and it is the least subset of Znnorm such that con(A) = E�.P r o o f . a) I. In case K = ; (i) is untrue by Consequence 1 and (ii) by Fact 8contradicts the assumption E� 6= f0g. Thus suppose K 6= ; in the sequel.II. (i)=) (ii)By Fact 8, (i), Fact 6 and Proposition 1 write K� = con(K)� = E�� = con(E) =con(E). Then use Lemma 10a.III. (ii)=) (i)Certainly E � cov(E) � K� implies by Fact 4 K�� � E�. Thus by Fact 6 the �rstinclusion con(K) � E� is shown. By Lemma 8a f0g � K��\(�K��) � E�\(�E�) =f0g derive thatK�� is pointed and therefore by Fact 10 regular. By Proposition 3(iii)and Fact 7 get K� = Qn \K�. Nevertheless (ii) says Zn \K� � cov(E) � con(E)hence (Fact 13) Qn \K� � con(E) and further K� = Qn \K� � con(E). Hence byFact 8, Fact 4 and Fact 6 E� = con(E)� � K�� = con(K).b) IV. A � Znnorm.Whenever a 2 A then by Fact 18 a = m � a for m 2 N; a 2Znnorm. Put k = 1; z1 =a; z2 = (m� 1) � a in (5) and derive a = z1 = l � a = lm � a for l 2Z+. Necessarilyl 2 N and hence l = m = 1 says a = a.V. There exists �nite K � Znnorm with con(K) = E�.By Proposition 5 and Fact 14 E� = con(T ) for �nite T �Zn. Using Fact 18 for eachz 2 T nf0g �nd �z 2 N and z 2Znnorm with z = �z �z; then putK = fz ; z 2 T nf0g g.



Convex Cones in Finite-Dimensional Real Vector Spaces 197VI. Whenever K �Znnorm with con(K) = E� then A � K.By Lemma 10 Zn\E� = Zn\ con(K) = cov(K), hence by Fact 17 every a 2 A canbe decomposed: k � a = Pv2K0 v � v for ; 6= K 0 � K v 2Z+ k 2 N. As a 6= 0 thereexists v 2 K 0 with v 2 N ; put z1 = v z2 = k � a � v, evidently zi 2 Zn \ E� andby (5) z1 = l � a for some l 2 Z+. Clearly l 2 N (0 =2 Znnorm) and hence by Fact 19and IV z1 = a.VII. If [ K � Znnorm is �nite with E� = con(K) z 2 K n A ] then E� =con(K n fzg).Clearly z 2 E� \Zn n f0g. As z =2 A �nd k 2 N zi 2 Zn \ E� such that [k � z =z1 + z2 & 8 l 2 Z+ z1 6= l � z]. By Lemma 10 Zn \ E� = Zn \ con(K) = cov(K)and therefore by Fact 17 write ki � zi = Pv2K iv � v for ki 2 N; iv 2 Z+ (i = 1; 2)Hence easily get k k1 k2 � z = Pv2K(k1 2v + k2 1v) � v. In case kk1k2 � k12z + k21zsimply get 8 v 2 K n fzg 1v � v 2 E� \ (�E�)\Zn and therefore (the exhaustivity)1v = 0. Thus k1 � z1 = 1z � z and by Fact 19 it contradicts [8 l 2 Zn z1 6= l � z ].Therefore kk1k2 > k12z +k21z and z 2 con(K nfzg). HenceK � con(K nfzg) saysE� = con(K) � con(K n fzg) � con(K).VIII. By V �nd K � Znnorm �nite with con(K) = E�. By VII remove all elementsof K nA saving con(K) = E�. Owing to VI exactly A remains. Thus A is �nite andsatis�es con(A) = E�. The rest follows from VI. 2Proposition 7.a) Let L � Zn. Then the following three conditions are equivalent :(i) L = Zn \K where ; 6= K � Rn is a rational pyramid(ii) L = cov(E) for �nite ; 6= E � Zn(iii) L =Zn \M� for M � Zn �nite.b) Supposing that E � Zn is �nite and exhaustive there exists the least �niteA � Znnorm such that cov(E) =Zn\ A�. Moreover, it holds8 a 2 A 9u 2 Zn ha; ui = 0 & [8 s 2 A n fag hs; ui > 0 ] (6)P r o o f . a) (i)() (ii) easily follows from Lemma 10a and Fact 14, (i)() (iii) isan easy consequence of Proposition 5b and Fact 13.b) The statement is easy in case E� = f0g: by Lemma 10b cov(E) = Zn\E�� =Zn, it su�ces to take A = ;. Thus, suppose E� 6= f0g and by Lemma 11b takethe least set A � Znnorm with con(A) = E�. By Proposition 1 and Lemma 11a getcov(E) = Zn \ A�. Whenever M � Znnorm is �nite with cov(E) = Zn \M� by thesame argument get con(M) = con(M) = E� and hence A �M by Lemma 11b.Further, by Proposition 5b E� is a rational pyramid and by Lemma 8 a pointedcone. Therefore by Consequence 5b every of �nite number of its extreme rays isgenerated by an element of Qn and thus by Facts 13, 18, 20 by the unique elementof Znnorm; denote this �nite subset of Znnorm by B. Proposition 4 says E� = con(B)and by Lemma 11b A � B. Having a 2 A � B apply Consequence 8 to �nd q 2 Qnwith hq; ai = 0 and [8 a 2 A n fag hq; ai > 0 ], then use Fact 13. 2Having a concrete �nite exhaustive E �Zn you can sometimes face the problem



198 M. STUDEN�Yto �nd the least �nite A � Znnorm with con(E) = Zn\A� (see Proposition 7b). Thecharacterization of A from Lemma 11b (namely the condition (5)) is too clumsy forthis purpose. Below a more convenient equivalent de�nition is given.De�nition 12. (portrait)Having �nite exhaustive E � Zn with E� 6= f0g for each s 2 E� introduce itsportrait Es (in E) as follows: Es = fu 2 E ; hs; ui > 0g.Lemma 12. Suppose that E � Zn is �nite and exhaustive with E� 6= f0g. Anelement a 2 Znnorm \ E� satis�es the condition (5) from Lemma 11b i� its portraitin E is minimal within Znnorm \E� i. e. it holds:8 s 2 Znnorm \E� Es � Ea =) Es = Ea (7)P r o o f . I. 8 r; s 2Zn \E� Es � Er () [9 k 2 N k � r � s 2 E� ].The su�ciency is trivial, for necessity �nd (for each u 2 E) ku 2 N with ku � hr; ui �hs; ui and put k = maxfku;u 2 Eg.II. a 2 A =) [8 s 2Znnorm\E� Es � Ea =) s = a ] =) (7).By I �nd k 2 N with k � a � s 2 E� and put z1 = s z2 = k � a � s; as a 2 A by (5)s = z1 = l � a for l 2 Z+, necessarily l 2 N and by Fact 19 s = a.III. 8 s 2 Znnorm \E� 9 a 2 A Ea � Es.By Lemma 11b E� = con(A), i. e. Zn \ E� = cov(A) by Lemma 10a, decompose sas suggested in Fact 17, choose a 2 A with nonzero coe�cient and apply I.IV. a 2Znnorm \E� satis�es (7) =) a 2 A.Using III �nd b 2 A with Eb � Ea. Owing to (7) Eb = Ea and by II (take b insteadof a) get a = b, i. e. a 2 A. 2The corresponding version of Proposition 7 for pointed rational pyramids follows.Proposition 8. Let L � Zn.a) Then the following four conditions are equivalent :(i) L = K \Zn where K 6= ; is a pointed rational pyramid(ii) L = cov(A) for �nite ; 6= A � Zn such that [9 q 2 Rn hq; ui > 0 foru 2 A n f0g](iii) L \ (�L) = f0g and L = cov(A) for �nite ; 6= A � Zn(iv) L =Zn\M� where M � Zn is �nite and exhaustive.b) Whenever any of preceding conditions is satis�ed there exists the least subsetE �Znnorm satisfying L = cov(E) (naturally �nite by (iii)).P r o o f . a) (i)=) (ii)By Fact 14 and Fact 1 K = con(A) with �nite ; 6= A � Zn. As K is pointed byProposition 2 there exists q 2 Rn such that [hq; ui > 0 whenever u 2 K n f0g]. Thenuse Lemma 10a.(ii)=) (iii) is evident as hq; ui > 0 whenever u 2 cov(A) n f0g.(iii) =) (iv) use Proposition 7a and M� \ (�M�)\Zn � L \ (�L).(iv)=) (i) By Lemma 8b M� is a pointed rational pyramid.



Convex Cones in Finite-Dimensional Real Vector Spaces 199b) By Consequence 5b every of �nite number of extreme rays of K intersects Qnand therefore by Facts 13, 18 also Znnorm, by Fact 20 this element is unique. De�neE as the set of these elements, by Proposition 4 K = con(E) and using Lemma 10aL = cov(E). Moreover, having ~E � Znnorm with L = cov( ~E) consider x 2 E andwritex = Pv2F �v � v + �u � u where F � ~E is �nite, u 2 ~E n f0g; �v 2 Q+; 0 < �u 2 Q.Consider the ray R generated by x, using Fact 12 u 2 R, by Fact 20 x = u, i. e.x 2 ~E. Therefore E � ~E. 210. CONCLUSIONLet us give a short summary of the main results of the paper.Proposition 2 gives an equivalent de�nition of pointed cones, similarly Proposition3 gives equivalent de�nitions of regular cones and Proposition 5 equivalent de�nitionsof pyramids and rational pyramids. Note that every rational pyramid is a regularcone according to Consequence 7.Regular cones are shown in Proposition 6 to correspond to quasiorderings of inte-ger vectors. Two equivalent de�nitions of such orderings corresponding to rationalpyramids are derived in Proposition 7. Moreover, the existence of a uniquely deter-mined �nite set inducing this ordering is proved and \separation property" of thisset shown. Especially these results are utilized in [8].Proposition 8 gives equivalent de�nitions of orderings of integer vectors corre-sponding to rational pyramids and shows that they can be established by means ofa uniquely determined �nite set of normalized integer vectors.ACKNOWLEDGEMENTI am indebted to F.Mat�u�s and J. Fuka whose comments helped me to improve the presen-tation. (Received May 18, 1992.)REFERENCES[1] S. A. Ashmanov: Linear Programming (in Russian). Nauka, Moscow 1981.[2] A. Br�ndsted: An Introduction to Convex Polytopes. Springer-Verlag, New York {Berlin { Heidelberg { Tokyo 1983. Russian translation: Mir, Moscow 1988.[3] V. Chv�atal: Linear Programming. W.H. Freeman, New York { San Francisco 1983.[4] P.R. Halmos: Finite-Dimensional Vector Spaces. Springer-Verlag, New York { Heidel-berg { Berlin 1974.[5] J. L. Kelley: General Topology. van Nostrand, London { New York { Toronto 1957.[6] J. L. Kelley and I. Namioka: Linear Topological Spaces. van Nostrand, Princeton {Toronto { London { Melbourne 1963.[7] R.T. Rockafellar: Convex Analysis. Princeton Univ. Press, Princeton, N. J. 1970. Rus-sian translation: Mir, Moscow 1973.[8] M. Studen�y: Description of structures of stochastic conditional independence by meansof faces and imsets. Part 1: Introduction and basic concepts, Part 2: Basic theory, Part3: Examples of use and appendices. Internat. J. General Systems (submitted).
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