
Conditional Products: An Alternative Approach to ConditionalIndependence
A. P. DawidDepartment of Statistical ScienceUniversity College LondonGower Street, London WC1E 6BT, UK M. Studen�yAcademy of Sciences of Czech Rep. andUniversity of Economics PraguePod vod�arenskou v�e�z�� 4, Prague 18208, CZAbstractWe introduce a new abstract approach to thestudy of conditional independence, foundedon a concept analogous to the factoriza-tion properties of probabilistic independence,rather than the separation properties of agraph. The basic ingredient is the \con-ditional product", which provides a way ofcombining the objects under considerationwhile preserving as much independence aspossible. We introduce an appropriate ax-iom system for conditional product, andshow how, when these axioms are obeyed,it induces a derived concept of conditionalindependence which obeys the usual semi-graphoid axioms. The general structure isused to throw light on three speci�c ar-eas: the familiar probabilistic framework(both the discrete and the general case); aset-theoretic framework related to \variationindependence"; and a variety of graphicalframeworks.Key words: Directed graph independence, Probabilis-tic independence, Projection, Semi-graphoid, Undi-rected graph independence, Variation independence.1 MOTIVATIONIn several distinct mathematical areas, especially thosedescribing uncertainty in Probability and Statistics(Dawid 1979) and Arti�cial Intelligence (Studen�y1993; Shenoy 1994), some concept of conditional in-dependence plays a fundamental role, permitting thedecomposition of a complex object into simpler pieces.This concept was introduced in miscellaneous frame-works, but certain reasonable formal properties areshared. These formal properties are described by theabstract theory of conditional independence, as cap-tured by the \semi-graphoid" axiom system (Dawid1979; Spohn 1980; Pearl 1988). The archetypal modelfor this system is the concept of separation in an undi-rected graph, and the axioms can most readily be un-

derstood as being about a generalized form of separa-tion.An entirely di�erent approach to conditional indepen-dence is to try and abstract the factorization prop-erties which form the traditional basis for the proba-bilistic de�nition. This is the task we attempt here.We �rst introduce the abstract concept of conditionalproduct , and propose a suitable axiom system for it.We use this to introduce conditional independence as aderived concept, and show that it does then satisfy thesemi-graphoid axioms. Such a point of view provides aunifying framework for conditional independence, andsuggests new forms and applications. However, not ev-ery semi-graphoid can arise in this way. In this paperwe describe the appropriate conditional product con-struction in probabilistic and set-theoretic frameworksfor conditional independence, as well as showing that,in the frameworks of undirected or directed graphicalmodels, no suitable conditional product exists.2 CONDITIONAL PRODUCTSIn this Section we give an axiomatic de�nition of pro-jection and conditional product. Then we show thatan induced concept of conditional independence satis-�es the semi-graphoid axioms.2.1 AXIOMS FOR PROJECTION ANDCONDITIONAL PRODUCTWe have an index set N ; a class N of subsets of N ,containing ; and closed under union and intersection;and a set � of \objects". Associated with any � 2 �is its domain d(�) 2 N .2.1.1 ProjectionFor any � 2 � and E 2 N there exists an object�E 2 �, the projection of � onto E. Projection hasthe following properties:P1 d(�E) = d(�) \ E for � 2 �, E 2 N .P2 (�E)F = �E\F for � 2 �, E;F 2 N .



P3 �d(�) = � for � 2 �.The properties above imply that (�E)F = (�F )E and�E = �d(�)\E for � 2 �, E;F 2 N . In particular,d(�) � E implies �E = � by P3.We say that �;  2 � are (weakly) compatible if�d( ) =  d(�) and strongly compatible if there exists� 2 � such that �d(�) = � and �d( ) =  . Strongcompatibility implies weak compatibility, but not nec-essarily conversely. The collection of pairs of weaklycompatible objects from � will be denoted by C, andthe collection of pairs of strongly compatible objectsfrom � by C�.2.1.2 Conditional ProductWe consider a mapping 
 : D ! � having domainD � C (often we shall have D = C). The conditionalproduct operation 
 is required to have the followingproperties:T1 (�;  ) 2 D ) d(� 
  ) = d(�) [ d( ).T2 (�;  ) 2 D ) ( ; �) 2 D and �
  =  
 �.T3 � 2 �, E 2 N ) (�; �E) 2 D and �
 �E = �.T4 (�;  ) 2 D; d(�) � E 2 N ) (�;  E) 2 D and(�
  )E = �
  E .Axiom T4 can be formulated in apparently strongerform:T40 (�;  ) 2 D; d(�) \ d( ) � E 2 N ) (�;  E) 2 Dand (� 
  )d(�)[E = �
  E .Indeed, if d(�) \ d( ) � E one has by P3 and P2 d(�)[E =  d( )\(d(�)[E) =  d( )\E =  E .T5 (�;  ) 2 D; d(�) \ d( ) � E 2 N ) (�;  E) 2D; ((�
 E);  ) 2 D, and �
 = (�
  E)
 .T6 �;  2 �; d(�) \ d( ) � E 2 N ; (�;  E) 2 D;((� 
  E);  ) 2 D ) (�;  ) 2 D.Using T40, we can also restate T5 as:T50 (�;  ) 2 D; d(�) \ d( ) � E 2 N ) ((� 
 )d(�)[E);  ) 2 D and �
 = ((�
 )d(�)[E) 
 ).We can further re-express T4{T6 in terms of pairwisedisjoint A;B;C;D 2 N (using  E =  d(�)\E, by P2):T400 (�;  ) 2 D; d(�) = A [ C; d( ) = B [ C [ D )(�;  C[D) 2 D and (�
  )A[C[D = �
  C[D.T500 (�;  ) 2 D; d(�) = A [ C; d( ) = B [ C [ D )((� 
  )A[C[D;  ) 2 D and � 
  = (� 
 )A[C[D 
  .T600 d(�) = A [ C; d( ) = B [ C [D; (�;  C[D) 2 Dand ((� 
  C[D);  ) 2 D ) (�;  ) 2 D.

Observation 2.1 (�
 )d(�) = � and (�
 )d( ) =  whenever (�;  ) 2 D.Proof: Use T4, the fact that (�;  ) 2 C and T3 towrite (�
 )d(�) = �
 d(�) = �
�d( ) = �. Use T2for the other equality.Thus, when all the above axioms hold and D = C, weshall have C = C�, since then we can take � = �
  .2.2 SEMI-GRAPHOIDS ANDCONDITIONAL INDEPENDENCE2.2.1 Semi-GraphoidA ternary operation � ?? � j � on N is called a (full)semi-graphoid if it satis�es:C0 A??B jC if B � C.C1 A??B jC ) B??A jC.C2 A??(B [D) jC ) A??D jC.C3 A??(B [D) jC ) A??B j (C [D).C4 A??B j (C [D) and A??D jC ) A??(B [D) jC.A partial semi-graphoid on a class of triplets K �N � N � N is a predicate ?? having K as domainsuch that C0{C4 hold under the additional constraintthat all triplets involved belong to K. We shall herelimit attention to special partial semi-graphoids, whereK is the class of triplets of pairwise disjoint �nite sub-sets of N ; equivalently, C0{C4 are only required whenA;B;C;D are pairwise disjoint. These semi-graphoidswill be called disjoint semi-graphoids over N .2.2.2 Conditional IndependenceFor every ' 2 � and pairwise disjoint �nite setsA;B;C 2 N we write A??B jC ['] if 'A[B[C= 'A[C 
 'B[C (this includes the requirement('A[C ; 'B[C) 2 D).Observation 2.2 A??B jC [�] i� A??B jC [ ] for�;  2 � and �A[B[C =  A[B[C .Proof: A consequence of P2 and the de�nition.Observation 2.3 A??B jC ['A[C
'B[C ] whenever' 2 � and ('A[C ; 'B[C) 2 D.Proof: Put � = 'A[C ,  = 'B[C , and � = � 
  .Since d(�) � A[B [C (use P1 and T1) �A[B[C = � .By P2  A[C = 'C = �C and one can write using T4and T3: �A[C = � 
  A[C = � 
 �C = �. Similarly,using T2, �B[C =  .Proposition 2.1 For ' 2 �, the collection of tripletshA;BjCi of pairwise disjoint �nite subsets of N forwhich A??B jC ['] forms a disjoint semi-graphoidover N .



Proof: Without loss of generality suppose below thatthe sets A;B;C;D in C0{C4 are subsets of d(') (oth-erwise replace every set by its intersection with d(')).With B and C disjoint, C0 becomes A??; jC ['],which follows from T3 with � = 'A[C , E = C (notethat �C = 'C by P2). C1 follows from T2 with� = 'A[C ,  = 'B[C . From this point on, de�ne� = 'A[C ,  = 'B[C[D. If A??(B [D) jC ['], then'A[B[C[D = � 
  . So, from P2, 'A[C[D = (� 
 )A[C[D, = �
 C[D by T400, = 'A[C
'C[D (againusing P2), so that C2 holds. Also, C3 then followseasily from T500 and P2. Finally, A??B j (C [ D) [']and A??D jC ['] imply 'A[B[C[D = (�
 C[D)
 ,which = � 
  by T600 and T500 with E = C [ D, sothat C4 holds.Our axioms for projection and conditional product re-semble those for marginalization and combination ofvaluations (Shenoy and Shafer 1990; Shenoy 1994),which were motivated by the desire to establish an ax-iomatic framework for belief propagation in join trees,rather than as a framework for conditional indepen-dence. The main di�erence is that their combinationis de�ned also for non-compatible valuations. How-ever, Shenoy (1994) also derived graphoid propertiesfrom his axioms for valuations.3 PROBABILISTIC FRAMEWORKThe classic example of objects satisfying our axioms isgiven by probability measures on Cartesian productsof arbitrary measurable spaces. We start with the im-portant special case of discrete probability measures,then treat the general case. Throughout, we take Nto be the class of �nite subsets of N .3.1 DISCRETE CASEFor each i 2 N we are given a non-empty �nite setXi. For non-empty D 2 N we de�ne XD =Qi2DXi,while X; is taken to be some �xed singleton set f�g.An object with domain D is a distribution over D, i.e.a non-negative function p on XD such that Pf p(x) :x 2 XDg = 1.The projection of p overD onto E 2 N is the marginaldistribution pE on XE\D, de�ned by the formula:pE(y) =Xf p(x;y) : x 2 Yi2DnEXi gfor every y 2 XE\D (with obvious modi�cation if E \D = ;). Of course, pE = p if D nE = ;.The conditional product of a distribution p overE 2 Nand a distribution q over F 2 N will be de�ned forevery pair of weakly compatible distributions, so thatC = D in this case. Supposing p is de�ned on XE and

q on XF , p
 q is de�ned on XE[F as follows:(p
 q) (x;y; z) = � p(x;y)�q(y;z)pE\F (y) if pE\F (y) > 00 otherwise (1)for every x 2Qi2EnF Xi, y 2 XE\F , z 2Qi2FnEXi.Of course, if E n F = ;, then x is omitted; if F nE =;, then z is omitted. Of course, pE\F in (1) can bereplaced by qE\F .The reader can verify directly:Proposition 3.1 The properties P1{P3 and T1{T6hold for the above de�ned projection and conditionalproduct of discrete probability distributions.Thus, by Proposition 2.1 every probability distributionp over D 2 N induces a disjoint semi-graphoid overN as follows: for every triplet hA;BjCi of pairwisedisjoint �nite subsets of N one has A??B jC [p] i�pA[B[C(x;y; z) � pC(y) = pA[C(x;y) � pB[C(y; z)for every x 2 Qi2A\DXi, y 2 XC\D, z 2 QB\DXi(thus corresponding to the standard probabilistic def-inition of conditional independence for this case). Letus call these semi-graphoids (as triplets of pairwise dis-joint subsets of N) discrete probabilistic models .3.2 GENERAL CASENow for every i 2 N a measurable space (Xi;Xi) isgiven and an object, with domain D 2 N , is a prob-ability measure P on the product space (XD;XD) �Qi2D(Xi;Xi). The projection of P onto E 2 N is themarginal measure of P on (XE\D;XE\D):PE(T) = P (T�XDnE) for every T 2 XE\D :Of course, PE = P if D nE = ;. An example showingthat weak compatibility may not imply strong com-patibility in this general framework (that is C 6= C�)is given in Appendix B (Example B.1).The de�nition of conditional product is now more tech-nical (for relevant background see, for example, Neveu(1964)). Let P having domain E 2 N and Q hav-ing domain F 2 N be weakly compatible. GivenT 2 XEnF (where EnF 6= ;), by a representative of theconditional probability of T given XE\F induced byP is understood any XE\F -measurable non-negativefunction P (Tj�) on XE\F such thatP (T� U) = Zu2U P (Tju) dPE\F (u) (2)for every U 2 XE\F . Observe that in the discrete caseone has: P (ftgju) = p(t; u)pE\F (u)for t 2 XEnF and u 2 XE\F with pE\F (u) > 0. Foreach T such a representative exists, and any two rep-resentatives can di�er only on a set in XE\F of P -probability 0. However, it is not always possible to



choose representatives for all T 2 XEnF to ensure �-additivity over T.Conditional probability Q(Vj�) of V 2 XFnE givenXE\F induced by Q is de�ned analogously. Then onecan introduce the following set function:R(T�U�V) = Zu2U P (Tju) �Q(Vju) dPE\F (u) (3)for T 2 XEnF , U 2 XE\F , V 2 XFnE . Of course,Cartesian products over the empty set are omitted andPE\F = QE\F is the common projection of P and Qonto E \ F .Equation (3) de�nes R only on the subclass S of setsin XE[F of the form T � U � V, as described above.Then R is �nitely additive, but need not be �-additive,on S. If it is �-additive, it can be uniquely extendedto a �-additive probability measure on XE[F , whichwe also denote by R. In this case, (P;Q) 2 D, and wede�ne the conditional product P 
Q = R. Otherwise,(P;Q) 62 D, and P 
Q is not de�ned.An example showing that strong compatibility doesnot imply the existence of the conditional product (i.e.D 6= C�) is given in Appendix B (Example B.2).With the above de�nition, the corresponding conceptof conditional independence is given by: for pairwisedisjoint A;B;C 2 N , A??B jC [P ] if:for T 2 XA;V 2 XB ;U 2 XC ;P (T� U� V) = Ru2U P (Tju) � P (Vju) dPC(u): (4)We note, by Observation 2.3, that A??B jC [P 
 Q]for (P;Q) 2 D, d(P ) = A [ C, d(Q) = B [ C, since(P 
Q)A[C = P , (P 
Q)B[C = Q.We assert, without proof, that equivalent statementsto (4) are:P (T� V ju) = P (T ju)P (V ju) a.s. [PC ] (5)P (T ju; v) = P (T ju) a.s. [PB[C ] (6)P (V j t; u) = P (V ju) a.s. [PA[C ]: (7)Further, (6) and (7) are equivalent to the existenceof a XC-measurable representative of P (T ju; v) or ofP (V j t; u), respectively.The following proposition is proved in Appendix A:Proposition 3.2 The axioms of x2.1 hold for theabove de�ned conditional product of probability mea-sures.It now follows from Propositions 3.2 and 2.1 that gen-eral probabilistic conditional independence, as de�nedby (4) above via conditional products, induces a dis-joint semi-graphoid, which we may term a probabilisticmodel .4 SET-THEORETIC FRAMEWORKIn this Section we consider a framework which is insome ways analogous to the probabilistic one, but

much simpler. The corresponding concept of condi-tional independence will turn out to be variation inde-pendence (Dawid 1998), which arises naturally in thecontext of relational databases, and has applicationsin the statistical analysis of graphical models (Dawidand Lauritzen 1993).We again have a space Xi for every i 2 N but the�-algebra Xi is no longer required. An object S withdomain D 2 N will now be an arbitrary subset ofXD. We start by de�ning projection and conditionalproduct for points. Thus let x = (xi : i 2 D). Then forE 2 N we de�ne its projection onto E to be xE = (xi :i 2 D \ E). We say that two points x = (xi : i 2 E)and y = (yi : i 2 F ) are compatible if xi = yi for everyi 2 E \ F , i.e. they have the same projections ontoE\F ; and in this case de�ne their conditional productx
y as z = (zi : i 2 E[F ) where zi = xi if i 2 E, zi =yi if i 2 F . Then projection of an object S is de�nedpointwise: SE = fxE : x 2 Sg. If S and T are twoobjects, with respective domains E and F , they willbe compatible if their projections onto E\F coincide;and in this case we take (S; T ) 2 D, de�ning S 
 T =fx
 y : x 2 S; y 2 T;x and y are compatibleg. It isthen not di�cult to verify:Proposition 4.1 The axioms of x2.1 hold for theabove de�ned conditional product of sets.The corresponding de�nition of conditional inde-pendence is given by: for disjoint A;B;C � N ,A??B jC [S] if, for each z 2 SC , f(xA;xB) : x 2S;xC = zg is a Cartesian product. That is to say, asa point varies in S subject to having a given projec-tion onto C, there are no constraints relating its pro-jections onto A and onto B. By Proposition 2.1, thisconcept of \variation independence" de�nes a disjointsemi-graphoid on N .5 GRAPHICAL FRAMEWORKIn this Section we explore two speci�c graphical frame-works which are widely used in Arti�cial Intelligence:undirected graphs and directed acyclic graphs.5.1 UNDIRECTED GRAPHSAn undirected graph G over a �nite set of nodesD � Nis speci�ed by a collection L of two-element subsets ofD which are called edges. We call D the nodeset, andL the edgeset, ofG, and writeG = (D;L). A path inGis a sequence of distinct nodes w1; : : : ; wn, n � 1 2 Dsuch that fwi; wi+1g 2 L for i = 1; : : : ; n� 1. We saythat a triplet hA;BjCi of pairwise disjoint �nite sub-sets of N is represented on G and write A??B jC [G]if for every path w1; : : : ; wn in G with w1 2 A andwn 2 B there exists 1 < i < n with wi 2 C. It isno problem to verify that �?? � j � [G] forms a disjointsemi-graphoid over N (see for example Pearl (1988)).Let us call such semi-graphoids UG-models over N .
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Figure 2: Their Common ProjectionsA natural question arises: Is it possible to de�ne theabove mentioned conditional independence predicate?? by means of a suitable conditional product opera-tion on undirected graphs? The answer is negative.First, suppose for contradiction that separation inundirected graphs can be equivalently de�ned bymeans of some projection and conditional product sat-isfying the axioms from x2.1. Let GE be the projectionof an undirected graph G over D 2 N onto E 2 N .Then Observation 2.2 and P2 imply A??B jC [GE ]i� A??B jC [G] for every triplet hA;BjCi of pair-wise disjoint �nite sets of A;B;C � E \ D. Observethat fu; vg is an edge in an undirected graph H overE \ D i� :(fug??fvg jE \ D n fu; vg [H ]). Hence,fu; vg � E \D is an edge in GE i� there exists a pathu = w1; : : : ; wn = v, n � 2 in G with wi 2 D n Efor 1 < i < n. Thus, the projection GE is uniquelydetermined. Note that projection operation de�ned inthis way satis�es P1{P3.To show that no reasonable conditional product oper-ation can be introduced within this framework, con-sider the two graphs over fa; b; c; dg from Figure 1.Evidently fbg??fdg j fa; cg [Gi] for i = 1; 2. In case?? can be de�ned by means of a conditional prod-uct operation 
 deduce from the de�nition in x2.2Gi = Gfa;b;cgi 
 Gfa;c;dgi for i = 1; 2. However, thecorresponding projections of Gi onto fa; b; cg and ontofa; c; dg coincide | they are as in Figure 2. Hence, acontradictory conclusion G1 = G2 is derived. Thus,we have:Consequence 5.1Conditional independence for undirected graphs can-not be de�ned by means of projection and conditional

product operations on undirected graphs.The reader may incline to conclude that conditionalproduct operation cannot induce UG-models at all.However, this is not true. The reason is that theframework of undirected graphs can be considered as asubframework of the discrete probabilistic framework.Geiger and Pearl (1993) showed that for every UG-model over D � N there exists a discrete probabilitydistribution over D inducing it (see also Studen�y andBouckaert (1998/9)). Proposition 3.1 says that everysuch discrete probabilistic model can be de�ned bymeans of a conditional product (on discrete probabil-ity distributions).5.1.1 An Alternative ConstructionAlthough we have seen that there is no way of de�n-ing operations of projection and conditional producton undirected graphs so as to reconstruct the stan-dard de�nition of graphical conditional independence(separation), other constructions are possible, lead-ing to new concepts of graphical separation. Thus letG = (D;L) be an undirected graph on D � N . ForA � D the projection of G onto A is just the inducedsubgraph GA = (A;L \ (A�A)), while for more gen-eral A we de�ne GA = GA\D . Then two graphs G andH are compatible if they have exactly the same edgesbetween all nodes common to both their domains. Inthis case we take (G;H) 2 D, and de�ne their condi-tional product G
H as the graph whose nodeset andedgeset are obtained as the unions of the correspond-ing nodesets and edgesets of G and H . It is readilyseen that all the axioms of Section 2.1 are satis�ed forthese de�nitions. Correspondingly, we have the fol-lowing de�nition of conditional independence with re-spect to a graph G = (D;L): for disjoint A;B;C � N ,A??B jC [G] if there is no edge in L containing one el-ement in A and the other in B. By Proposition 2.1,this de�nition yields a disjoint semi-graphoid over N .However, it is distinct from any of the usual forms mo-tivated by probabilistic independence. In particular,we see that, for given A and B, A??B jC holds or failssimultaneously for every \conditioning set" C (so longonly as the disjointness requirement is maintained).5.2 DIRECTED ACYCLIC GRAPHSA directed graph H over a �nite set of nodes D 2 Nis speci�ed by a collection A of ordered pairs (u; v)of distinct nodes, called arrows. A descending pathin H is a sequence of distinct nodes w1; : : : ; wn, n �1 such that (wi; wi+1) 2 A for i = 1; : : : ; n � 1. Itis called a directed cycle if moreover (wn; w1) 2 A.A directed acyclic graph is a directed graph withoutdirected cycles.Testing whether a triplet hA;BjCi of pairwise disjoint�nite subsets of N is represented in such a graph ismore complicated than in the undirected case. Let usdescribe the moralization criterion of Lauritzen et al.
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Figure 3: A Directed Acyclic Graph(1990) which is equivalent to the d-separation criterionof Pearl (1988). First, consider the set E of ancestorsof A [ B [ C, that is the set of nodes u 2 D suchthat there exists a descending path u = w1; : : : ; wn 2A [ B [ C, n � 1 in H . An undirected graph Gover E, called the moral graph of H , is constructedas follows: fu; vg 2 L i� (u; v) 2 A or (v; u) 2 A orthere exists w 2 E with (u;w) 2 A and (v; w) 2 A.The triplet hA;BjCi is represented in H , denoted byA??B jC [H ], if it is represented in the moral graphG in the sense described in x5.1. Again, the readercan verify that � ?? � j � [H ] determines a disjoint semi-graphoid over N . Let us call such semi-graphoidsDAG-models .One can raise a question analogous to that in the previ-ous case: Is there any conditional product operation ondirected acyclic graphs inducing the conditional inde-pendence predicate above? The answer is again nega-tive. The reason is even more basic than in undirectedcase: no reasonable projection operation exists. To seethis, consider the graph H of Figure 3 and ask whatcould be the projection of H onto F = fa; b; d; eg? ByObservation 2.2 the DAG-model over F induced bythis projection is uniquely determined. However, weobserve the following.Lemma 5.1 There is no directed acyclic graph Kover fa; b; d; eg such that for every triplet A;B;C �fa; b; d; eg of pairwise disjoint sets A??B jC [K] i�A??B jC [H ].Proof: The argument is based on two observationsconcerning an arbitrary directed acyclic graph K overF . The �rst observation is that fu; vg is an edge inK (that is either (u; v) or (v; u) is an arrow in K) i�:( fug??fvg jL [K] ) for every L � F n fu; vg. Indeed,to show su�ciency of this condition take as L the setof ancestors of fu; vg in K, excluding u and v. Thesecond observation is that whenever fu;wg and fv; wgare edges in K but fu; vg is not an edge in K then(u;w) and (v; w) are simultaneously arrows in K i�:( fug??fvg jL [K] ) for every fwg � L � F n fu; vg.Indeed, to show su�ciency of the condition take as Lthe set of ancestors of fu; v; wg in K excluding u andv.Suppose for contradiction the existence of a graphK over fa; b; d; eg satisfying the required conditions.Then the fact :( fdg??feg jL [H ] ) for everyL � fa; bgimplies that fd; eg is an edge in K. Similarly, the fact:( fbg??fdg jL [H ] ) for every L � fa; eg implies that

fb; dg is an edge in K. The fact fbg??feg j ; [H ] im-plies that fb; eg is not an edge in K. Finally, the fact:( fbg??feg jL [H ] ) for fdg � L � fa; dg implies that(b; d) and (e; d) are arrows inK. However, by the sameconsideration, interchanging a with e and b with d, de-rive that (d; b) and (a; b) are arrows in K. Then theconclusion that both (b; d) and (d; b) are arrows in Kcontradicts the assumption that K is acyclic.It follows from Lemma 5.1 and Observation 2.2 thata suitable projection of H onto F cannot be de�ned.Thus, we have:Consequence 5.2 Conditional independence for di-rected acyclic graphs cannot be de�ned by means ofprojection and conditional product operations on di-rected acyclic graphs.Again, as in the undirected case, the framework ofdirected acyclic graphs can be considered as a sub-framework of the discrete probabilistic framework.The result that every DAG-model is a discrete proba-bilistic model is given by Geiger and Pearl (1990); seealso Studen�y and Bouckaert (1998/9).6 CONCLUSIONWe have introduced an abstract concept of conditionalproduct, 
, and shown how it can be used to derivean induced concept of conditional independence, ??.Conversely, if we start with a de�nition of ?? obey-ing the semi-graphoid axioms, we can search for anassociated conditional product 
: in particular, for(�;  ) 2 D with d(�) = A, d( ) = B, � = �
 wouldhave to satisfy �A = �, �B =  , and A??B jC [� ] (seeObservation 2.3). As we have seen in the framework ofgraphical models, this is not always possible. In othercontexts, the required construction may be possiblebut non-unique.We have developed the theory of semi-graphoids andconditional products for the special case of domainswhich are subsets of some given index set N . Cor-respondingly, our de�nitions in the probabilistic andset-theoretic frameworks have been based on samplespaces which are Cartesian products. In fact it is possi-ble to develop the theory in a still more general frame-work, in which we need only require that the classof possible domains be an abstract join semi-lattice(Birkho� 1949).The general abstract algebraic structures underlyingconditional independence would seem to have consider-able independent mathematical interest, and promiseto richly repay further study. Also, they bring a uni-fying point of view to the study of many applicationareas, and it will be fruitful to identify new applica-tions, both within and beyond the motivating areasof probability and other uncertainty formalisms, andgraph theory. In particular, in further work we planto investigate the existence, nature and properties of



conditional products for a number of special problemareas of natural interest, including:1. Possibility theory and Spohn's theory of �-functions, as mentioned in Shenoy (1994).2. Meta Markov models and hyper Markov models(Dawid and Lauritzen 1993). These are formedby suitably combining the concepts of probabilis-tic (x3) and set-theoretic (x4) conditional prod-uct. The combination process involved can beabstracted to apply to conditional products moregenerally.3. Dempster-Shafer belief functions (Shafer 1976).Again, suitable de�nitions of conditional prod-uct and conditional independence here will in-volve combining probabilistic and set-theoreticconcepts.4. Semi-graphoids induced by imsets (supermodu-lar integer-valued set functions on subsets of N)(Studen�y 1994/5).5. Completely general semi-graphoids over N . Isthere any reasonable de�nition of conditionalproduct for semi-graphoids? Or perhaps for in-teresting subclasses, such as those arising fromprobabilistic models?A PROOF OF PROPOSITION 3.2T1 and T2 are immediate from the de�nition. ForT3, take P to have domain E, and Q = PF where,without loss of generality, F � E. In (3), V 2 X; =f;; f�gg, and we haveQ(; ju) = 0 a.s.[Q], Q(f�g ju) =1 a.s. [Q]. We can regard R as de�ned on a subclassof XE (on identifying T � U � f�g with T � U), andthen R(T � U) = Ru2U P (Tju)dPF (u), with U 2 XF ,= P (T�U). So clearly (P; PF ) 2 D and and P
PF =P , i.e. T3 holds.Now suppose (P;Q) 2 D, with d(P ) = A [ C,d(Q) = B [ C [D, where A;B;C;D are pairwise dis-joint. Let S = P 
Q, so that SA[C = P , SB[C[D =Q. Then A??(B [ D) jC [S]. Using (4) ) (6),we thus have S(T ju;w; z) = S(T ju) a.s. [SB[C[D],with u 2 XC , (w; z) 2 XB[D = XB � XD.Equivalently, S(T ju;w; z) is (more precisely, has arepresentative that is) XC-measurable. It readilyfollows that S(T ju; z) is XC-measurable, so thatA??D jC [SA[C[D], i.e. (P 
Q)A[C[D = P 
QC[D,viz . T400 holds; and that S(T ju;w; z) is XC[D-measurable, so A??B j (C [ D) [S], i.e. P 
 Q =(P 
Q)A[C[D 
Q, viz . T500 holds.For veri�cation of T600 take P;Q with d(P ) = A [C, d(Q) = B [ C [ D, where A;B;C;D are pair-wise disjoint. Let R = P 
 QC[D, S = R 
 Q,so that SA[C[D = R. Then A??B j (C [ D) [S]and using (4) ) (6) we have that S(T ju;w; z) =S(T ju; z) a.s. [S], with u 2 XC , w 2 XB , z 2 XD.However A??D jC [R] implies that there exists a XC-

measurable representative of R(T ju; z) and thus a XC-measurable representative of S(T ju; z). Hence, thereexists a XC-measurable representative of S(T ju;w; z),which is equivalent to A??(B [ D) jC [S]. SinceSA[C = P , SB[C[D = Q, this implies S = P 
Q.B TWO EXAMPLES (Studen�y 1987)To give examples that C 6= C� and C� 6= D in theframework described in x3.2 we utilize the followinglemma.Lemma B.1 Let (T;A) be a measurable space, andB � A a sub-�-algebra such that the diagonal f(t; t) :t 2 T g is A � B-measurable. Let us put (X1;X1) =(X3;X3) = (T;A), (X2;X2) = (T;B).(i) Every probability measure P on (X1 � X2 �X3;X1 � X2 � X3) whose marginals on X1 �X2and X2 �X3 are concentrated on their diagonalsis concentrated on the diagonal D = f(t; t; t) :t 2 T g.(ii) Every probability measure � on (T;A) induces,by the formulaP (A� B� C) = �(A \ B \ C)for A 2 X1, B 2 X2, A 2 X3, a probability measureP on (X1�X2�X3;X1�X2�X3) concentratedon the diagonal.(iii) Conversely, every such measure can be introducedin this way.(iv) The marginal of P on X1 and on X3 is �, themarginal of P on X2 is the restriction of � to B.Proof: For (i), realize that both D1 = f(t; t;v) :t;v 2 T g and D2 = f(v; t; t) : t;v 2 T g belongto X1 � X2 � X3. Of course, D = D1 \ D2 andthe assumption P (D1) = P (D2) = 1 imply P (D) =1. Consider the mapping t 7! (t; t; t) from T intoX1 �X2 �X3. The reader can easily verify that it isa measurable one-to-one transformation of (T;A) into(X1�X2�X3;X1�X2�X3) (realize that the inverseimage of A�B�C is A\B\C) whose inverse transfor-mation is measurable as well (the image of A can bewritten as (A�T�T) \ D ). Since the image of T isD, probability measures on (T;A) are transformed toprobability measures on (X1�X2�X3;X1�X2�X3)concentrated on D. Thus, both (ii) and (iii) are evi-dent; (iv) follows from the formula in (ii).Let us put T = h0; 1i and consider the �-algebra B ofBorel subsets of T. Let us denote by � the Lebesguemeasure on (T;B). It was shown in Halmos (1974)(Theorem E in x16) that there exists a set M � Tsuch that ��(M) = ��(T n M) = 0. Here �� denotesLebesgue inner measure de�ned by the formula:��(M) = supf�(K) : K � M; K 2 B g :



Put A = f (E \M) [ (F nM) : E;F 2 B g: it is the �-algebra generated by B[fMg. Observe that whenever(E\M)[(FnM) = (~E\M)[(~FnM) for E; ~E;F; ~F 2 B thenE�~E � T nM and F�~F � M and therefore �(E�~E) =�(F�~F) = 0. In particular, for every � 2 h0; 1i the setfunction on A de�ned by:��(G) = � � �(E) + (1� �) � �(F); (8)where G = (E \ M) [ (F n M), E;F 2 B, is well-de�ned. The reader can show by the procedure inthe proof of Theorem A, x17 of Halmos (1974) that�� is a probability measure on (T;A). Evidently,the restriction of �� to B is � for every � 2 h0; 1i,�1 is concentrated on M and �0 is concentrated onT n M. Put (X1;X1) = (T;A), (X2;X2) = (T;B),(X3;X3) = (T;A) and introduce the measure R� on(X1 � X2 �X3;X1 � X2 � X3) for � 2 h0; 1i by theformula: R�(A � B� C) = ��(A \ B \ C) (9)for A 2 X1, B 2 X2, A 2 X3. By Lemma B.1(ii) R� isa probability measure concentrated on the diagonal.Example B.1 There are measurable spaces (Xi;Xi)i = 1; 2; 3 and probability distributions P on (X1 �X2;X1 �X2) and Q on (X2 �X3;X2 �X3) which areweakly compatible but not strongly compatible.Repeat the construction above and de�ne P to be themarginal of R0 on X1 �X2 and Q to be the marginalof R1 on X2 �X3. By Lemma B.1(iv) the marginalof P on X2 is �; the same conclusion holds for Q.Thus, P and Q are weakly compatible. Suppose thatT is a distribution on (X1 �X2 �X3;X1 � X2 � X3)having P and Q as marginals. Then T has on X1the same marginal as P , and therefore as R0, thatis �0 (use Lemma B.1(iv)). Similarly, T has on X3the same marginal as Q, that is �1. However, byLemma B.1(i) T is concentrated on the diagonal andby Lemma B.1(iv) the marginals of T on X1 = X3coincide. This leads to the contradictory conclusion�0 = �1. Therefore P and Q are not strongly compat-ible.Example B.2 There are measurable spaces (Xi;Xi)i = 1; 2; 3 and probability distributions P on (X1 �X2;X1 � X2) and Q on (X2 � X3;X2 � X3) whichare strongly compatible but their conditional productfrom x3.2 is not de�ned.Repeat the construction before Example B.1 and putR = R� for � = 12 . De�ne P and Q to be the re-spective marginals of R. They are evidently stronglycompatible. Suppose for contradiction that T is theconditional product of P and Q as de�ned in x3.2.By Lemma B.1(i) T is concentrated on the diagonal.Moreover, by Lemma B.1(iv) the marginal of T on X1is � 12 . Thus, using Lemma B.1(iii), we derive T = R.The reader can observe that for G 2 X1 = A of theform G = (E\M)[ (FnM) where E;F 2 B the formulaP (Gju) = 12 � �E(u) + 12 � �F(u)
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