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Abstract. A chain graph (CG) is a graph admitting both directed and
undirected edges with forbidden directed cycles. It generalizes both the
concept of undirected graph (UG) and the concept of directed acyclic
graph (DAG). CGs can be used efficiently to store graphoids, that is,
independency knowledge of the form “X is independent of YV given Z”
obeying a set of five properties (axioms).

Two equivalent criteria for reading independencies from a CG are for-
mulated, namely the moralization criterion and the separation criterion.
These criteria give exactly the graphoid closure of the input list for the
CG. Moreover, a construction of a CG from a graphoid (through an input
list), which produces a minimal I-map of that graphoid, is given.

1 Introduction

Using graphs to describe independency structure arising among variables has a
long and rich tradition. One can distinguish two classic approaches (for details see
the book [11]): using undirected graphs (UGs), called also Markov networks, or
using directed acyclic graphs (DAGs), named also Bayesian networks, recursive
models or influence diagrams. The aim is to describe efficiently independency
models in the form of lists of statements “X is independent of Y given Z”,
where X,Y, Z are disjoint sets of variables. Such structures can arise in several
calculi for dealing with uncertainty in artificial intelligence: in probabilistic rea-
soning, in theory of natural conditional functions known also as kappa-calculus,
in possibility theory or Dempster-Shafer theory of evidence (for overview see
[12]) but also in the theory of relational databases. Of course, different calculi
produce different independency models, but in case of non-extreme knowledge
representation they share five properties which define the class of graphoids.
Graphoids can be sometimes described graphically. Thus, every UG defines
by means of separation criterion an independency model which is a graphoid. The
use of UGs in probabilistic reasoning justified by the result from [5], where every
such UG-model is shown to be a probabilistic independency model. Nevertheless,
a lot of graphoids (even probabilistic models) have no UG representation (that
is, are not UG-models). Therefore Pearl [11] proposed to approximate graphoids
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by their contained UG-models (I-maps) and showed that for every graphoid M
there exist a unique maximal UG-model contained in M, called minimal I-map
of M.

Evolution of DAG-models was more complicated. Originally, DAGs were used
to describe recursive factorizations of probability distributions. But such a fac-
torization is equivalent to the requirement that the considered distribution com-
plies with a set of independencies called often causal input list. Nevertheless, the
distribution usually complies with many other independencies outside the input
list. A lot of effort was exerted to achieve a graphical criterion which makes it
possible to read from the DAG all independencies in the factorizable distribution.

In fact, two equivalent criteria were found. Lauritzen et. al. [10] generalized an
incomplete criterion from [6] and formulated a moralization criterion where test-
ing consist of 3 steps: restriction of the DAG to certain set of nodes, transforming
it properly to an UG (called moral graph), and using the separation criterion for
UGs with respect to the moral graph. The group around Pearl developed a di-
rect separation criterion [3], for this purpose they introduced the concept of
d-separation (d- stands for directional) for paths in DAGs. It was shown that
the criteria are equivalent [10] and that they give exactly the graphoid closure
of the input list [13]. Finally, the criteria were shown to be complete for prob-
abilistic reasoning by showing that every independency model defined by the
separation criterion is a probabilistic model [4]. Thus, DAG-models were estab-
lished and their use in probabilistic reasoning was justified. Like in case of UGs
Pearl [11] considered the problem of inner approximation of graphoids by DAG-
models. In contrast to the case of UGs several maximal DAG-models contained
in a graphoid (minimal I-maps) may exist. In fact, any ordering of variables can
generate such a minimal I-map, the corresponding construction is given in [13].

This paper deals with chain graphs (CGs) which allow both directed and
undirected edges. This class of graphs, introduced by Lauritzen and Wermuth
[7], generalizes both UGs and DAGs. To establish semantics of CGs one should
associate an independency model to every CG. Some steps were already made.
Lauritzen and Wermuth [8] intended to use CGs to describe independency mod-
els for positive distributions and introduced the concept of chain Markov property
which is an analogy of the concept of causal input list for DAGs. Frydenberg [2]
generalized the concept of moral graph and introduced a moralization criterion
for reading independencies from a CG.

In this paper some of above mentioned results concerning UGs and DAGs are
extended to the case of CGs. We introduce the concept of c-separation (chain
separation) for trails in CGs, which generalizes both separation in UGs and
d-separation in DAGs. This gives a direct separation criterion for reading inde-
pendencies from a CG. The main result of the contribution says that an inde-
pendency statement belongs to the graphoid closure of the input list for a CG iff
it is derived by the moralization criterion, which is equivalent to the separation
criterion. Moreover, the construction of a minimal I-map from [13] is generalized
to the case of CGs.



2 Independency models

Throughout the paper, in apposite situations, we will use a reduced notation:
juxtaposition XY instead of X UY', u instead of {u} and X —Y — u instead of
X\ (Y U {u}).

Supposing N is a nonempty finite set the symbol T'(IV) will denote the class
of all triplets (X,Y|Z) of disjoint subsets of N whose first two components X
and Y are nonempty. An independency model over N is a subset of T'(N). It is
called graphoid iff it satisfies the following properties:

(X,)Y|Z) - (V,X|Z) symmetry
(X, YW|Z) - (X, W|2) decomposition
(X, YW|2Z) - (X, Y|WZ) weak union
(X, YIWZ) & (X, W|Z)] - (X,YW|Z) contraction
(X, YIWZ) & (X,W|YZ)] - (X,YW|Z) intersection

Having a set L C T(N) its graphoid closure, denoted by gr(L) consists of all
triplets in T'(IV) derivable from L by means of consecutive application of graphoid
properties.

3 Graphs

A graph is a couple (N, E) where N is a nonempty finite set of nodes and E
is a set of edges, that is, two-element subsets of N. In this paper we consider
several types of edges (every edge belongs exclusively to one of possible types)
and this gives several types of graphs. An undirected graph (UG) admits only
undirected edges, called links. We will write u — v to denote that there exists
a link between a node u and a node v. A directed acyclic graph (DAG) is a
graph having only directed edges called arcs (we will write u — v to denote
that there exists an arc from a node u to a node v) such that there exists no
directed cycle in the graph (that is, sequence of distinct nodes vy, ...,vg, k > 2

with v; = via1,i=1,...,k — 1 and v — vy).
A chain graph (CG) admits both links and arcs. It is required that the set of
nodes can be partitioned into ordered disjoint (nonempty) subsets By,..., B,

n > 1 called blocks in such a way that the types of edges are determined as
follows:

(i) if {w,v} is an edge with u,v € B; then u — v,

(ii) if {u,v} is an edge with u € B;,v € Bj,i < j then u — v.

Note that CGs were characterized in [2] as graphs not having any directed cycles,
but the definition above is more suitable for our purposes. It is evident that CGs
involve both UGs and DAGs. Every ordered partitioning satisfying (i)-(ii) will
be called a chain for the CG. Of course, a CG admits several chains.

A subgraph of a graph G = (N,E) is a graph H = (V,F) with V C N
and F C E; its restriction to a nonempty set T C N is the subgraph Gp =
(T, Er), where Epr = {{u,v} € E; u,v € T }. Of course, the types respectively
orientations of edges remain unchanged. Let us mention that a restriction of a
CG is again a CG.



A path in a CG is a sequence of its distinct nodes vy, ..., v, k > 1 such that
Vi=1,...,k—1 {v;,v;y1} is an edge. We will say that it is a path from a node u

to anode w iff v; = v and v, = w. We will say that a path vy, ..., v, k > 1 meets
aset of nodes Z iff {v1,...vx}NZ # (. The path is undirected if Vi=1,...,k—1
v;— vi+1. The path is descendingiff Vi = 1,..., k—1 either v; — v;41 Or v;— Vi41.

If there exists a descending path from a node u to a node v, then v is a descendant
of u, or dually w is an ancestor of v. The symbol dsg(u) will denote the set of
descendants of u; dsg(X) is the union of dsg(u)’s for u € X (X is a set of
nodes). It is worthwhile to realize the following simple fact.

Fact 1 If there exists an undirected path from u to v, then dsg(u) = dsa(v).

Similarly, ang(X) denotes the set of ancestors of nodes from X. We will omit
the symbol of the graph G if it will be clear from the context. A set of nodes X
is ancestral (in G) iff it contains ancestors of its nodes, that is, ang(X) C X.

4 Moralization criterion

The moralization criterion for CGs is based on the classic separation criterion
for UGs. Thus, we recall that a triplet (X,Y|Z) € T(N) is represented in an UG
H = (N, E), denoted by (X,Y|Z)y, iff every path in H from a node of X to a
node of Y in G meets Z.

Given a CG G = (N, E) its moral graph, denoted by G™°", is an UG hav-
ing the same set of nodes as G, but the set of links established as follows:
u—wvin G™" iff w —vin Goru — vin G or u < v in G or there
exists a path vy,...,vg, & > 3 from u to v in G such that vy — vy, Vi =
2,...,k—2 Vi — Vig1, Vg—1 < Vg.

Let G = (N,E) be a CG, (X,Y|Z) € T(N) and H be the moral graph
of Gon(xvz)- We will say that (X,Y|Z) is represented in G according to the
moralization criterion and write (X,Y|Z)Z" iff (X,Y|Z)g. Let us mention
that the moral graph H depends on (X,Y|Z). The reader can verify that this
moralization criterion specified to DAGs gives exactly the criterion from [10].

5 Separation criterion

To formulate the separation criterion for CGs we have to introduce some special
graphical concepts. Given a CG, a slide from a node u to a node w is a path

Uly...,0%, k>2suchthatu=vy vy ,Vi=2,...,k—1 v; — v;y1 and v = w.
A trail in a CG is a sequence of its nodes vy, ..., v, k > 1 such that

(i) Vi=1,...,k—1 {v;,v;41} is an edge of G,

(ii) Vi=2,...,k—1 the nodes v;_1,v;,v;41 are distinct,

(iii) every its undirected subsequence v; — vj41 — ... — Ujqs, 1 < j <k, 0 <

t < k — j consists of distinct nodes.
The concept of trail is more general than the concept of path since a node can
occur several times in a trail.



In contrast to d-separation in DAGs we will not define blocking for nodes of a
trail, but for its sections, that is, maximal undirected subpaths. Evidently, every
trail can be decomposed uniquely into sections. Moreover, sections of a trail can
be classified according to types (or existence) of edges of the trail entering the
section. Namely, just one of the following three possibilities can occur for the
first terminal node v; of a section S : vj,...,vj44, 1 <j <k, 0<t <k —j. If
Jj>1& v;j_1 —= vj, then v; is a head-terminal node of S;if j > 1 & vj_1 + vj,
then v; is a tail-terminal node of S; if j = 1, then v; is an end-terminal node
of S. An analogous classification holds for the second terminal node v;4;. Thus,
according to the type of terminal nodes® one can classify sections of a trail into
the following 6 classes. A section of a trail is called a head-to-head section iff
it has two head-terminal nodes, or a head-to-tail section iff it has one head-
terminal node and one tail-terminal node. Analogously are defined head-to-end,
tail-to-tail, tail-to-end and end-to-end sections.

Let G = (N,E) be a CG, Z C N and S be a section of a trail in G. The
definition of blocking of S by Z depends on the type of the section S:

e if S is a head-to-head section, then S is blocked by Z iff ds(S) N Z = 04,

e if S is a head-to-tail (respectively head-to-end) section, then S is blocked by Z
iff SNZ # 0 & every slide to the tail-terminal (respectively end-terminal) node
of S meets Z,

e if S is a tail-to-tail or tail-to-end or end-to-end section, then S is blocked by
Z iff SNZ # ) & every slide to any of the terminal nodes of S meets Z.

A trail in a CG is c-separated (chain separated) by Z iff there exists a section of
the trail which is blocked by Z.

Let G = (N, E) be a CG and (X,Y|Z) € T(N). We will say that (X,Y|Z) is
represented in G according to the separation criterion and write (X, Y |Z);7 iff
every trail from X to Y in G is c-separated by Z. We left to the reader to verify
that c-separation specified to the case of DAGs gives exactly d-separation from
[11]. Note that in case of c-separation we have to consider trails, the requirement
of blocking paths only is indeed weaker.

Lemmal. Let G = (N,E) be a CG, (X,Y|Z) € T(N). Then (X,Y|Z)5" iff
(X,Y|Z)ger.

The proof of this lemma is beyond the scope of a conference contribution and
can be found in [1]. To prove the lemma the concept of moral graph is formally
modified: edges of the original graph keep their type (that is, links or arcs) and
the added edges are consider of a third type, say, virtual edges called virts. We
can extend the concept of blocking for head-to-virt, tail-to-virt, virt-to-virt and
end-to-virt sections. Then we show that for every (X,Y|Z) € T(N), there exists
a path from X to Y outside Z in the moral graph of G,,(xyz) iff there exists
a trail from X to Y in G which is not blocked by Z. Both implications can be

3 If t = 0, then the terminal nodes v; and v; 4+ coincide. In this case the node v; = v;4¢
is considered as a double terminal node, that is, it can be for example both head-
and tail-terminal, or for example twice head-terminal node and so on.

* Tt follows from Fact 1 that ds(S) = ds(u) for any u € S.



verified by consecutive transformation of the considered trail (respectively path)
— by replacing sections meeting Z (respectively virts) by a ‘detour’.

6 Input list

Let G = (N,E) be a CG and B : By,..., B, a chain for G. The domain of a
node u, written dom? (u), is the union of blocks By, . .., By, where By, is the block
containing u. The set adjacents of u, written by adg(u), is {v € N; v — u in G},
the neighborhood of u, written nbg(u) is {v € N; v — u or v — u in G}. Note
that for every chain B for G and u € N it holds nbg(u) C domP (u).

The input list associated with G and a chain B for G is the set of triplets:

LE = {{u,dom®B(u) — nbg (u) — u|nbg(u)); u € N'}.

Note, that it generalizes the concept of causal input list for a DAG. Input lists
have the following properties.

Lemma 2. FEvery triplet from the input list is represented in G according to the
moralization criterion.

Proof. Consider the triplet corresponding to u € N. The corresponding ancestral
set is dom(u) , and moreover ady(u) = nbg(u), where H is the corresponding
moral graph. Hence, nbs(u) separates u from the rest of dom(u) in H.

Lemma 3. The independency model given by the moralization criterion is a
graphoid.

A proof can be found in [1]. The lemma can be shown by checking for each
graphoid axiom that if the moralization criterion holds for the triplets on the
left-hand side of the axiom, then it implies that the moralization criterion holds
for the triplet on the right-hand side.

Lemmad4. Let G = (N, E) be a CG, B a chain for G, (X,Y|Z) € T(N). Then
(X,Y|Z)&" implies (X,Y|Z) € gr(LB).

A proof can be found in [1]. The lemma states that every triplet for which the
moralization criterion holds in a CG is in the graphoid closure of the input list
of the CG.

We can summarize Lemmas 1, 2, 3 and 4 as follows:

Theorem 5. Supposing G = (N, E) be a CG and B be a chain for G, the fol-
lowing conditions are equivalent for a triplet t from T(N):

(i) t is represented in G according to the moralization criterion,

(i1) t is represented in G according to the separation criterion,

(iii) t belongs to the graphoid closure of the input list associated with G and B.

It follows from the theorem that the graphoid closure of the input list does not
depend on the choice of the chain.



7 Minimal I-map

In this section we generalize the construction of a minimal I-map (see [11]) to
the case of CGs. Let M C T(N) be a graphoid and B : By,...,Bp,n > 1 an
ordered partition of N (into nonempty sets). Then for every u € N there exists
the least set X C dom®(u) — u for which (u,domB(u) — X —u|X) € M. Its
existence and uniqueness follows from the assumption that M is a graphoid. Let
us denote it by X,. Our aim is to establish a CG with such a prescribed input
list.

Lemma 6. There exists a CG G having the given ordered partition B as its
chain and the list { (u,dom®(u) — X, — u|Xy,); u € N} as its input list LE.
This CG is moreover a minimal I-map of M.

A proof can be found in [1].

8 Conclusions

In this paper we have introduced a causal input list for chain graphs whose
graphoid closure is shown in [1] to be exactly the set of triplets for which the
moralization criterion holds. This implies that chain graphs are indeed a gener-
alization of both DAGs and UGs as formalisms for representing independency
relations. So, the concept of chain graph (CG) makes it possible to describe a
wider class of independency models involving both UG-models and DAG-models.
This raises expressiveness of graphical models. The presented results give certain
unifying point of view on graphical models and establishes semantics for CGs.
Further, we have presented a separation criterion which is shown in [1] to be
equivalent with the moralization criterion. The new separation criterion, based
on the concept c-separation has its own significance. For example, it easily im-
plies that every CG-model satisfies composition property [11]® which may be
complicated to verify using the moralization criterion. Nevertheless, its main
profit is expected in future. In [4] it is shown that for every DAG there exists a
probability distribution in which exactly those conditional independency state-
ments hold that are represented in the graph. We hope that analogously to this
result the concept of c-separation will help to prove a similar result for CGs. In
fact, in [9] this is claimed to be an open question, and in [2] even a wish to have
a proper separation criterion for this purpose is expressed. Such a result would
justify completely the use of CG in probabilistic reasoning. We expect analogous
results also in other calculi for dealing with uncertainty in artificial intelligence.

> We keep the notation domP® (u) from the preceding section, by convention
(u, B|domPB (u) — u) € M.
® The composition property: (X,Y|Z) & (X, W|Z)] — (X, YW|Z).
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