
Chain graphs: semantics and expressiveness?Remco R. Bouckaert1 and Milan Studen�y21 Utrecht University, Department of Computer Science, P.O.Box 80.089, 3508 TBUtrecht, The Netherlands, remco@cs.ruu.nl2 Inst. of Inform. Theory & Autom., Czech Academy of Sciences, Pod vod�arenskouv�e�z�� 4, 182 08 Prague, Czech Republic, studeny@utia.cas.czAbstract. A chain graph (CG) is a graph admitting both directed andundirected edges with forbidden directed cycles. It generalizes both theconcept of undirected graph (UG) and the concept of directed acyclicgraph (DAG). CGs can be used e�ciently to store graphoids, that is,independency knowledge of the form \X is independent of Y given Z"obeying a set of �ve properties (axioms).Two equivalent criteria for reading independencies from a CG are for-mulated, namely the moralization criterion and the separation criterion.These criteria give exactly the graphoid closure of the input list for theCG. Moreover, a construction of a CG from a graphoid (through an inputlist), which produces a minimal I-map of that graphoid, is given.1 IntroductionUsing graphs to describe independency structure arising among variables has along and rich tradition. One can distinguish two classic approaches (for details seethe book [11]): using undirected graphs (UGs), called also Markov networks, orusing directed acyclic graphs (DAGs), named also Bayesian networks, recursivemodels or in
uence diagrams. The aim is to describe e�ciently independencymodels in the form of lists of statements \X is independent of Y given Z",where X;Y; Z are disjoint sets of variables. Such structures can arise in severalcalculi for dealing with uncertainty in arti�cial intelligence: in probabilistic rea-soning, in theory of natural conditional functions known also as kappa-calculus,in possibility theory or Dempster-Shafer theory of evidence (for overview see[12]) but also in the theory of relational databases. Of course, di�erent calculiproduce di�erent independency models, but in case of non-extreme knowledgerepresentation they share �ve properties which de�ne the class of graphoids.Graphoids can be sometimes described graphically. Thus, every UG de�nesby means of separation criterion an independency model which is a graphoid. Theuse of UGs in probabilistic reasoning justi�ed by the result from [5], where everysuch UG-model is shown to be a probabilistic independency model. Nevertheless,a lot of graphoids (even probabilistic models) have no UG representation (thatis, are not UG-models). Therefore Pearl [11] proposed to approximate graphoids? This work was partially supported by the grants: GA AV�CR no. 275105 and CECno. CIPA3511CT930053.



by their contained UG-models (I-maps) and showed that for every graphoid Mthere exist a unique maximal UG-model contained in M , called minimal I-mapof M .Evolution of DAG-models was more complicated. Originally, DAGs were usedto describe recursive factorizations of probability distributions. But such a fac-torization is equivalent to the requirement that the considered distribution com-plies with a set of independencies called often causal input list. Nevertheless, thedistribution usually complies with many other independencies outside the inputlist. A lot of e�ort was exerted to achieve a graphical criterion which makes itpossible to read from the DAG all independencies in the factorizable distribution.In fact, two equivalent criteria were found. Lauritzen et. al. [10] generalized anincomplete criterion from [6] and formulated a moralization criterion where test-ing consist of 3 steps: restriction of the DAG to certain set of nodes, transformingit properly to an UG (called moral graph), and using the separation criterion forUGs with respect to the moral graph. The group around Pearl developed a di-rect separation criterion [3], for this purpose they introduced the concept ofd-separation (d- stands for directional) for paths in DAGs. It was shown thatthe criteria are equivalent [10] and that they give exactly the graphoid closureof the input list [13]. Finally, the criteria were shown to be complete for prob-abilistic reasoning by showing that every independency model de�ned by theseparation criterion is a probabilistic model [4]. Thus, DAG-models were estab-lished and their use in probabilistic reasoning was justi�ed. Like in case of UGsPearl [11] considered the problem of inner approximation of graphoids by DAG-models. In contrast to the case of UGs several maximal DAG-models containedin a graphoid (minimal I-maps) may exist. In fact, any ordering of variables cangenerate such a minimal I-map, the corresponding construction is given in [13].This paper deals with chain graphs (CGs) which allow both directed andundirected edges. This class of graphs, introduced by Lauritzen and Wermuth[7], generalizes both UGs and DAGs. To establish semantics of CGs one shouldassociate an independency model to every CG. Some steps were already made.Lauritzen and Wermuth [8] intended to use CGs to describe independency mod-els for positive distributions and introduced the concept of chain Markov propertywhich is an analogy of the concept of causal input list for DAGs. Frydenberg [2]generalized the concept of moral graph and introduced a moralization criterionfor reading independencies from a CG.In this paper some of above mentioned results concerning UGs and DAGs areextended to the case of CGs. We introduce the concept of c-separation (chainseparation) for trails in CGs, which generalizes both separation in UGs andd-separation in DAGs. This gives a direct separation criterion for reading inde-pendencies from a CG. The main result of the contribution says that an inde-pendency statement belongs to the graphoid closure of the input list for a CG i�it is derived by the moralization criterion, which is equivalent to the separationcriterion. Moreover, the construction of a minimal I-map from [13] is generalizedto the case of CGs.



2 Independency modelsThroughout the paper, in apposite situations, we will use a reduced notation:juxtaposition XY instead of X [ Y , u instead of fug and X � Y � u instead ofX n (Y [ fug).Supposing N is a nonempty �nite set the symbol T (N) will denote the classof all triplets hX;Y jZi of disjoint subsets of N whose �rst two components Xand Y are nonempty. An independency model over N is a subset of T (N). It iscalled graphoid i� it satis�es the following properties:hX;Y jZi ! hY;X jZi symmetryhX;Y W jZi ! hX;W jZi decompositionhX;Y W jZi ! hX;Y jWZi weak union[hX;Y jWZi & hX;W jZi] ! hX;Y W jZi contraction[hX;Y jWZi & hX;W jY Zi] ! hX;YW jZi intersectionHaving a set L � T (N) its graphoid closure, denoted by gr(L) consists of alltriplets in T (N) derivable from L by means of consecutive application of graphoidproperties.3 GraphsA graph is a couple (N;E) where N is a nonempty �nite set of nodes and Eis a set of edges, that is, two-element subsets of N . In this paper we considerseveral types of edges (every edge belongs exclusively to one of possible types)and this gives several types of graphs. An undirected graph (UG) admits onlyundirected edges, called links. We will write u �� v to denote that there existsa link between a node u and a node v. A directed acyclic graph (DAG) is agraph having only directed edges called arcs (we will write u ! v to denotethat there exists an arc from a node u to a node v) such that there exists nodirected cycle in the graph (that is, sequence of distinct nodes v1; : : : ; vk; k � 2with vi ! vi+1; i = 1; : : : ; k � 1 and vk ! v1).A chain graph (CG) admits both links and arcs. It is required that the set ofnodes can be partitioned into ordered disjoint (nonempty) subsets B1; : : : ; Bn,n � 1 called blocks in such a way that the types of edges are determined asfollows:(i) if fu; vg is an edge with u; v 2 Bi then u �� v,(ii) if fu; vg is an edge with u 2 Bi; v 2 Bj ; i < j then u! v.Note that CGs were characterized in [2] as graphs not having any directed cycles,but the de�nition above is more suitable for our purposes. It is evident that CGsinvolve both UGs and DAGs. Every ordered partitioning satisfying (i)-(ii) willbe called a chain for the CG. Of course, a CG admits several chains.A subgraph of a graph G = (N;E) is a graph H = (V; F ) with V � Nand F � E; its restriction to a nonempty set T � N is the subgraph GT =(T;ET ), where ET = f fu; vg 2 E ; u; v 2 T g. Of course, the types respectivelyorientations of edges remain unchanged. Let us mention that a restriction of aCG is again a CG.



A path in a CG is a sequence of its distinct nodes v1; : : : ; vk; k � 1 such that8i = 1; : : : ; k�1 fvi; vi+1g is an edge. We will say that it is a path from a node uto a node w i� v1 = u and vk = w. We will say that a path v1; : : : ; vk; k � 1meetsa set of nodes Z i� fv1; : : : vkg\Z 6= ;. The path is undirected i� 8i = 1; : : : ; k�1vi�� vi+1. The path is descending i� 8i = 1; : : : ; k�1 either vi ! vi+1 or vi�� vi+1.If there exists a descending path from a node u to a node v, then v is a descendantof u, or dually u is an ancestor of v. The symbol dsG(u) will denote the set ofdescendants of u; dsG(X) is the union of dsG(u)'s for u 2 X (X is a set ofnodes). It is worthwhile to realize the following simple fact.Fact 1 If there exists an undirected path from u to v, then dsG(u) = dsG(v).Similarly, anG(X) denotes the set of ancestors of nodes from X . We will omitthe symbol of the graph G if it will be clear from the context. A set of nodes Xis ancestral (in G) i� it contains ancestors of its nodes, that is, anG(X) � X .4 Moralization criterionThe moralization criterion for CGs is based on the classic separation criterionfor UGs. Thus, we recall that a triplet hX;Y jZi 2 T (N) is represented in an UGH = (N;E), denoted by hX;Y jZiH , i� every path in H from a node of X to anode of Y in G meets Z.Given a CG G = (N;E) its moral graph, denoted by Gmor, is an UG hav-ing the same set of nodes as G, but the set of links established as follows:u �� v in Gmor i� u �� v in G or u ! v in G or u  v in G or thereexists a path v1; : : : ; vk; k � 3 from u to v in G such that v1 ! v2, 8 i =2; : : : ; k � 2 vi �� vi+1, vk�1  vk.Let G = (N;E) be a CG, hX;Y jZi 2 T (N) and H be the moral graphof Gan(XY Z). We will say that hX;Y jZi is represented in G according to themoralization criterion and write hX;Y jZimorG i� hX;Y jZiH . Let us mentionthat the moral graph H depends on hX;Y jZi. The reader can verify that thismoralization criterion speci�ed to DAGs gives exactly the criterion from [10].5 Separation criterionTo formulate the separation criterion for CGs we have to introduce some specialgraphical concepts. Given a CG, a slide from a node u to a node w is a pathv1; : : : ; vk; k � 2 such that u = v1 ! v2 , 8i = 2; : : : ; k�1 vi�� vi+1 and vk = w.A trail in a CG is a sequence of its nodes v1; : : : ; vk; k � 1 such that(i) 8i = 1; : : : ; k � 1 fvi; vi+1g is an edge of G,(ii) 8i = 2; : : : ; k � 1 the nodes vi�1; vi; vi+1 are distinct,(iii) every its undirected subsequence vj �� vj+1 �� : : : �� vj+t; 1 � j � k; 0 �t � k � j consists of distinct nodes.The concept of trail is more general than the concept of path since a node canoccur several times in a trail.



In contrast to d-separation in DAGs we will not de�ne blocking for nodes of atrail, but for its sections, that is, maximal undirected subpaths. Evidently, everytrail can be decomposed uniquely into sections. Moreover, sections of a trail canbe classi�ed according to types (or existence) of edges of the trail entering thesection. Namely, just one of the following three possibilities can occur for the�rst terminal node vj of a section S : vj ; : : : ; vj+t; 1 � j � k; 0 � t � k � j. Ifj > 1 & vj�1 ! vj , then vj is a head-terminal node of S; if j > 1 & vj�1  vj ,then vj is a tail-terminal node of S; if j = 1, then vj is an end-terminal nodeof S. An analogous classi�cation holds for the second terminal node vj+t. Thus,according to the type of terminal nodes3 one can classify sections of a trail intothe following 6 classes. A section of a trail is called a head-to-head section i�it has two head-terminal nodes, or a head-to-tail section i� it has one head-terminal node and one tail-terminal node. Analogously are de�ned head-to-end,tail-to-tail, tail-to-end and end-to-end sections.Let G = (N;E) be a CG, Z � N and S be a section of a trail in G. Thede�nition of blocking of S by Z depends on the type of the section S:� if S is a head-to-head section, then S is blocked by Z i� ds(S) \ Z = ;4,� if S is a head-to-tail (respectively head-to-end) section, then S is blocked by Zi� S \Z 6= ; & every slide to the tail-terminal (respectively end-terminal) nodeof S meets Z,� if S is a tail-to-tail or tail-to-end or end-to-end section, then S is blocked byZ i� S \ Z 6= ; & every slide to any of the terminal nodes of S meets Z.A trail in a CG is c-separated (chain separated) by Z i� there exists a section ofthe trail which is blocked by Z.Let G = (N;E) be a CG and hX;Y jZi 2 T (N). We will say that hX;Y jZi isrepresented in G according to the separation criterion and write hX;Y jZisepG i�every trail from X to Y in G is c-separated by Z. We left to the reader to verifythat c-separation speci�ed to the case of DAGs gives exactly d-separation from[11]. Note that in case of c-separation we have to consider trails, the requirementof blocking paths only is indeed weaker.Lemma1. Let G = (N;E) be a CG, hX;Y jZi 2 T (N). Then hX;Y jZisepG i�hX;Y jZimorG .The proof of this lemma is beyond the scope of a conference contribution andcan be found in [1]. To prove the lemma the concept of moral graph is formallymodi�ed: edges of the original graph keep their type (that is, links or arcs) andthe added edges are consider of a third type, say, virtual edges called virts. Wecan extend the concept of blocking for head-to-virt, tail-to-virt, virt-to-virt andend-to-virt sections. Then we show that for every hX;Y jZi 2 T (N), there existsa path from X to Y outside Z in the moral graph of Gan(XY Z) i� there existsa trail from X to Y in G which is not blocked by Z. Both implications can be3 If t = 0, then the terminal nodes vj and vj+t coincide. In this case the node vj = vj+tis considered as a double terminal node, that is, it can be for example both head-and tail-terminal, or for example twice head-terminal node and so on.4 It follows from Fact 1 that ds(S) = ds(u) for any u 2 S.



veri�ed by consecutive transformation of the considered trail (respectively path){ by replacing sections meeting Z (respectively virts) by a `detour'.6 Input listLet G = (N;E) be a CG and B : B1; : : : ; Bn a chain for G. The domain of anode u, written domB(u), is the union of blocks B1; : : : ; Bk, where Bk is the blockcontaining u. The set adjacents of u, written by adG(u), is fv 2 N ; v�� u in Gg,the neighborhood of u, written nbG(u) is fv 2 N ; v ! u or v �� u in Gg. Notethat for every chain B for G and u 2 N it holds nbG(u) � domB(u).The input list associated with G and a chain B for G is the set of triplets:LBG = fhu; domB(u)� nbG(u)� ujnbG(u) i; u 2 Ng:Note, that it generalizes the concept of causal input list for a DAG. Input listshave the following properties.Lemma2. Every triplet from the input list is represented in G according to themoralization criterion.Proof. Consider the triplet corresponding to u 2 N . The corresponding ancestralset is dom(u) , and moreover adH(u) = nbG(u), where H is the correspondingmoral graph. Hence, nbG(u) separates u from the rest of dom(u) in H .Lemma3. The independency model given by the moralization criterion is agraphoid.A proof can be found in [1]. The lemma can be shown by checking for eachgraphoid axiom that if the moralization criterion holds for the triplets on theleft-hand side of the axiom, then it implies that the moralization criterion holdsfor the triplet on the right-hand side.Lemma4. Let G = (N;E) be a CG, B a chain for G, hX;Y jZi 2 T (N). ThenhX;Y jZimorG implies hX;Y jZi 2 gr(LBG).A proof can be found in [1]. The lemma states that every triplet for which themoralization criterion holds in a CG is in the graphoid closure of the input listof the CG.We can summarize Lemmas 1, 2, 3 and 4 as follows:Theorem5. Supposing G = (N;E) be a CG and B be a chain for G, the fol-lowing conditions are equivalent for a triplet t from T (N):(i) t is represented in G according to the moralization criterion,(ii) t is represented in G according to the separation criterion,(iii) t belongs to the graphoid closure of the input list associated with G and B.It follows from the theorem that the graphoid closure of the input list does notdepend on the choice of the chain.



7 Minimal I-mapIn this section we generalize the construction of a minimal I-map (see [11]) tothe case of CGs. Let M � T (N) be a graphoid and B : B1; : : : ; Bn; n � 1 anordered partition of N (into nonempty sets). Then for every u 2 N there existsthe least set X � domB(u) � u for which hu; domB(u) � X � ujXi 2 M .5 Itsexistence and uniqueness follows from the assumption that M is a graphoid. Letus denote it by Xu. Our aim is to establish a CG with such a prescribed inputlist.Lemma6. There exists a CG G having the given ordered partition B as itschain and the list f hu; domB(u) � Xu � ujXui ; u 2 N g as its input list LBG.This CG is moreover a minimal I-map of M .A proof can be found in [1].8 ConclusionsIn this paper we have introduced a causal input list for chain graphs whosegraphoid closure is shown in [1] to be exactly the set of triplets for which themoralization criterion holds. This implies that chain graphs are indeed a gener-alization of both DAGs and UGs as formalisms for representing independencyrelations. So, the concept of chain graph (CG) makes it possible to describe awider class of independency models involving both UG-models and DAG-models.This raises expressiveness of graphical models. The presented results give certainunifying point of view on graphical models and establishes semantics for CGs.Further, we have presented a separation criterion which is shown in [1] to beequivalent with the moralization criterion. The new separation criterion, basedon the concept c-separation has its own signi�cance. For example, it easily im-plies that every CG-model satis�es composition property [11]6 which may becomplicated to verify using the moralization criterion. Nevertheless, its mainpro�t is expected in future. In [4] it is shown that for every DAG there exists aprobability distribution in which exactly those conditional independency state-ments hold that are represented in the graph. We hope that analogously to thisresult the concept of c-separation will help to prove a similar result for CGs. Infact, in [9] this is claimed to be an open question, and in [2] even a wish to havea proper separation criterion for this purpose is expressed. Such a result wouldjustify completely the use of CG in probabilistic reasoning. We expect analogousresults also in other calculi for dealing with uncertainty in arti�cial intelligence.5 We keep the notation domB(u) from the preceding section, by conventionhu; ;jdomB(u)� ui 2M .6 The composition property: [hX; Y jZi & hX;W jZi] ! hX;YW jZi.
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