
On the inclusion problem∗

Tomáš Kočka Remco R. Bouckaert Milan Studený
Univ. of Economics Prague Xtal Mountain Inf. Tech. Acad. Sci. Czech Rep.

kocka@vse.cz rrb@xm.co.nz studeny@utia.cas.cz

August 13, 2008

Abstract

Every directed acyclic graph (DAG) over a finite non-empty set of variables (= nodes) N
induces an independence model overN , which is a list of conditional independence statements
over N . The inclusion problem is how to characterize (in graphical terms) whether all
independence statements in the model induced by a DAG K are in the model induced by a
second DAG L. Meek [8] conjectured that this inclusion holds iff there exists a sequence of
DAGs from K to L such that only arrow removal and ’legal’ arrow reversal operations are
performed to get the next DAG in the sequence.

In this report we give various characterizations of inclusion of DAG models and the proof
of Meek’s conjecture in the case that the DAGs K and L differ in at most one adjacency.
As a warming up a rigorous proof of well-known graphical characterizations of equivalence
of DAGs, which is a highly related problem, is given. Furthermore, we give intuition how
to characterize inclusion of DAG models in general and describe possible strategies how to
verify Meek’s conjecture even if the DAGs K and L differ in more than one edge.

1 Introduction

Learning Bayesian network structures requires search in the space of directed acyclic graphs
(DAGs). To prove that such learning algorithms return (local) optimal networks, the search
space needs to be characterized. A natural way in doing this is to consider the set of conditional
independence statements represented by the DAGs in the search space. Once it is known how
to characterize all the properties of two DAGs K and L such that independence statements
represented in K are represented in L as well, efficient search algorithms can be designed based
on this characterization. This characterization problem is called the inclusion problem.

Chris Meek [8] formulated a conjecture which says that this is if and only if a special sequence
of DAGs H1, . . . ,Hn starting with K = H1 and ending in L = Hn exists. Further, Hi+1 is
obtained from Hi either by removal of an arrow or by performing a single arrow reversal (this
arrow reversal is special in that it does not introduce new represented independence statements).
The conjecture claims that if all independence statements represented in K are represented in
L as well, then there exists such a sequence. Many search algorithms for learning Bayesian

∗This research has been supported by the grant MŠMT n. VS96008, by the grant GAČR n. 201/01/1482 and
by the grant FRVŠ n. 2001/1433. The authors had an opportunity to discuss the topic of this paper during the
seminar ”Conditional independence structures” held at the Fields Institute, University of Toronto in October
1999 and during HSSS research kitchen ”Learning conditional independence models” held in Třešť in October
2000.

1

networks rely on the conjecture being true for optimality of the learned network structures
[3, 2].

The aim of this report is to give an overview of current state of our research in the inclusion
problem. Since the inclusion problem seems to be difficult (some people claim that it is a very
difficult problem) it is useful to have an overview of the attempts that have been done to get
a good sense of intuition for desired future solving of the problem. To that extent, this report
views the problem from different angles and lists preliminary results for the simple case when
the DAGs K and L differ in only one adjacency.

The next section describes the basic concepts and notation used in the rest of the report.
In Section 3 equivalence of two DAGs (i.e. coincidence of their induced independence models)
is studied. In Section 4 we formulate the inclusion problem; in Section 5 we give an overview of
some necessary conditions. Section 6 contains the main result: we characterize the case when
two DAGs differ in only one adjacency. In Section 7 we formulate conjectures for the general
case. We end with conclusions and directions of future research in Section 8.

2 Basic concepts

Throughout the paper the symbol N denotes a non-empty finite set of variables which are
identified with nodes of graphs. Lower case letters like a, b, c, d, t, u, v, w will be used to denote
elements of N while capital letters like A, B, C, S, P , T , U , V , W , X, Y , Z will be used to
denote subsets of N . Occasionally, we write only u to denote a singleton {u} for u ∈ N and
use juxtaposition AB to denote the union A∪B of (usually disjoint) subsets of N . Inclusion of
sets will be indicated by the symbol ⊆ while ⊂ is reserved for strict inclusion (i.e. A ⊂ B means
that A ⊆ B and A 6= B). Symbol |A| denotes the number of elements of a finite set A. Possibly
indexed capital letters K, L, G, H will be used to denote graphs having N as the set of nodes.
These graphs can be used to describe certain conditional (in)dependence structures over N (in
the way specified in Section 2.2).

Independence and dependence statements over N correspond to special disjoint triplets over
N . The symbol 〈A,B|C〉 denotes a triplet of pairwise disjoint subsets A,B,C of N . This
notation anticipates the intended meaning: the set of variables A is conditionally independent
or dependent of the set of variables B given the set of variables C. That is why the third set
C is separated by a straight line: it has a special meaning of the conditioning set. The symbol
T (N) will denote the class of all disjoint triplets over N :

T (N) = { 〈A,B|C〉 ; A,B,C ⊆ N A ∩B = B ∩ C = A ∩ C = ∅ } .

2.1 Graphical concepts

A directed graph G over a set of nodes N is specified by a collection of arrows, that is a collection
A(G) of ordered pairs (u, v) of distinct nodes u, v ∈ N , u 6= v. We write u→ v in G or shortly
u → v [G] to denote that (u, v) ∈ A(G); the symbol of the graph can be omitted if it is clear
from the context which graph is indicated. An analogous principle in notation is used in pictures
throughout the report. In an arrow u→ v, denoted alternatively by v ← u, u is called the head
node or the head and v the tail node or the tail. Furthermore, we say that u is the parent of
v and v is the child of u. The set of parents of u in G will be denoted by paG(u), the set of
children by chG(u). A subgraph of a directed graph G over N is determined by a non-empty
set of its nodes A ⊆ N and by the set of its arrows which is a subset of A(G) ∩ (A×A) (strict
inclusion is allowed). The induced subgraph of G for a non-empty set B ⊆ N is a graph GB over
B having A(GB) = A(G) ∩ (B ×B) as the collection of arrows.

2

We write u↔ v [G] to denote that there is an edge or an adjacency between nodes u and v
in G which means that either u → v in G or u ← v in G (note that simultaneous occurence of
u → v and u ← v is allowed in a general directed graph). The set of edges in a directed graph
G is the collection of two-element subsets of N :

E(G) = { {u, v} ; u↔ v [G] } .

If there is no edge between u and v in G then we write u 6↔ v [G] to denote this non-adjacency.
A trail in G (between nodes u and v) is a sequence of (not necessarily distinct) nodes

w1, . . . , wk, k ≥ 1 such that wi ↔ wi+1 [G] for every 1 ≤ i < k (and either w1 = u, wk = v or
w1 = v, wk = u). It is called a path if all nodes w1, . . . , wk are distinct. A section of a path
w1, . . . , wk, k ≥ 1 is a path wi, . . . , wj where 1 ≤ i ≤ j ≤ k.

The trail (path) is called directed if wi → wi+1 [G] for i = 1, . . . , k − 1. We say that it is a
path from a node u to a node v (from A ⊆ N to B ⊆ N) if w1 = u and wk = v (w1 ∈ A and
wk ∈ B). A node u is called an ancestor of a node v in G (or alternatively v is a descendant of
u in G) if there is a directed path from u to v in G. Observe that every node is its own ancestor
and its own descendant as paths with only a single node are regarded as paths. The symbol
anG(A) will denote the set of all ancestors of nodes of a set A ⊆ N in G and dsG(u) the set of
descendants of a node u in G. A terminal node is a node without children (equivalently without
distinct descendants).

A directed cycle is a directed trail w1, . . . , wk, k ≥ 3 such that w1 = wk and w1, . . . , wk−1 are
distinct nodes. A directed acyclic graph (DAG) is a directed graph without directed cycles. This
phrase is widely accepted despite the fact that grammatical rules require to use the term ’acyclic
directed graph’. Observe that arrows u→ v and u← v cannot occur simultaneously in a DAG
(otherwise u→ v → u is a directed cycle). Thus, every trail (path) in a DAG, which is defined
as a sequence of nodes, has uniquely determined the (type of) arrows connecting consecutive
nodes. Another consequence is that |A(G)| = |E(G)| for every DAG G. Another observation is
that a subgraph of a DAG is also a DAG. A well-known equivalent definition of a DAG is as
follows: it is a directed graph and all nodes can be ordered into a sequence u1, . . . , un such that
paG(ui) ⊆ {uj ; 1 ≤ j < i} for every i = 1, . . . , n. This ordering is called causal ordering for G.
Note that every DAG has at least one terminal node.

An undirected graph H over N is specified by a collection L(H) of two-element subsets of N ,
which are called lines in H. H is called complete if every two-element subset of N is a line in H.
A path in an undirected graph H (and related concepts) is defined analogously to the directed
case: it is a sequence of distinct nodes w1, . . . , wk, k ≥ 1 such that {wi, wi+1} ∈ L(H) for every
1 ≤ i < k. By the underlying graph of a directed graph G over N is understood an undirected
graph H for which L(H) = E(G). We say that distinct nodes u, v, w form an immorality in a
directed graph G and write (u, v) ; w [G] if u→ w in G, v → w in G and u 6↔ v [G]. In fact,
an immorality in a DAG G is nothing but a special induced subgraph of G.

2.2 Induced models

One possible ways of associating independence models with DAGs is by the d-separation criterion
from [9]. Let π : w1, . . . , wk, k ≥ 1 be a path in a DAG G. We say that wi, 1 < i < k is a
collider node of π if wi−1 → wi in G and wi ← wi+1 in G. Every other node of π is called a
non-collider node of π. A path π in G is active with respect to a set C ⊆ N (shortly w.r.t. C) if

• every non-collider node of π is outside C,

• every collider node of π has a descendant in C.

3

Suppose 〈A,B|C〉 ∈ T (N) is a disjoint triplet over N , one says that A and B are d-connected
given C in a DAG G, written A >> B |C [G], if there exists a path between a node a ∈ A and
a node b ∈ B in G which is active w.r.t. C. In the opposite case one says that A and B are
d-separated by C in G, written A ⊥⊥ B |C [G]. We also say that 〈A,B|C〉 is represented in G
according to the d-separation criterion. The induced independence model I(G) and the induced
dependence model D(G) are defined as follows:

I(G) = { 〈A,B|C〉 ∈ T (N) ; A ⊥⊥ B |C [G] },

D(G) = { 〈A,B|C〉 ∈ T (N) ; A >> B |C [G] }.

An alternative to the d-separation criterion is the moralization criterion [6]. The moral graph
Gmor of a DAG G over N is an undirected graph over N which has the following set of lines:

L(Gmor) = { {u, v} ; u↔ v [G] or (u, v) ; w [G] for some w ∈ N } .

That means, edges are added to connect all unadjacent nodes having a common child (i.e.
parents are ’married’ so that immoralities are removed in this way) and the underlying graph of
the resulting graph is taken. Testing whether 〈A,B|C〉 ∈ T (N) is represented in a DAG G over
N according to the moralization criterion is a stepwise procedure. First, one takes the induced
subgraph GD where D = anG(ABC). Second, the moral graph H of GD is made. Third, one
checks whether every path in H from A to B contains a node in C (i.e. whether C separates
between A and B in H). If so, 〈A,B|C〉 is represented in G according to the moralization
criterion. It is well-known fact that this occurs iff A and B are d-separated by C in G [6].

The next modification (strengthening) of d-separation will be used in later proofs and is
essential for formulation of Conjecture 3. Let G be DAG over N , C ⊆ N and a, b ∈ N \ C are
distinct nodes. Let π : w1, . . . , wk, k ≥ 2 be a path in G between a = w1 and b = wk which
is active w.r.t. C. Every collider d of π which is not in C has necessarily a descendant c ∈ C,
c 6= d in G. By a rope for d (with respect to π) will be understood a directed path ρ : t1, . . . , tr,
r ≥ 2 in G from d = t1 to a node c = tr in C such that

• ρ is outside C with exception of c, i.e. t1, . . . , tr−1 6∈ C,

• ρ does not share a node with π except d, i.e. t2, . . . , tr 6∈ {w1, . . . , wk}.

Let us denote by col(π,C) the set of collider nodes of π which are outside C.
A dependence complex (between a and b) for C in G is a special subgraph κ of G. First,

we specify the collection of arrows of a dependence complex. A complex κ is specified by the
following items

• a path π in G which is active w.r.t. C,

• a collection of ropes {ρ(d) ; d ∈ col(π,C) } with respect to π,

where every collider d ∈ col(π,C) has assigned only one rope ρ(d) in κ and the ropes for distinct
colliders do not share a node. The collection of arrows in κ then consist of the arrows involved
in π and ρ(d) for d ∈ col(π,C). Second, we specify the set of nodes of a dependence complex
as the set of head nodes and tail nodes of the chosen arrows. Thus, κ is a subgraph of G which
need not have whole N as the set of nodes. Instead of dependence complex for C in G, we say
or shortly C-complex in G (between A and B in case a ∈ A and b ∈ B).

Let us emphasize that every dependence complex κ uniquely decomposes into the path π and
the collection of ropes. Indeed, every node of a given subgraph κ of G, which was constructed

4

as a dependence complex in G for a set C ⊆ N and a, b ∈ N \ C, can be classified into one of
three groups according to the number of edges of κ ’entering’ the node (this number varies from
1 to 3). The conditions required in the definition of a dependence complex above imply that a
node of κ has 3 ’entering’ edges iff it belongs to col(π,C). Moreover, a node of this kind is twice
a head node and once a tail node: this determines which of the ’branches’ outgoing the node is
a rope.

Lemma 2.1 Let G be a DAG over N , C ⊆ N and a, b ∈ N \ C are distinct nodes. Then
a >> b |C [G] iff there exists a dependence complex in G between a and b for C.

Proof: We prove that a >> b |C [G] implies the existence of the complex, the converse is trivial.
Let us choose a path between a and b in G which is active w.r.t. C and has minimal number of
colliders among all paths in G of this kind. Denote the chosen path a = w1, . . . , wk = b, k ≥ 1
by π and choose for every d ∈ col(π,C) a directed path ρ(d) from d to a node in C which has
minimal number of arrows among all paths of this sort. This choice ensures that the chosen
path ρ(d) : t1, . . . , tr, r ≥ 2 is outside C with exception of tr.

We verify by contradiction that ρ(d) does not share a node with π except d = wi, 1 < i < k.
If this is not the case then choose minimal 2 ≤ s ≤ r for which ts ∈ {w1, . . . , wk}. One has
ts = wj for some 1 ≤ j ≤ k, j 6= i. One can assume without loss of generality that j > i as
otherwise one can interchange a and b and replace π by the path w̃1, . . . , w̃k where w̃i = wk+1−i
for i = 1, . . . , k. Let us introduce a new path σ in G which is made from π by replacement of
its section wi, . . . , wj by respective section of ρ(d), namely by t1, . . . , ts. To get a contradiction
one needs to verify that σ is active w.r.t. C and has lower number of colliders than π. As π
and σ coincide outside the section between wj = t1 and wj = ts, the nodes t1, . . . , ts−1 are
non-colliders of σ outside C and ts has a descendant tr in C to verify that σ is active w.r.t. C it
suffices to show that wj 6∈ C in case wj is a non-collider of σ. For the same reasons and because
wi is a collider of π to verify the second claim it suffices to show that π has at least one collider
among nodes wi+1, . . . , wj in case wj is a collider of σ. To show these facts 3 subcases can be
distinguished.

1. If s = r then wj = tr ∈ C and wj is a collider of π (since π is active w.r.t. C). In particular,
wj is a collider of σ as well.

2. If s < r and wj is a non-collider of σ then wj = ts 6∈ C (since ρ(d) is outside C with
exception of tr).

3. If s < r and wj is a collider of σ then assume for contradiction that π has no collider
among nodes wi+1, . . . , wj . The fact wj+1 → wj in G and this assumption allows to derive
stepwise that wj , wj−1, . . . , wi is a directed path in G. Since wi = t1, . . . , ts = wi is a
directed path in G as well (as a part of ρ(d)) a directed cycle in G exists which contradicts
the assumption.

In either case we have shown that σ is active path with lower number of colliders that π which
contradicts the assumption about π. Thus, ρ(d) does not share an node with π which means it
is a rope for d with respect to π.

To conclude the proof it remains to be shown that two ropes for different colliders in col(π,C)
cannot share a node. To get a contradiction, suppose that a rope ρ(d) : t1, . . . , tr, r ≥ 2 for
d = wi shares a node with a rope ρ(e) : v1, . . . , vl, l ≥ 2 for e = wj , i < j < k where e 6= d.
Choose minimal 1 ≤ s ≤ r for which ts ∈ {v1 . . . , vl}. Since ρ(e) is a rope with respect to π one
has 2 ≤ s. Let ts = vm for 1 ≤ m ≤ l. Since ρ(d) is a rope with respect to π one has 2 ≤ m. Let

5

us introduce a new path ϕ in G which is made from π by replacement of its section wi, . . . , wj
by the path t1, . . . , ts = vm, . . . , v1 in G. As t1, . . . , ts−1 and v1, . . . , vm−1 are non-colliders of ϕ
outside C and ts = vm is a collider of ϕ having a descendant tr in C the path ϕ is active w.r.t.
C. There is no other collider of ϕ between wi and wj (including them) while π has at least two
colliders among wi, . . . , wj . Therefore, ϕ has lower number of colliders than π which contradicts
the assumption about π. Thus ρ(d) and ρ(e) do not share a node.

Remark 1 We believe that Lemma 2.1 can be generalized to the case of general directed graphs
provided that the definition of d-separation is generalized properly. The idea of the proof is the
same but to overcome possible difficulties one should weight every node by a minimal length of
a path to C and to weight every path active w.r.t. C by the sum of weights of its colliders. The
main modification is that one takes an active path of minimal weight. Note that the concept of
dependence complex corresponds to the concept ’path-with-tails’ mentioned by Matúš in [7].

Consequence 2.1 Let G be a DAG over N and 〈A,B|C〉 ∈ T (N). Then the following condi-
tions are equivalent.

(i) 〈A,B|C〉 is not represented in G according to the d-separation criterion,

(ii) there exists a dependence complex for C in G between a node a ∈ A and a node b ∈ B,

(iii) 〈A,B|C〉 is not represented in G according to the moralization criterion.

Proof: The equivalence (i)⇔(ii) is a direct consequence of Lemma 2.1 while the equivalence
(i)⇔(iii) is shown in [6].

In particular, the notation A >> B | [G] can be used to indicate validity of any of 3 conditions
from Consequence 2.1.

2.3 Other preliminaries

The following specific notation for certain composite dependence statements will be useful in
this report. Given a DAG G over N , distinct nodes u, v ∈ N and disjoint sets S, T ⊆ N \ {u, v}
the symbol u >> v | + T − S [G] will be interpreted as the condition

∀W such that T ⊆W ⊆ N \ {u, v} ∪ S one has u >> v |W [G] .

In words, u and v are (conditionally) dependent in G given any superset of T which is disjoint
with S. In case that T respectively S is empty the symbols +T respectively −S are omitted; if
both T and S is empty we write ? instead of +T − S. In particular, the following two symbols
will be sometimes used

u >> v | ? [G] ≡ ∀W such that W ⊆ N \ {u, v} u >> v |W [G]

for distinct nodes u, v ∈ N , and

u >> v | + w [G] ≡ ∀W such that {w} ⊆W ⊆ N \ {u, v} u >> v |W [G]

for distinct nodes u, v, w ∈ N . We give a certain graphical characterization of composite depen-
dence statements of this kind below. These auxiliary results were proved in [11] in the context
of chain graphs but we recall their proofs in the special case of DAGs for reader’s convenience.

6

Lemma 2.2 Let G be a DAG over N and u, v ∈ N are distinct nodes. Then

u ⊥⊥ v | paG(u)paG(v) [G] whenever u 6↔ v [G] . (1)

Proof: We apply the moralization criterion to 〈u, v|T 〉 where T = paG(u)paG(v). Evidently
anG({u, v}∪T) = anG({u, v}) ≡ D and one should consider the induced subgraph K = GD. Let
us verify by contradiction that either chK(u) = ∅ or chK(v) = ∅ is empty. Indeed, if u→ t [K]
for a node t then owing to t ∈ D a directed path from t to {u, v} in G exists. Since G is
acyclic the path leads to v which together with the fact u→ t [G] implies u ∈ anG(v). Similarly,
v → s [K] for a node s implies by v → s [G] and acyclicity of G that there exists a directed path
from s to u in G which means v ∈ anG(u) as v → s [G]. This contradicts the fact u ∈ anG(v) as
G is acyclic.

Thus, one can assume without loss of generality that chK(u) = ∅. This implies that no
immorality (u, v) ; w exists in K which means no new ’neighbours’ of u are added when the
moral graph H = Kmor is constructed. Thus, u has paG(u) as the set of its ’neighbours’ in H
and every path from u to v contains a node of paG(u) ⊆ T .

Lemma 2.3 Let G be a DAG over N and u, v ∈ N are distinct nodes. Then

u↔ v [G] iff u >> v | ? [G] . (2)

Proof: Suppose u↔ v [G]; the line {u, v} occurs in the moral graph GD where D = anG({u, v}∪
W) for every W ⊆ N \ {u, v}. Then, 〈u, v|W 〉 is not represented in G according to the moral-
ization criterion. The converse implication follows from Lemma 2.2.

Lemma 2.4 Let G be a DAG over N and u, v, w ∈ N are distinct nodes such that u ↔ w [G],
v ↔ w [G] and u 6↔ v [G]. Then

(u, v) ; w [G] iff u >> v | + w [G] . (3)

Proof: Suppose (u, v) ; w [G]; the line {u, v} occurs in the moral graph of GD where D =
anG({u, v} ∪ W) for every W ⊆ N \ {u, v} with w ∈ W . Hence, u >> v |W [G]. To prove
sufficiency suppose by contradiction that the induced subgraph on {u, v, w} is not an immorality
in G. The assumptions of Lemma 2.4 then imply w ∈ paG(u)paG(v). Then, Lemma 2.2 leads
to contradiction.

3 Equivalence problem

In this section we deal with a well understood special case of the inclusion problem - the equiv-
alence problem. It is the problem how to recognize whether two given DAGs K and L over N
induce the same independence model. It is of special importance to have an easy rule how to
recognize that two DAGs are equivalent in this sense (the simplicity of a rule may differ when
considering people and a computer to use it) and an easy way to get from L to K in terms of
some elementary operations on graphs. These issues were treated in [15], [4] and [1]. Another
very important aspect is the ability of generating all DAGs which are equivalent to a given DAG.
To cope with the questions that arose, we need following definition.

Definition 3.1 By a legal arrow reversal we understand the change of a DAG L into a directed
graph K by replacement of an arrow a → b (in L) by b → a (in K) under the condition that
paL(a) ∪ a = paL(b) (here a, b ∈ N are some distinct nodes).

7

u

a

b

v u

a

b

v u

w

b

v

a

u

w

b

v

a

m
m
m

m m
m
m

m m
m
m

m

m

m
m
m

m

m
A
A
AAU

�
�
���

?

A
A
AAU

�
�
���

?

A
A
AAU

�
�
���

?

A
A
AAU

�
�
���

?

C
C
C
C
C
C
CCW

�
�
�
�
�
�
���

C
C
C
C
C
C
CCW

�
�
�
�
�
�
���

@@R

��	

@@R

��	

- -

Figure 1: Rope modification (shortening).

m
m m

m
m m m m

m
m m
mc

a b

c

a b a b

d

a b

d

6

-

�
�
��� 6

-

�
�
���

- -

6

@
@
@@I 6

@
@

@@I- -

Figure 2: Path shortening.

Note that Chickering [1] and Meek [8] used another terminology: a→ b is covered in L.

Observation 1 The result of legal arrow reversal is DAG.

Proof: Let L be the original DAG and K the result of legal arrow reversal applied to L. We
prove the acyclicity of K by contradiction. Suppose that K has a directed cycle. The cycle
necessarily contains the ’reversed’ arrow b → a. It also contains an arrow having b as a head
node: c→ b, c 6= a. Hence c ∈ paK(b) implies c ∈ paL(b) and one gets c ∈ paL(a) by Definition
3.1. Thus c→ a in K which implies that there is a shorter cycle in K having c→ a instead of
c→ b→ a. But this cycle must be in L which contradicts the assumption.

Lemma 3.1 Let K and L are DAGs over N such that K is obtained from L by legal arrow
reversal. Then I(K) = I(L).

Proof: We show that D(K) = D(L). Since the role of K and L is interchangeable it suffices
to verify D(L) ⊆ D(K). Assume that the arrow a → b in L is changed into a ← b in K. This
means

paL(b) = paL(a) ∪ {a} . (4)

Suppose A >> B |C [L], there exists C-complex in L between A and B. Without loss of gen-
erality, consider a C-complex κ which involves the minimal number of edges among complexes
of this type. Then a → b is not an edge of any rope of κ, since otherwise (4) implies that κ
can be modified to get a C-complex in L that has not a → b as an edge as shown in Figure 1.
If a → b belongs to the active path π in κ then no arrow c → a and no arrow b ← d is in π
since otherwise π can be shorthened (and therefore κ modified) as shown in Figure 2. Note that
in the latter case (b ← d) we utilize the fact that the former case (c → a) is already excluded.
These two facts imply that κ remains a C-complex in K after replacement of a → b in L by
a ← b in K; the argument is: if a → b is in π then neither a nor b is a collider of π both in L
and K. Hence A >> B |C [K].

8

Lemma 3.2 Supposing K and L are DAGs over N the following three conditions are equivalent

(1) I(K) = I(L),

(2) E(K) = E(L) and the graphs K and L have the same immoralities,

(3) there exists a sequence G1, . . . , Gm, m ≥ 1 of DAGs over N such that G1 = L,Gm = K
and Gi+1 is obtained from Gi by legal arrow reversal for i = 1, . . . ,m− 1.

Note that the equivalence (1)⇔ (2) was proved in [15], in more general framework of chain
graphs in [4]; the equivalence (1)⇔ (3) was proved in [1] and [5].

Proof: We show (1) ⇒ (2) ⇒ (3) ⇒ (1). The implication (1) ⇒ (2) is an easy consequence of
Lemmas 2.3 and 2.4 as I(K) = I(L) is equivalent to D(K) = D(L).

The proof of (2) ⇒ (3) is done by induction on |N |. The induction hypothesis for n ≥ 1 is
that (2) ⇒ (3) holds for any pair of graphs K,L over N with |N | ≤ n. It is evident for n = 1.
Assume n = |N | ≥ 2 and that the implication holds for DAGs over N ′ with |N ′| < n. The first
step is to choose a terminal node t ∈ N in K and put P = paL(t), C = chL(t). Observe that
E(K) = E(L) implies paK(t) = P ∪ C. One can distinguish two cases

I. C = ∅ which means paL(t) = paK(t),

II. C 6= ∅ which means paK(t) \ paL(t) 6= ∅.

If C = ∅ then introduce L′ respectively K ′ as the induced subgraph of L respectively K over
N ′ ≡ N \ {t}. By the induction hypothesis, a desired sequence of L′ = G′1, . . . , G

′
m = K ′, m ≥ 1

exists. Introduce Gi as a graph over N obtained from G′i by adding a bunch of arrows from
nodes of P to t for i = 1, . . . ,m. It is easily verified that Gi+1 is obtained from Gi by legal
arrow reversal for i = 1, . . . ,m− 1.

If C 6= ∅ then choose c ∈ C such that no other c′ ∈ C is an ancestor of c in L. This choice
is always possible and ensures that paL(c) ∩ C = ∅. The second step is to observe P ⊆ paL(c).
Indeed, suppose that p 6↔ c [L] for some p ∈ P . Then, p 6↔ c [K], p ↔ t [K] and c ↔ t [K] by
E(K) = E(L). Since t is a terminal node in K one has (p, c) ; t [K] and (p, c) ; t [L] by (2).
This however contradicts the fact t → c in L. Thus, necessarily p ↔ c [L]. Since L is acyclic
and p→ t→ c in L it implies p→ c in L. Another observation is that paL(c) ⊆ P ∪{t}. Indeed,
suppose that there exists y ∈ N \ P , y 6= t such that y → c in L (see Figure 3 for illustration
where, however, arrows from P to C are omitted for sake of lucidity). Since y 6∈ P and y 6∈ C
(because of the choice of c) one has t 6↔ y [L]. Thus y → c ← t in L implies (y, t) ; c [L]
and (y, t) ; c [K] by (2). This contradict the fact c → t in K. Therefore, paL(c) = P ∪ {t}
necessarily.

The fact paL(c) = paL(t) ∪ {t} means that the arrow t → c in L can be legally reversed.
The procedure can be repeated until all arrows in C are legally reversed. Thus, a sequence
L = G1, . . . , Gk is constructed by legal arrow reversal such that t has the same parent set in Gk
as K. Then, the case I. occurs for the pair (Gk,K) which was already treated. This concludes
the induction step.

The proof of (3)⇒ (1) follows from repetitive application of Lemma 3.1.

Remark 2 Another method of computer testing of equivalence of DAGs over N is partially
based on the approach from [12] where certain integer-valued functions on the power set of
N called structural imsets over N are used to describe independence models over N . Every
structural imset η over N induces a certain independence model I(η) ⊆ T (N) by means of a

9

@
@
@
@@R

A
AAU

A
AAU

�
���

�
�
�
��� @

@
@
@@R

A
AAU

A
AAUA
AAK

��
�*

��
�*����

�
���

�
�

�
��	

m m
m

m
m m m m

m

m
m mp1

p2

y

t

c

c′ p1

p2

y

t

c

c′

in Kin L#
"

!
#
"

!
#
"

!
#
"

!P C P C

Figure 3: Proof of paL(c) ⊆ P ∪ {t} by contradiction.

certain algebraic criterion. The point is that every DAG G over N can be associated with a
structural imset η over N in such a way that I(η) = I(G). For example, the imset ηG defined
by the following formula has this property:

ηG(S) = δ(S,N)− δ(S, ∅) +
∑
i∈N
{ δ(S,paG(i))− δ(S, paG(i) ∪ {i}) } for S ⊆ N , (5)

where we use the convention δ(A,B) = 1 in case A = B and δ(A,B) = 0 in case A 6= B. Let
us warn the reader that ηG is not the only structural imset η over N satisfying I(G) = I(η).
However, the claim above (which is proved in [12]; for rough idea of the proof see Example
3.5 in [10]) implies that two DAGs K and L are equivalent whenever ηK = ηL. The converse
implication can be derived as a consequence of Lemma 3.2. Thus, K and L are equivalent iff
ηK = ηL which can be expressed in the form∑

i∈N
{ δ(S, paL(i) ∪ {i})− δ(S,paL(i)) } =

∑
i∈N
{ δ(S,paK(i) ∪ {i})− δ(S,paK(i)) }

for every S ⊆ N . Therefore, one can test equivalence of DAGs in the following manner. One
writes a ’formal ratio’ for every DAG G over N as follows: in the nominator one lists sets
paG(i) ∪ {i} for i ∈ N while in the denominator one lists the sets paG(i) for i ∈ N . Then
cancellation is performed: one occurrence of a set A ⊆ N in the denominator is cancelled
against one occurrence of A in the nominator. For example the DAG L in Figure 5 induces the
following ’ratio’:

a ∗ ab ∗ bc ∗ cd
∅ ∗ a ∗ b ∗ c

=
ab ∗ bc ∗ cd
∅ ∗ b ∗ c

.

The DAGs over N are equivalent iff they lead to the same formal ratio after cancellation. For
example, the graph which is obtained from the graph L in Figure 5 by reversal of all arrows has
the following ratio

ab ∗ bc ∗ cd ∗ d
b ∗ c ∗ d ∗ ∅

=
ab ∗ bc ∗ cd
∅ ∗ b ∗ c

and therefore it is equivalent to L.

Consequence 3.1 Let K,L be DAGs over N such that I(K) = I(L). Then ηK = ηL.

Proof: By Lemma 3.2 it suffices to show that ηK = ηL whenever K is obtained from L by legal
reversal of an arrow a → b in L. Observe that paK(u) = paL(u) for any u ∈ N \ {a, b} which
means that for ηK = ηL one needs to show∑

i∈{a,b}
{ δ(S, paL(i) ∪ {i})− δ(S,paL(i)) } =

∑
i∈{a,b}

{ δ(S,paK(i) ∪ {i})− δ(S,paK(i)) }

10

for any S ⊆ N . This is evident as paL(a) = paK(b) = P , paL(b) = P ∪{a} and paK(a) = P ∪{b}
for a certain set P ⊆ N .

4 Inclusion problem

The inclusion problem can be formulated as follows. Given a set of variables N and two DAGs
K and L over N is there an elegant graphical characterization of I(K) ⊆ I(L) which gives an
efficient criterion to decide?

In the previous section we recalled the well-known graphical characterization of equivalence of
DAGs K and L, that is characterization of I(K) = I(L), by means of the underlying graph and
immoralities. These conditions intuitively suggests that there exists a similar set of conditions
to characterize inclusion.

Note that not every DAG is uniquely determined by its induced independence model. For
example, the DAGs K and L over N = {a, b}, where K has only the arrow a → b and L has
only the arrow b→ a induce the same independece model. DAGs inducing the same model are
said to be in the same equivalence class. Every equivalence class K = {K1, . . . ,Kn}, n ≥ 1 is
uniquely determined by the shared independence model I(K) ≡ I(Ki) for i = 1, . . . , n. Thus,
equivalence classes can be naturally ordered by inclusion of their induced models. In particular,
the collection of all equivalence classes over a given set of variables N forms a poset (i.e., partially
ordered set). It can be visualized by means of Hasse diagram. In that diagram hyper-nodes
represent equivalence classes of DAGs and two classes K and L are connected by a link if K is
included in L, which means I(K) ⊂ I(L), and no third class G is between them, which means
I(K) ⊂ I(G) ⊂ I(L) for none DAG G. Figure 4 shows Hasse diagram of this poset for three
variables (= nodes).

It is clear that the maximum number DAGs in the equivalence classes grows exponentially
with |N |. This is because the class of DAGs whose underlying graph is a complete graph over
|N | has |N |! elements: each ordering of the variables results in a unique DAG from this class.
The main problem is efficient testing of inclusion I(K) ⊆ I(L) for two DAGs K and L over N .
Using the notion of input list (defined shortly) and its properties, we can formulate a polynomial
time algorithm.

Let N be a set of variables, G be a DAG over N and θ : u1, . . . , un, n ≥ 1 a causal ordering
for G on N . For every u ∈ N , u = ui for 1 ≤ i ≤ n, the set of predecessors of u in θ is the set

preθ(u) = {v ∈ N ; θ(v) < θ(u)} = {uj ; 1 ≤ j < i} .

An corresponding input list LG,θ is the list of independence statements

LG,θ = { 〈u,preθ(u) \ paG(u) |paG(u)〉 ; u ∈ N } .

Let A,B,C,D be sets. The so called graphoid axioms are the following set of derivation rules
for elements of T (N)

• triviality: 〈A, ∅|C〉

• symmetry: 〈A,B|C〉 ⇒ 〈B,A|C〉

• decomposition: 〈A,BD|C〉 ⇒ 〈A,B|C〉

• weak union: 〈A,BD|C〉 ⇒ 〈A,B|CD〉

11

j j j j j jj j j j j j
j j j j j j

� � � - - -

A
AAK

A
AAK A

AAU

A
AAU

A
AAU A

AAK

�
��� �

���

�
���

�
��� �

���

�
���

'
&

$
%

j j jj j j
j j jA
AAU

A
AAU

�

�
���

-

�
���

j j jj j j
j j j
-

A
AAU �

���

A
AAK

�

�
���

j j j j j jj j j j j j
j j j j j j

� �

A
AAK

A
AAK

A
AAK

- -

A
AAU

�
���

�
��� �

���

�
���

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%
�

�
��

@
@
@@

PPPPPPPPPPP

HHH
HHHH

��
���

��

�����������

��
�����

PPPPPPPPPPP

HHH
HHHH

�����������j j j j j jj j j j j j
j j j j j j

� -

A
AAK A

AAU �
����

���

'

&

$

%

'

&

$

%

'

&

$

%aaaaaaaaaaa

!!!!!!!!!!!j j
j

'
&

$
%

Figure 4: Hasse diagram of the poset of equivalence classes of DAGs with 3 nodes.

12

• contraction: 〈A,B|CD〉 and 〈A,D|C〉 ⇒ 〈A,BD|C〉

• intersection: 〈A,B|CD〉 and 〈A,D|BC〉 ⇒ 〈A,BD|C〉

For d-separation in DAGs, the graphoid axioms hold [9]. In other words I(G) is closed under
graphoid axioms. So, if we have A ⊥⊥ BD |C [G] then by decomposition, we also have A ⊥⊥
B |BD [G]. For d-separation in DAGs more rules are known. One of them is

• composition: A ⊥⊥ B |C [G] and A ⊥⊥ D |C [G]⇒ A ⊥⊥ BD |C [G].

Input lists have an interesting property that the closure of an input list LG,θ of a DAG G under
the graphoid axioms is equal to the model I(G) of G [14]. This property suggests the following
way for testing inclusion.

Lemma 4.1 Let K and L be DAGs over a set of variables N . Let LK,θ be an input list for K
and θ a causal ordering for K. Then I(K) ⊆ I(L) iff LK,θ ⊆ I(L).

Proof: Observe that I(K) is equal to the closure of LK,θ under the graphoid axioms [14]. The
graphoid axioms hold for d-separation in DAGs [9], so given that LK,θ ⊆ I(L) we conclude
I(K) ⊆ I(L).

The way to use this lemma in a computer implementation is to test for each disjoint triplet
〈A,B|C〉 ∈ LK,θ whether A ⊥⊥ B |C [L]. Testing a d-separation statement can be performed
in O(|N | + |E(L)|) steps. Since LK,θ contains |N | statements at most, the algorithm would be
of time complexity O(|N | · (|N | + |E(L)|)). So, this gives an efficient polynomial complexity
algorithm. Unfortunately, this characterization does not provide much insight in the structure
of the DAG K with respect to L. Also, this result seems to be difficult to extend and to
generalize as well. So, this characterization satisfies the condition required in the formulation
of the inclusion problem that testing should be efficient, but it does not satisfy the requirement
that it should be elegant. For this reason we do not consider the inclusion problem to be solved
by this lemma.

5 Necessary conditions

In this section we formulate and compare various necessary conditions for validity I(K) ⊆ I(L)
where K and L are DAGs over N .

5.1 Basic necessary conditions

Everybody who starts to deal with the inclusion problem gets almost immediately the following
three basic necessary conditions for inclusion I(K) ⊆ I(L):

(a) u↔ v [L] ⇒ u↔ v [K],

(b̃) (u, v) ; w [L] ⇒ u↔ v [K] or (u, v) ; w [K],

(c̃) (u, v) ; w [K] ⇒ u 6↔ w [L] or w 6↔ v [L] or (u, v) ; w [L].

Note that under assumption that (a) is valid the condition (b̃) can be formulated in the following
way which may appear to be more suitable in some cases

(b) u→ w ← v [L] ⇒ u↔ v [K] or u→ w ← v [K].

13

m m

m m?
-

6

a d

b c

L m m

m m? ?

�
�
�

�
�
��	 -

a d

b c

K

Figure 5: Basic necessary conditions are not sufficient for I(K) ⊆ I(L): the first example.

The necessity of these conditions follows immediately from Lemma 5.2 in Section 5.3 - see
Consequence 5.1. The conditions are also sufficient in the following rather special case.

Lemma 5.1 Suppose that K,L are DAGs over N such that |E(K)| ≤ |E(L)|. Then the condi-
tions (a), (b̃) and (c̃) are necessary and sufficient for I(K) ⊆ I(L).

Proof: Sufficiency of these conditions follows directly from Lemma 3.2: the condition (a) says
E(L) ⊆ E(K) which together with |E(K)| ≤ |E(L)| implies E(K) = E(L). The conditions (b̃)
and (c̃) then imply that K and L have the same immoralities.

However these basic conditions are not sufficient for I(K) ⊆ I(L) in general as an example
in Figure 5 shows. Indeed, the conditions (a), (b̃) and (c̃) are evidently fulfilled in that case but
one has a ⊥⊥ d | ∅ [K] while a >> d | ∅ [L] which implies ¬{I(K) ⊆ I(L)}.

5.2 Verma’s conditions

Verma and Pearl formulated in one of their technical reports [13] (it was probably a preparatory
text only) three conditions on DAGs K and L over N which they regarded as necessary and
sufficient conditions for I(K) ⊆ I(L); but this is not the truth. Their conditions required

(i) u↔ v [L] ⇒ u↔ v [K],

(ii) u >> v | + w [L] ⇒ u >> v | + w [K],

(ĩii) u >> v | + w [K], u↔ w [L] , w ↔ v [L] ⇒ u→ w ← v [L] or u↔ v [K].

for distinct nodes u, v, w ∈ N . The meaning of the symbol which was in [13] used instead of
u >> v | +w [G] (for a DAG G over N) was described there by the phrase ”u and v are common
parents of some ancestor of w, or u and v are adjacent in G”. Verma and Pearl showed that
this graphical condition is equivalent to the requirement u >> v | + w [G] introduced in Section
2.3; this is the truth - see Observation 6 in Section 5.4.2.

The condition (ĩii) evidently implies the condition

(iii) u→ w ← v [K], u↔ w [L] , w ↔ v [L] ⇒ u→ w ← v [L] or u↔ v [K].

The necessity of conditions (i), (ii) and (iii) for I(K) ⊆ I(L) follows from Lemma 5.2, Conse-
quence 5.1 and Observation 6. Indeed, (i) is nothing but (a), (ii) is evidently necessary if the
symbol u >> v | + w is interpreted as a composite dependence statement and (iii) is equivalent
to (c̃) under assumption that (a) holds. However as the example from Figure 5 shows they are
not sufficient for I(K) ⊆ I(L) in general. Another counter example is given in Figure 10.

14

5.3 Inclusion conditions

The most elegant formulation of our necessary conditions is as follows.

Definition 5.1 Let K and L are DAGs over N . We will call the following 3 conditions the
inclusion conditions for K in L (here, u, v, w are distinct elements of N):

(a) u↔ v [L] ⇒ u↔ v [K],

(b) u→ w ← v [L] ⇒ u↔ v [K] or u→ w ← v [K],

(∗) (u, v) ; w [K] ⇒ u ⊥⊥ v |paK(u)paK(v) [L].

Lemma 5.2 Suppose that K,L are DAGs over N such that I(K) ⊆ I(L). Then the conditions
(a), (b) and (∗) from Definition 5.1 hold.

Proof: The condition I(K) ⊆ I(L) is equivalent to the condition D(L) ⊆ D(K). It clearly
implies (a) by Lemma 2.3. The condition (b) is better to verify in this form:

(b̃) (u, v) ; w [L] ⇒ u↔ v [K] or (u, v) ; w [K].

To evidence it one can apply Lemma 2.4 to G = L then use D(L) ⊆ D(K) and after that
apply Lemma 2.4 to G = K as one is sure that u ↔ w ↔ v in K by (a). Finally, to evidence
(∗) observe that (u, v) ; w [K] implies u ⊥⊥ v | paK(u)paK(v) [K] by Lemma 2.2 and hence
u ⊥⊥ v | paK(u)paK(v) [L] by I(K) ⊆ I(L).

Consequence 5.1 Suppose that K,L are DAGs over N satisfying the inclusion conditions (a),
(b) and (∗). Then the basic necessary conditions from Section 5.1 hold.

Proof: It suffices to verify (c̃). Assume (u, v) ; w [K], put W ≡ paK(u)paK(v) and observe
w 6∈ W . Suppose for contradiction that the conclusion of (c̃) is not valid. That means either
u↔ v [L] which contradicts the fact u 6↔ v [K] by (a) or there exists a path u,w, v in L without
collider nodes. This path is then active w.r.t. W (as w 6∈W) which means u >> v |W [L]. How-
ever, the condition (∗) implies u ⊥⊥ v |W [L] which contradicts that fact. Thus, the conclusion
of (c̃) must hold.

So, the inclusion conditions for K in L are necessary for I(K) ⊆ I(L). However, we conjec-
ture that they are also sufficient (see Conjecture 2). If this conjecture is correct this would solve
the inclusion problem in the sense that it characterizes inclusion in an efficient manner and in
a way that is as elegant as it can be expected knowing that any characterization must have a
non-local aspect when ’going from K to L’ (see Section 5.5).

5.4 Graphical necessary conditions

Unlike the condition (∗) from Section 5.3, the basic necessary conditions from Section 5.1 repre-
sent nice graphical conditions. They are ’relatively local’ in sense that their verification confines
only in those nodes which are involved in their premises. Moreover, they are formulated in
terms of invariants of equivalence classes. The aim of this section is to introduce a whole col-
lection of such (relatively local) graphical conditions which (hopefully) together may occur to
be equivalent to the inclusion conditions from Definition 5.1. The conditions are formulated ’in
the direction from L to K’ in the sense that their premises concern the graph L while their
conclusions concern the graph K. Our analysis reveals three types conditions of this kind; but
further types of these conditions can be expected - see Conjecture 3.

15

5.4.1 Open path conditions

Definition 5.2 Let G be a DAG over N . A path π in G is called open if there is no collider
node of π. We will write w1 −− w2 −− . . .−− wk [G], k ≥ 1 to denote an open path in G.

The reader can verify easily the following two facts.

Observation 2 Every section of an open path in G is an open path in G.

Observation 3 Suppose that π is an open path in G between distinct nodes u, v ∈ N . Then
all nodes of π belong to anG({u, v}). If S is the set of internal nodes of π then u >> v | − S [G].

Definition 5.3 Let K,L be DAGs over N and π : w1, . . . , wn, n ≥ 1 a path in L. By shortening
of π in K is understood a path σ : t1, . . . , tr, 1 ≤ r ≤ n in K such that there exists an increasing
sequence of indices 1 = i1 < i2 < . . . < ir = n that tj = wij for j = 1, . . . , r. Note that in case
K = L = G the above defined concept reduces to the usual concept of shortening of a path in G.
A path in G is then called minimal if it has no proper shortening in G (i.e., no other shortening
except itself).

Observation 4 Let π be an open path in a DAG G over N . Then every its shortening in G is
an open path as well.

Proof: Assume that π : w1, . . . , wn, n ≥ 1 is an open path in G and σ : t1, . . . , tr, 1 ≤ r ≤ n is
its shortening in G where 1 = i1 < . . . < ir = n and tj = wij for j = 1, . . . , r. This can be shown
by contradiction. Suppose that tj−1 → tj ← tj+1 for some 1 < j < r. Let 1 ≤ k < i < l ≤ n
are indices for which wk = tj−1, wi = tj , wl = tj+1. Observe that wi ← wi+1 in G as otherwise
wi → wi+1 together with the assumption of absence of collider nodes in the section wi, . . . , wl
implies wi → . . .→ wl in G which together with wl = tj+1 → tj = wi contradicts acyclity of G.
A similar consideration leads to the conclusion wi−1 → wi in G. Therefore, wi is a collider node
in π which contradicts the assumption.

Definition 5.4 Let K and L are DAGs over N . By the open path condition for K in L is
understood the following requirement:

(A) Every open path in L has an open shortening in K.

Lemma 5.3 Suppose that K,L are DAGs over N satisfying the inclusion conditions (a) and (∗).
Then the condition (A) from Definition 5.4 holds.

Proof: Let π : w1, . . . , wk, k ≥ 1 be an open path in L. For every pair of distinct nodes u, v ∈ N
of π denote by conπ(u, v) the set of nodes of π strictly between u and v, that is

conπ(u, v) = {wl ; i < l < j where u = wi and v = wj } .

The idea of the proof is to construct a sequence π0, . . . , πn, n ≥ 0 of paths such that for every
i = 0, . . . , n the following holds:

1) πi is a path in K,

2) πi is a shortening of π (which is in L) and π0, . . . , πi−1 (which are in K),

3) if u↔ v in πi for u, v ∈ N then conπ(u, v) ⊆ dsK(u) ∩ dsK(v),

16

and moreover

4) πn is an open path (in K).

Clearly, πn is the desired open shortening of π in K then. The first step is to observe that
π0 = π satisfies the requirements 1)-3) for i = 0. Indeed, it follows from the condition (a). The
essential step is to show (for every i ≥ 0) that whenever πi is a path satisfying 1)-3) then either
πi is an open path in K or there exists a proper shortening πi+1 of πi satisfying 1)-3). Indeed, as
every path has finitely many shortenings repetitive application of this step leads to the desired
conclusion.

Thus, suppose that πi satisfies 1)-3) and it is not an open path. Then πi has a collider node
which means u→ w ← v in K for some distinct nodes u, v, w ∈ N . The first observation is

conπ(u, v) ⊆ dsK(u) ∩ dsK(v). (6)

Indeed, by 2) πi is a shortening of π and therefore conπ(u, v) = conπ(u,w) ∪ {w} ∪ conπ(w, v).
By 3) and the fact v → w in K get conπ(u,w) ⊆ dsK(u)∩dsK(w) ⊆ dsK(u)∩dsK(v). A similar
consideration is valid for conπ(w, v) and w ∈ chK(u)∩chK(v) ⊆ dsK(u)∩dsK(v) then concludes
the proof of (6). The second observation is u ↔ v [K]. To this end suppose for contradiction
the converse and derive (u, v) ; w [K]. Let W = paK(u)paK(v) and observe u ⊥⊥ v |W [L]
by (∗). On the other hand, (6) and the fact that K is acyclic implies conπ(u, v) ∩W = ∅. As
{u, v}∩W = ∅ in this case the section π′ of π between u and v is outside W . It is an open path
in L (by Observation 2) which means that it is active w.r.t. W and therefore u >> v |W [L].
This contradicts the above mentioned fact. Therefore, necessarily u↔ v [K]. One can introduce
πi+1 as a shortening of πi: the section u→ w ← v of πi is replaced by the edge u↔ v of πi+1.
Validity of 1) and 2) for πi+1 is evident, 3) for πi+1 follows from 3) for πi and (6). Thus, the
above mentioned essential step was made and this concludes the proof of Lemma 5.3.

To illustrate the open path condition let us formulate some specific instances of the rule (A).
They can be classified according to the length of the path in the premise of (A). The first three
instances are as follows (u, v, w, t are distinct elements of N):

(A:1) u−− v [L] ⇒ u−− v [K],

(A:2) u−− w −− v [L] ⇒ u−− v [K] or u−− w −− v [K],

(A:3) u−−w−− t−−v [L] ⇒ u−−v [K] or u−−w−−v [K] or u−− t−−v [K] or u−−w−− t−−v [K].

These three conditions are illustrated by Figure 6. Observe that (A:1) is nothing but (a) and
the condition (A:2) is under (a) equivalent to the condition (c̃) from Section 5.1; the argument
is that an implication X ⇒ Y can be expressed in the form ¬Y ⇒ ¬X. The condition (A:3)
makes it possible to evidence immediately that the pair of DAGs from Figure 5 does not satisfy
the inclusion conditions. Indeed, a → b → c → d is an open path in L which has no open
shortening in K.

Remark 3 Clearly, every condition (A:i) for i = 1, 2, . . . is ’relatively local’. Moreover, owing
to Observation 4 the condition (A) can be formulated equivalently as follows.

(A*) Every minimal open path in L has a shortening in K which is a minimal open path (of
course in K).

17

m m m m
m m m m m

m m m
m m m m m m

u v u v

u w v u v

u w v

u w t v u v

m m m
m m m
m m m m

u w v

u t v

u w t v

in Kin L

⇒

⇒

⇒

or

or

or

or

(A:1)

(A:2)

(A:3)

Figure 6: First three instances of the rule (A).

m m

m m? ?

�
�
�

�
�

��	 -

a d

b c

L m m

m m? ?

�
�
�

�
�
��	 @

@
@

@
@
@@I

�

a d

b c

K

Figure 7: Basic necessary conditions are not sufficient for I(K) ⊆ I(L): the second example.

The point is that minimal open paths are invariants of Markov equivalence classes (unlike open
paths) which means that all instances of (A*) are formulated in terms of invariants of equivalence
classes.

Nevertheless, the condition (A) together with the condition (b) from Definition 5.1 are not
strong enough to imply the inclusion conditions as the example in Figure 7 shows. Indeed, the
conditions (A) and (b) are fulfilled in this case but one has a ⊥⊥ d | c [K] while a >> d | c [L] which
implies ¬{I(K) ⊆ I(L)}. The condition (∗) is not satisfied since (a, d) ; b [K] 6⇒ a ⊥⊥ d | c [L].

5.4.2 Dependence configuration conditions

Definition 5.5 Let G be a DAG over N and u, v, w are distinct nodes of G. By dependence
configuration between u and v relative to w in G of order n ≥ 1 is understood a certain subgraph
λ of G. Its collection of edges consists of the edges of a simple collider path u→ w1 ← v and of
the edges of a directed path w1 → . . .→ wn = w which may be empty in case n = 1 (necessarily
wi 6∈ {u, v} for i = 1, . . . , n by acyclicity of G). The set of nodes of λ is {u, v, w1, . . . , wn}. The

18

symbol (u, v) 7→ w1, . . . , wn [G] will be used to denote that G has a configuration of this form.

The reader can evidence the following facts.

Observation 5 If (u, v) 7→ w1, . . . , wn [G] for n ≥ 1 then wn ∈ dsG(u) ∩ dsG(v).

Observation 6 Let u, v, w be distinct nodes of G, the condition

u >> v | + w [G] ≡ ∀W w ∈W ⊆ N \ {u, v} u >> v |W [G] (7)

is equivalent to the requirement

u↔ v [G] or (u, v) 7→ w1, . . . , wn [G] for some sequence w1, . . . , wn = w. (8)

Proof: The implication (8) ⇒ (7) is straightforward. For converse implication suppose (7),
u 6↔ v [G] and introduce the set of immoral connectors between u and v as follows:

imG(u, v) = {w ∈ N ; ∃ t ∈ N (u, v) ; t [G] and w ∈ dsG(t)} .

Let T = N \ imG(u, v) ∪ {u, v}. Since N \ imG(u, v) = anG(N \ imG(u, v)) one can use the
moralization criterion to show that u ⊥⊥ v |T [G]. The condition (7) then implies w 6∈ T which
means w ∈ imG(u, v). Hence (u, v) 7→ w1, . . . , wn for some w1, . . . , wn = w, n ≥ 1.

Definition 5.6 Let K,L be DAGs over N and λ : (u, v) 7→ w1, . . . , wn, n ≥ 1 be a dependence
configuration of order n in L. By a subconfiguration of λ in K is understood either the edge
u ↔ v [K] or an configuration κ : (u, v) 7→ t1, . . . , tr, 1 ≤ r ≤ n in K such that there exists an
increasing sequence of indices 1 ≤ i1 < i2 . . . < ir = n that tj = wij for j = 1, . . . , r.
The definition above applies in case K = L = G as well. Then, an edge u ↔ v in G (more
precisely the induced subgraph of G for {u, v}) can be regarded as a specific total dependence
configuration between u and v relative w in G, namely the configuration of order 0. By a
generalized immorality in G is understood a dependence configuration of order n ≥ 1 which has
no proper subconfiguration in G (i.e. no other subconfiguration except itself). It will be denoted
by the symbol (u, v) ; w1, . . . , wk [G].

Thus, every subconfiguration of (u, v) 7→ w1, . . . , wn, n ≥ 1 is determined by a subset A of
{u, v, w1, . . . , wn}, namely the set of its nodes. But only the set A = {u, v} and the sets A
satisfying {u, v, wk} ⊆ A ⊆ {u, v, w1, . . . , wk} determine subconfigurations. Let us emphasize
that the ’order’ of nodes is a subconfiguration must follow the order in the given configuration.
In other words, subconfiguration of a configuration λ is determined by the set of its nodes and
by λ. For example, the configuration λ : (a, b) 7→ c, d, e in the DAG L from Figure 8 has in
K subconfigurations a → b and (a, b) 7→ d, e only. The configuration (a, b) 7→ d, c, e in K is
not supposed to be a subconfiguration of λ (which is in L). However, this strange phenomenon
cannot occur if one considers subconfigurations in the same graph (because of acyclicity).

Definition 5.7 Let K and L be DAGs over N . By a dependence configuration condition for
K in L is understood the following claim:

(B) Every dependence configuration in L has a subconfiguration in K.

Lemma 5.4 Suppose that K,L are DAGs over N satisfying the inclusion conditions (a),(b) and
(∗) for K in L. Then condition (B) from Definition 5.7 holds.

19

m m

m m

m

?

?

�
�
�

�
�

��	 -

a b

c d

e

L m m

m m

m

@
@
@
@
@
@@R

@
@
@
@
@
@@R

-

?

?

�

a b

c d

e

K

Figure 8: Configuration (a, b) 7→ d, c, e [K] is not a subconfiguration of (a, b) 7→ c, d, e [L].

Proof: The case of total configuration is covered by (a). Let λ : (u, v) 7→ w1, . . . , wn, n ≥ 1 be a
dependence configuration in L. We prove the existence of a subconfiguration in K by induction
on n. If n = 1 then it follows from the condition (b). To verify the induction step for n ≥ 2
assume that every configuration (u, v) 7→ t1, . . . , tr, 1 ≤ r < n in L has a subconfiguration in
K. According to Lemma 5.3 one is sure that the condition (A) holds. Let us distinguish the
following four cases.

I. u↔ v [K],

II. u 6↔ v [K], u↔ wn [K] and v ↔ wn [K],

III. u 6↔ v [K] and u 6↔ wn [K],

IV. u 6↔ v [K] and v 6↔ wn [K].

These cases are treated as follows.

I. If u↔ v [K] then the conclusion is trivially valid.

II. If u 6↔ v [K], u↔ wn [K] and v ↔ wn [K] then observe u→ w1 ← v in L and by (b) derive
u→ w1 ← v [K]. This implies (u, v) ; w1 [K]. Let us put W = paK(u)paK(v) and by (∗)
derive u ⊥⊥ v |W [L]. On the other hand, by Observation 6 (u, v) 7→ w1, . . . , wn [L] implies
that u >> v |T [L] for any T ⊆ N \ {u, v} containing wn. In particular, wn 6∈ W . This
together with u ↔ wn ↔ v [K] implies u → wn ← v in K and this is a subconfiguration
of λ in K.

III. If u 6↔ v [K] and u 6↔ wn [K] then observe that π : u → w1 → . . . → wn is an open
path in L. Using the open path condition (A) (see Lemma 5.3) and the fact u 6↔ wn [K]
conclude that there exists 1 ≤ l < n and a sequence of indices l = l1 < l2 < . . . < ls = n,
1 ≤ s ≤ n such that ρ : u −− wl = wl1 −− wl2 −− . . . −− wls = wn is an open shortening
of π in K. Consider the configuration κ : (u, v) 7→ w1, . . . , wl in L. Since l < n by the
induction hypothesis observe that κ has a subconfiguration in K. It cannot be the total
subconfiguration as u 6↔ v [K] and therefore wl ∈ dsK(u) by Observation 5 where G = K.
Since u↔ wl [K] the acyclicity of K implies u→ wl in K. The fact that ρ is an open path
in K then allows to show stepwise that it is a directed path in K. The above mentioned

20

m
m
m m m m

m
mu

w

v u v u

w

v

A
A
AAU

�
�
���

A
A
AAU

�
�
���

m
m
m

m m m m

m

m m
m
m

mu

t

w

v u v u

w

v u

t

w

v

A
A
AAU

�
�
���

?

C
C
C
C
C
C
CCW

�
�
�
�
�
�
���

A
A
AAU

�
�
���

?

⇒

⇒

or

or or

(B:1)

(B:2)

in L in K

Figure 9: First two actual instances of the rule (B).

subconfiguration of κ in K then forms together with the section wl1 → . . . → wls of ρ a
subconfiguration of λ in K.

IV. If u 6↔ v [K] and v 6↔ wn [K] then use the procedure from III. where u is replaced by v.

Thus, the desired conclusion was achieved in all four possible cases.

To illustrate the dependence configuration condition let us formulate some specific instances
of the rule (B). They are classified by the order of the dependence configuration in the premise
of (B). The first three instances are as follows (u, v, w, t are distinct elements of N).

(B:0) u↔ v [L] ⇒ u↔ v [K],

(B:1) (u, v) 7→ w [L] ⇒ u↔ v [K] or (u, v) 7→ w [K],

(B:2) (u, v) 7→ t, w [L] ⇒ u↔ v [K] or (u, v) 7→ w [K] or (u, v) 7→ t, w [K].

The last two conditions are illustrated by Figure 9. Observe that (B:0) is nothing but (a) and
(B:1) is nothing but (b). The condition (B:2) makes it possible to evidence immediately that
the pair of DAGs from Figure 7 does not satisfy the inclusion conditions. Indeed, (a, d) 7→ b, c
is a dependence configuration in L (actually, it is a generalized immorality in L) which has not
a subconfiguration in K.

Remark 4 All conditions (B:i) for i = 1, 2, . . . are ’relatively local’. Since the relation ’being a
subconfiguration’ is transitive one can formulate the condition (B) equivalently as follows.

(B*) Every generalized immorality in L has a subconfiguration in K which is a generalized
immorality in K.

The point is that generalized immoralities are invariants of Markov equivalence classes (unlike
dependence configurations) which means that all instances of (B*) are formulated in terms of
invariants of equivalence classes of DAGs.

21

m m

m m?�
�
�
�
�
��� 6

�

a d

b c

L m m

m m?

@
@
@
@
@
@@R ?�

�
�
�
�
���

-

a d

b c

K

Figure 10: Basic necessary conditions are not sufficient for I(K) ⊆ I(L): the third example.

Unfortunately, the conditions (A) and (B) together are not strong enough to imply the
inclusion conditions as shown by the example from Figure 10. Indeed, conditions (A) and (B)
are fulfilled but one has a ⊥⊥ d | b [K] while a >> d | b [L] which implies ¬{I(K) ⊆ I(L)}.
Condition (∗) is not valid since (a, d) ; c [K] 6⇒ a ⊥⊥ d | b [L].

5.4.3 Mixed case

The preceding example indicates that there are other necessary conditions which combine open
path conditions and dependence configuration conditions. One of such conditions is given below.
First, we introduce the following notation for a DAG G over N and distinct nodes u, v, t, w.

u→ w ← t↔ v [G] means { u→ w ← t [G] and t↔ v [G] } .

Definition 5.8 Let K and L are DAGs over N . The simplest instance of a mixed case condition
is the following requirement

(C:1) u→ w ← t↔ v [L] ⇒ u↔ v [K] or u−− t−− v [K] or u→ w ← v [K] or u→ w ← t↔ v [K].

Lemma 5.5 Suppose that K,L are DAGs over N satisfying the inclusion conditions for K in
L. Then the condition (C:1) from Definition 5.8 holds.

Proof: By Lemmas 5.3 and 5.4 the conditions (A) and (B) holds. Suppose that u→ w ← t [L]
and t ↔ v [L]. One can assume u ↔ t [K] as otherwise by (b) and (a) one of the desired
conclusions u→ w ← t↔ v [K] is derived. Observe that u↔ w ↔ t↔ v in K by (a). One can
assume u→ t← v in K as otherwise another desired conclusion u−− t−−v [K] is valid. If t→ w
in K then the fact that K is acyclic implies u → w in K which means u → w ← t ↔ v [K].
If w → t then the fact w −− t −− v [L] implies by (A:2) w ↔ v [K]. Moreover, one can assume
that u 6↔ v [K] as otherwise one of the desired conclusions u ↔ v [K] holds. This means
(u, v) ; t [K] and by (∗) conclude that u ⊥⊥ v |W [L] where u, v, t 6∈ W ≡ paK(u)paK(v).
Necessarily, w 6∈ W as otherwise u → w ← t ↔ v is a path in L which is active w.r.t. W . The
fact w 6∈ paK(u)paK(v) then implies u→ w ← v [K] which is one of the desired conclusions.

The condition (C:1) is illustrated by Figure 11. This condition makes it possible to evidence
immediately that the pair of DAGs from Figure 10 does not satisfy the inclusion conditions.
Indeed, one has a → b ← c → d in L but none of the following conclusions of (C:1) is valid in
K: neither a↔ d nor a−− c−− d nor a→ b← d nor a→ b← c↔ d in K.

Let us summarize some important necessary conditions derived in Section 5.4.

Summary 1 The following graphical conditions are implied by the inclusion conditions for K
in L and therefore they are necessary for I(K) ⊆ I(L):

22

m
m m m
m
m m

m m m
m
m m m m m

w

u t v

or

w

u v

or

u t v

or

⇒

w

u t v u v

A
A
AAU

�
�
���

-� -�

A
A
AAU

�
�

�
�

��+

A
A
AAU

�
�
���

� -

in Kin L

Figure 11: Illustration of the rule (C:1).

23

(a) u↔ v [L] ⇒ u↔ v [K],

(b) u→ w ← v [L] ⇒ u↔ v [K] or u→ w ← v [K],

(c) u−− w −− v [L] ⇒ u↔ w [K] or u−− w −− v [K],

(d) u→ w ← t↔ v [L] ⇒ u↔ v [K] or u−− t−− v [K] or u→ w ← v [K] or u→ w ← t↔ v [K],

(e) u−− w −− t−− v [L] ⇒ u↔ v [K] or u−− w −− v [K] or u−− t−− v [K] or u−− w −− t−− v [K].

In Section 6 we will show that these conditions are also sufficient in case |E(K)| ≤ |E(L)|+ 1
(see Summary 2). To this end the observation that the validity of the conditions (a)-(e) is an
invariant of equivalence classes of DAGs is needed.

Lemma 5.6 Let K,L,K ′, L′ be DAGs over N such that I(K) = I(K ′) and I(L) = I(L′). Then,
the validity of the conditions (a)-(e) from Summary 1 for the pair K and L is equivalent to their
validity for the pair K ′ and L′.

Proof: This is the hint of the proof only. The basic idea is to reformulate the collection of
conditions in an equivalent way with help of invariants of equivalence classes. Let us introduce
for a DAG G over N and (distinct) nodes u, v, t, w the following notation.

1. u↔ v [[G]] means u↔ v [G],

2. u→ w ← v [[G]] means u→ w ← v [G] and u 6↔ v [G],

3. u−− w −− v [[G]] means u−− w −− v [G] and u 6↔ v [G],

4. u→ w ← t↔ v [[G]] means

u→ w ← t↔ v [G], u 6↔ v [G], ¬{u−− t−− v [G] } and ¬{u→ w ← v [G] },

5. u−− w −− t−− v [[G]] means

u−− w −− t−− v [G], u 6↔ v [G], ¬{u−− w −− v [G] } and ¬{u−− t−− v [G] }.

Let [a] respectively [b] etc. denote the condition (a) respectively (b) etc. where the symbol [L]
is replaced by the symbol [[L]] and the symbol [K] by the symbol [[K]].

The first observation is that the collection of conditions (a)-(e) is equivalent to the collection
of conditions [a]-[e]. For example, (a)⇔[a] by definition, (b)⇒[b] follows from the conventions
above and [a],[b]⇒(b) holds because

u→ w ← v [G] implies u↔ v [[G]] or u→ w ← v [[G]]

for every DAG G and nodes u, v, w. A similar principle can be used to show (c)⇒[c], [a],[c]⇒(c),
(d)⇒[d], [a],[b],[c],[d]⇒(d), (e)⇒[e] and [a],[c],[e]⇒(e).

The second observation is that the conditions [a]-[e] are invariants of equivalent classes of
DAGs. This is because the statements with [[G]] introduced above are invariants of equivalence
classes. This proposition can be derived as a consequence of Lemmas 5.2, 5.3 and 5.5. Indeed,
suppose that G and G′ are DAGs over N such that I(G) = I(G′). Then by Lemma 5.2 both
the inclusion conditions for G in G′ and the inclusion conditions for G′ in G hold. Which means
the conditions (a) and (b) hold both in the form with K = G and L = G′ and in the version
with K = G′ and L = G. Moreover, by Lemma 5.3 the conditions (A:2) and (A:3) hold in both
versions and by Lemma 5.5 the condition (C:1) holds in both versions.

24

To illustrate the idea of the proof let us show that u−−w−−v [[G′]] implies u−−w−−v [[G]]. The
assumption implies u−−w−− v [G′] and by (A:2) derive that either u↔ v [G] or u−−w−− v [G].
In case u ↔ v [G] we conclude u ↔ v [G′] by the condition (a) with K = G′, L = G. But this
contradicts the assumption u−−w−− v [[G′]]. Thus, u−−w−− v [G] and u 6↔ v [G] for the same
reason. This means u−− w −− v [[G]]. This procedure works also in other cases.

5.5 Nonlocality aspect

The majority of the conditions mentioned above were local (concerning of at most 4 nodes) or
at least relatively local (see the beginning of Section 5.4). In this section we show that one
cannot expect full characterization of I(K) ⊆ I(L) in terms of graphical conditions which have
the premise formulated in terms of K, the conclusion in terms of L and are relatively local.

Consider the independence model whose only non-trivial independence statement corre-
sponds to the disjoint triplet 〈a, b|Z〉. This model is induced by a DAG K over N in which
two nodes a and b are not adjacent but all the other adjacencies are present. The nodes a and
b have the set Z as the set of common parents and the remaining nodes R = N \ Z ∪ {a, b} are
children of both a and b. Figure 12 shows a DAG of this type.

Now, it is very easy to construct a DAG L such that there is only a single path from a to b
in L and such that a >> b |Z [L]. Obviously, this trail can be made as long as one likes which
means that a plenty of such DAGs L exists. The significance of this example is that it shows
that it is almost impossible to formulate a set of conditions that are necessary and sufficient
and that consider local properties of the graph only. The reason is that it is impossible to check
the independence statement a ⊥⊥ b |Z [L] by considering local properties of L: the whole trail
between a and b needs to be investigated to conclude that a >> b |Z [L].

So, this general example shows that we have to look into a set of conditions in which at least
one of the conditions has a non-local aspect. It also explains why no success has been achieved
so far in formulating a set of conditions because most of them have been local conditions. This
kind of property is more or less suggested by the local conditions we have to determine the
equivalence of DAGs.

5.6 Necessary and sufficient condition

The last inclusion condition (∗) from Section 5.3 can be strengthened to get a necessary and
sufficient condition.

Definition 5.9 Let K and L be DAGs over a set of variables N . The following condition is
called the enforced inclusion condition:

(∗∗) a 6↔ b [K] ⇒ {a} ⊥⊥ {b} |paK(a)paK(b) [L].

Natural consequence of the next lemma is that (∗∗) implies all inclusion conditions from
Section 5.3 and hence the Verma’s conditions from Section 5.2.

Lemma 5.7 Let K and L be DAGs over a set of variables N . Then I(K) ⊆ I(L) iff the enforced
inclusion condition (∗∗) holds.

Proof: If I(K) ⊆ I(L) then (∗∗) by Lemma 2.2. By Lemma 4.1 to show (∗∗) ⇒ {I(K) ⊆
I(L) } it suffices to verify LK,θ ⊆ I(L) for an input list LK,θ. The essential tool for proving this

25

m m

m m

m m?

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@R

A
A
A
A
A
A
AAU

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

?

�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
��	

�
�
�
�
�
�
���

�
�

�
�

�
�
�

�
�
�

��+

-

-

�
�
�
�
�
�
���

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

A
A
A
A
A
A
AAU

�
�

�
�
�

�
�

�
�
�

��+

z1 zi

r1 rj

a b

'

&

$

%

'

&

$

%...

...

...

...
Z

R

Figure 12: A counterexample to locality of conditions.

is the observation that I(L) is a graphoid which satisfies the composition property (see Section
4). Let us fix u ∈ N . The aim is to show that

〈u,preθ(u) \ paK(u)|paK(u)〉 ∈ I(L) . (9)

The claim is trivial in case preθ(u) \ paK(u) = ∅. Thus suppose that V ≡ preθ(u) \ paK(u) 6= ∅.
Let v1, . . . , vm, m ≥ 1 be the ordering of nodes in V according to θ. Denote Vj ≡ {v1, . . . , vj}
for j = 1, . . . ,m and D ≡ paK(u). The idea is to show by induction on j = 1, . . . ,m that
〈u, Vj |D〉 ∈ I(L). This gives the desired conclusion. In case j = 1 the fact u 6↔ v1 [K] implies
by (∗∗) that 〈u, v1|D〉 = 〈u, v1|D ∪ paK(v1)〉 ∈ I(L) owing to paK(v1) ⊆ D.

In case j > 1 introduce C ≡ paK(vj) \D and observe that C ⊆ Vj−1. The fact u 6↔ vj [K]
implies by (∗∗) 〈u, vj |CD〉 ∈ I(L). The induction hypothesis says 〈u, Vj−1|D〉 ∈ I(L) which
implies by decomposition 〈u, Vj−1 \ C|D〉 ∈ I(L) and 〈u,C|D〉 ∈ I(L). The latter fact implies
together with 〈u, vj |CD〉 ∈ I(L) by contraction 〈u, vjC|D〉 ∈ I(L). This together with the
former fact 〈u, Vj−1 \ C|D〉 ∈ I(L) gives 〈u, Vj |D〉 = 〈u, vjVj−1|D〉 ∈ I(L) by composition.
This concludes the proof of (9) and therefore the proof of I(K) ⊆ I(L).

5.7 Meek’s conjecture

Another method of characterization of inclusion is in an algorithmic fashion. This has benefit
that it is closer to application in Bayesian network learning algorithms. In [8] (Chapter 4,
Conjecture 22) Meek formulated a conjecture in an algorithmic form which is based on two
operations on DAGs: legal arrow reversal introduced in Definition 3.1 (called covered arc-reversal
by Meek) and by legal arrow adding introduced below. Note that Lemma 3.1 says that a legal
arrow reversal does not affect the induced independence model.

Definition 5.10 By legal arrow adding we understand the change of a DAG L into a directed
graph K by adding an an arrow a → b (in K) which is not an edge in L on condition that the
resulting graph K is a DAG.

26

Observation 7 Let K,L are DAGs over N such that K is obtained from L by (legal) arrow
adding. Then I(K) ⊂ I(L).

Proof: The inclusion D(L) ⊆ D(K) follows directly from the definition of d-separation: every
active path in L remains an active path in K. Hence I(K) ⊆ I(L). The strict inclusion follows
from Lemma 2.3.

Meek’s conjecture can be formulated in the following way. Given two DAGs K and L over
N the conjecture says that I(K) ⊆ I(L) iff

(MC) there exists a sequence of DAGs G1, . . . , Gn, n ≥ 1 such that G1 = L, Gn = K and the
graph Gi+1 is obtained from Gi either by legal arrow reversal or by legal arrow adding for
i = 1, . . . , n− 1.

Of course, the condition (MC) is sufficient for I(K) ⊆ I(L) by Lemma 3.1 and Observation 7.
The difficult part is to show that (MC) is a necessary condition for I(K) ⊆ I(L). However, the
following equivalent formulation of (MC) (used in Section 1 and abstract) seems more elegant.

Conjecture 1 (Meek [8])
Let K and L be DAGs over a set of variables N such that I(K) ⊆ I(L). Then there exists a
sequence of DAGs H1, . . . ,Hn such that K = H1, L = Hn and the graph Hi+1 is obtained from
Hi by applying either the operation a legal arrow reversal or the operation of arrow removal for
i = 1, . . . , n− 1.

Till these days no counterexample is known for Meek’s conjecture. In fact in the following
section we show that it is valid when two DAGs differ in at most one adjacency.

Remark 5 One may think that even a simpler version of Meek’s conjecture could be valid.
Namely that for two DAGs K and L over N the inclusion I(K) ⊆ I(L) implies that there exists
a sequence of DAGs K, . . . ,K∗, . . . , L∗, . . . , L where K∗ is obtained from K by a sequence of
legal arrow reversals, L∗ is obtained from K∗ by a sequence of arrow removals and L is obtained
from L∗ by a sequence of legal arrow reversals. This is to warn the reader that this is not the
truth. A counterexample is in Figure 13. The example shows two DAGs K and L such that
there are no equivalent K∗ and L∗ which have the same terminal node (c is always a terminal
node in K∗ but not in L∗). Thus, it is not possible to get from any K∗ to any L∗ by arrow
removals as the causal orderings of these always differs. On the other hand, I(K) ⊆ I(L) since
L can be obtained from K by removal of a → c, then legal reversal of d → c and removal of
b→ d.

6 Partial sufficiency result

The main result of this section is that Meek’s conjecture is correct in case that the graphs K
and L differ in at most one adjacency. In fact, we prove even more: the graphical conditions
gathered in Summary 1 (see Section 5.4.3) are necessary and sufficient both for I(K) ⊆ I(L)
and for the validity of Meek’s conjecture in case that K and L differ in at most one adjacency.
Recall that in case that they have the same adjacencies only three of these conditions are enough
(see Lemma 5.1). The main step is to show that the conditions from Summary 1 are sufficient
for validity of the condition (MC) in the considered special case.

27

m m

m m?
-

6

a d

b c

L m m

m m?

@
@
@
@
@
@@R ?�

�
�
�
�
���

-

a d

b c

K

Figure 13: Meek’s conjecture cannot be simplified.

Lemma 6.1 Let K,L are DAGs over N satisfying the condition from Summary 1 and the
condition

(•) |E(K)| = |E(L)|+ 1.

Then there exists a sequence G1, . . . , Gn, n ≥ 2 of DAGs over N and 1 ≤ m < n such that

• G1 = L,

• Gi+1 is obtained from Gi by legal arrow reversal for i = 1, . . . ,m− 1,

• Gm+1 ≡ K∗ is obtained from Gm ≡ L∗ by legal arrow adding,

• Gi+1 is obtained from Gi by legal arrow reversal for i = m+ 1, . . . , n− 1,

• Gn = K.

Proof: The proof is done by induction on the number of vertices |N |. If |N | ≤ 2 then Lemma
6.1 is trivial. To verify the induction step assume that the statement of the lemma is valid for
any pair of DAGs over a set of variables N ′ with |N ′| < |N |.

The first step to verify its validity for N is to choose a terminal node t in K. It may happen
that t→ y in L for some y ∈ N . The second step is to perform a legal arrow reversals of these
edges as long as this is possible. Thus, a sequence L = G1, . . . , Gk, k ≥ 1 of DAGs over N is
created where Gi+1 is obtained from Gi by legal arrow reversal for i = 1, . . . , k− 1. We will use
the following notation:

L∗ = Gk, P = paL∗(t), C = chL∗(t), X = paK(t) \ (P ∪ C) . (10)

The situation is illustrated in Figure 14. By Lemma 3.2 one knows that L and L∗ are equivalent
which means they have the same underlying graph and immoralities. Since no arrow t → y in
L∗ can be legally reversed at least one of the following four cases has to occur.

I. C = ∅ = X,

II. C = ∅ and X 6= ∅,

III. P \ paL∗(c) 6= ∅ for some c ∈ C,

IV. paL∗(c) \ P ∪ {t} 6= ∅ for some c ∈ C.

Indeed, the conditions in III. and IV. cover the case paL∗(c) 6= P ∪ {t} = paL∗(t) ∪ {t} which
is just the situation when legal reversal of t → c in L∗ is not possible. The rest of the proof
depends on the case which occurs.

28

@
@
@
@@R

A
AAU �
���

�
�
�
��� @

@
@
@@R

A
AAU ?
�
���

�
�

�
��	

m m
m

m
m m m m

m

m
m mp1

p2

x

t

c1

c2 p1

p2

x

t

c1

c2

in Kin L∗#
"

!
#
"

!

�
�
�
� #
"

!
#
"

!

�
�
�
�

P C

X

P C

X

Figure 14: General starting situation.

L = G1 . . . reversal . . . Gk (over N)

restriction to N ′ = N\{t}

L′ = G′1 . . . reversal, adding, reversal . . . G′i.G
′
r (over N ′)

adding p→ t for p ∈ P

Gk . . . reversal, adding, reversal . . . Gk−1+i . . . Gn = K (over N)

?

? ? ?

Figure 15: Schema of the proof in case I.

I. If C = ∅ = X then paL∗(t) = paK(t) = P . Introduce the graph L′ as the induced subgraph
of L∗ for N \ {t} and K ′ as the induced subgraph of K for N \ {t}. Observe that L′

and K ′ are DAGs over N ′ ≡ N \ {t}. Of course, the conditions (a)-(e) for L′ and K ′ are
fulfilled as they depend on induced subgraph. Since (•) holds for L′ and K ′ as well by the
induction hypothesis there exists a sequence L′ = G′1, . . . , G

′
r = K ′, r ≥ 2 of DAGs over

N ′ satisfying required relationships (see Figure 15 for illustration). Introduce the graph
Gk−1+i for i = 1, . . . , r as the graph over N obtained from G′i by adding a bunch of arrows
p→ t for p ∈ P . It is left to the reader to verify that G1, . . . , Gk, . . . , Gk+r−1 = Gn is the
desired sequence of DAGs over N (the main argument is that t is a terminal node). Note
that arrow adding operation can occur later in Gk, . . . , Gn which means that the ’actual’
L∗ = Gm whose existence is claimed in Lemma 6.1 may differ from Gk.

However, in cases II., III. and IV. one can put m = k and define K∗ = Gm+1 as the graph
obtained from L∗ = Gm by legal adding of a certain arrow y → z in K∗ which is also an edge in
K. Which arrow is added depends on the considered case. However, in each of three considered
cases K and K∗ are shown to have the same underlying graph and immoralities in the following
manner.

1. E(K) = E(K∗)
Since L∗ and L are equivalent the condition (a) gives E(L∗) = E(L) ⊆ E(K) which together
with {y, z} ∈ E(K) and the definition of K∗ implies E(K∗) ⊆ E(K). But the assumption
(•) says |E(K)| = |E(L)|+ 1 = |E(K∗)| which implies E(K∗) = E(K).

2. (u, v) ; w [K∗] implies (u, v) ; w [K].
First, consider the case ¬({y, z} ⊆ {u, v, w}). By definition of K∗ derive (u, v) ; w [L∗].

29

Since L and L∗ are equivalent (u, v) ; w [L]. By E(K) = E(K∗) observe u 6↔ v [K]. The
assumption (b) in the form (b̃) implies the desired conclusion (u, v) ; w [K].
Second, consider the case {y, z} ⊆ {u, v, w}. Since u 6↔ v [K∗] but y ↔ z [K] one has
either {y, z} = {u,w} or {y, z} = {v, w}. But u and v are interchangeable and one can
assume {y, z} = {u,w} without loss of generality. Since y → z in K∗ it implies that u = y
and w = z. Thus to verify the condition 2. it suffices to evidence

(y, v) ; z [K∗] ⇒ (y, v) ; z [K] for any v ∈ N \ {y, z} . (11)

3. (u, v) ; w [K] implies (u, v) ; w [K∗].
First, consider the case ¬({y, z} ⊆ {u, v, w}). By E(K) = E(K∗), the definition of K∗
and E(L) = E(L∗) deduce u ↔ w [L] and v ↔ w [L]. The assumption (c) in the form (c̃)
therefore implies (u, v) ; w [L]. By equivalence of L and L∗ derive (u, v) ; w [L∗] and
by the definition of K∗ the desired conclusion (u, v) ; w [K∗].
Second, consider the case {y, z} ⊆ {u, v, w}. Assumptions u 6↔ v [K] and y ↔ z [K]
necessitate {y, z} 6= {u, v} and one can assume without loss of generality that {y, z} =
{u,w}. This essentially includes two subcases: y = u, z = w (if y → z in K) and y = w,
z = u (if z → y in K). Therefore, to verify 3. it suffices to evidence the condition

(y, v) ; z [K] ⇒ (y, v) ; z [K∗] for any v ∈ N \ {y, z} . (12)

and the condition

(z, v) ; y [K] ⇒ (z, v) ; y [K∗] for any v ∈ N \ {y, z} . (13)

Note that the latter condition (13) can be omitted if one is sure that y → z in K.

As soon as equivalence of K∗ and K is verified one can use Lemma 3.2 to prove the existence
of a sequence K∗ = Gm+1, . . . , Gn = K of DAGs satisfying the required conditions. This will
conclude the proof.

II. If C = ∅ 6= X then choose x ∈ X and define K∗ as the graph obtained from L∗ by adding the
arrow x→ t. Note for explanation that (•) implies that X = {x} so that no actual choice
of x is made. Since t is a terminal node in L∗ in this case (see Figure 16 for illustration)
the resulting graph is acyclic. That means, K∗ is obtained from L∗ by legal arrow adding.
One also knows that x→ t in K which means that to show that K∗ and K are equivalent
it suffices to verify (11) and (12) for y = x and z = t. To verify (11) assume (x, v) ; t [K∗]
for v ∈ N \ {x, t}. The facts that E(K) = E(K∗) and t is a terminal node in K then imply
(x, v) ; t [K]. For verification of (12) use the same argument with K∗ replaced by K.

III. If P \paL∗(c) 6= ∅ for some c ∈ C then fix one of these c ∈ chL∗(t) and choose p ∈ P \paL∗(c).
Necessarily p 6↔ c [L∗] as otherwise p → t → c → p forms a directed cycle in L∗. Let us
summarize the assumed situation as follows:

∃ p, c ∈ N p→ t in L∗ , t→ c in L∗ and p 6↔ c in L∗ . (14)

The first step is an observation that p ↔ c [K]. Indeed, (14) and the fact that L and L∗
are equivalent implies p ↔ t ↔ c in L. Hence by (a) and the fact that t is a terminal
node in K derive p → t ← c in K. Suppose p 6↔ c [K] which implies the existence of an
immorality (p, c) ; t [K]. Then (p, c) ; t [L] by (c) in the form (c̃) and (p, c) ; t [L∗]
by the fact that L and L∗ are equivalent. The fact c→ t in L∗ then contradicts (14).

30

@
@
@
@@R

A
AAU

@
@
@
@@R

A
AAU ?

m m
m

m

m m
m

m

p1

p2

x

t

p1

p2

x

t

in K∗ and Kin L∗#
"

!

�
�
�
� #
"

!

�
�
�
�

P

X

P

X

Figure 16: Situation in case II.

in L∗ in K∗ in K#
"

!
#
"

!
#
"

!
#
"

!
#
"

!
#
"

!P C P C P C

p′

p

t

c

c′ p′

p

t

c

c′ p′

p

t

c

c′m m
m
m m m m

m
m m m m

m
m m@

@
@
@@R

A
AAU �
���

�
�
�
��� @

@
@
@@R

A
AAU �
���

�
�
�
���- @

@
@
@@R

A
AAU

�
���

�
�

�
��	

-� ��
�*

�
����-

Figure 17: The situation in case III.

The second step is to define K∗ as the graph obtained from L∗ by adding the arrow p→ c.
The situation is illustrated in Figure 17. Note for explanation that the assumption (•) and
the above mentioned consideration also imply that p′ ↔ c′ [L] for every pair of distinct
nodes p′, c′ where p′ ∈ P ∪ C, c′ ∈ C and (p′, c′) 6= (p, c). However, this is not depicted
in Figure 17 for sake of lucidity. The reason is that we give general instructions how to
handle the case III. even without assuming (•) in this proof.

K∗ is acyclic since L∗ is acyclic and the arrow p → c in K∗ can be (in a hypothetical
directed cycle) replaced by directed path p→ t→ c in L∗. Thus, K∗ is obtained from L∗
by legal arrow adding. As explained before II. to show that K∗ and K are equivalent one
has to verify (11), (12) and (13) for y = p and z = c.

To verify (11) assume (p, v) ; c [K∗] for some v ∈ N \ {p, c}. Necessarily v 6= t since
p ↔ t [K∗] but p 6↔ v [K∗]. First observation is v → c in L∗ which follows from the
definition of K∗ and the fact p 6= v. Thus, v → c← t← p in L∗ by (14). Since L and L∗
are equivalent by Lemma 5.6 conclude that the condition (d) from Summary 1 with L∗ in
place of L is valid. Apply this condition to derive that one of these four conditions holds:

v ↔ p [K] or v −− t−− p [K] or v → c← t↔ p [K] or v → c← p [K] .

But E(K) = E(K∗) implies v 6↔ p [K] and the other two options are excluded as t is a
terminal node in K. Thus necessarily (p, v) ; c [K].

To verify (12) assume (p, v) ; c [K] for v ∈ N \ {p, c}. Suppose (by contradiction) that
(p, v) ; c is not an immorality in K∗. Since E(K) = E(K∗) and p→ c in K∗ it is equivalent
to the requirement c→ v in K∗ (see Figure 18 for illustration). It implies c→ v in L∗ by
the definition of K∗ and the fact p 6= v. It follows from (14) that p→ t→ c→ v is a path
in L∗ which means p−− t−− c−−v [L∗]. As L and L∗ are equivalent by Lemma 5.6 conclude

31

in L∗ in K∗ in K#
"

!
#
"

!
#
"

!
#
"

!
#
"

!
#
"

!P C P C P C

p′

p

v

t

c

c′ p′

p

v

t

c

c′ p′

p

v

t

c

c′m m
m

m
m m m m

m

m
m m m m

m

m
m m@

@
@
@@R

A
AAU �
���

�
�
�
���

6

@
@
@
@@R

A
AAU �
���

�
�
�
���

6

- @
@
@
@@R

A
AAU

�
���

�
�

�
��	

?
-

Figure 18: Proof (p, v) ; c [K] ⇒ (p, v) ; c [K∗] in case III.

in L∗ in K∗ in K#
"

!
#
"

!
#
"

!
#
"

!
#
"

!
#
"

!P C P C P C

m m
m

m
m m m m

m

m
m m m m

m

m
m mp′

p

v

t

c

c′ p′

p

v

t

c

c′ p′

p

v

t

c

c′

@
@
@
@@R

A
AAU

6

?

�
���

�
�
�
��� @

@
@
@@R

A
AAU

6

?

�
���

�
�
�
���- @

@
@
@@R

A
AAU

�
?

�
���

�
�

�
��	

Figure 19: Immorality (c, v) ; p is not in K in case III.

that the condition (e) from Summary 1 with L∗ replaced by L holds. Derive that one of
these 4 cases occurs:

p↔ v [K] or p−− c−− v [K] or p−− t−− v [K] or p−− t−− c−− v [K] .

The first two conditions contradicts the assumption (p, v) ; c [K] and the last two con-
ditions the fact that t is a terminal node in K. Thus necessarily (p, v) ; c [K∗].

To show (13) it suffices to verify that (c, v) ; p is never immorality in K for any v ∈
N \{p, c}. Indeed, suppose (c, v) ; p [K] for contradiction (see Figure 19 for illustration).
The fact E(K∗) = E(K) implies p ↔ v [K∗]. The definition of K∗ and v 6= c then gives
p↔ v [L∗]. By (14) c← t← p in L∗ which means that c−− t−− p−− v [L∗]. Again by the
condition (e) where L∗ plays the role of L derive that one of the following fours conditions
holds:

c−− t−− p−− v [K] or c−− t−− v [K] or c↔ v [K] or c−− p−− v [K] .

The first two conditions cannot occur since t is a terminal node in K and both remaining
conditions exclude (c, v) ; p [K].

IV. If paL∗(c′) \ P ∪ {t} 6= ∅ for all c′ ∈ C and the case III. does not occur then choose such
c ∈ C which has no other ancestor in C, that is anL∗(c) ∩C = {c}. Since III. is excluded
necessarily paL∗(c) \P ∪ {t} 6= ∅ and one can choose a node x from this set. Observe that
¬(t → x inL∗) since otherwise x ∈ C and x → c in L∗ which contradicts the choice of c.
Let us summarize the assumed situation as follows:

∃x, c ∈ N x 6= t x→ c in L∗ , t→ c in L∗ and x 6↔ t in L∗ . (15)

32

The first step is to observe that x → t in K. Indeed, (15) says (x, t) ; c [L∗] and hence
(x, t) ; c [L]. Because c→ t in K the assumption (b) in the form (b̃) implies x↔ t [K].
Since t is a terminal node in K one has x→ t in K.

The second step is to define K∗ as the graph obtained from L∗ by adding the arrow x→ t.
The situation is shown in Figure 20. One can show that K∗ is acyclic by contradiction.
Indeed, in case there exists a directed cycle x → t → d → . . . → x in K∗ one can
distinguish two subcases. If d = c then a directed cycle x → c = d → . . . → x is in L∗
which contradicts acyclicity of L∗. If d 6= c then t→ d in L∗ says d ∈ C and d→ . . .→ x
in L∗ implies with (15) that d ∈ anL∗(c) which contradicts the choice of c. Thus, K∗ is
acyclic which means it was obtained from L∗ by legal arrow adding. As explained before
II. to show that K∗ and K are equivalent one has to verify (11) and (12) for y = x and
z = t.

To verify (11) assume (x, v) ; t [K∗] for some v ∈ N \ {x, t}. Since E(K) = E(K∗) the
fact that t is a terminal node in K implies the desired conclusion (x, v) ; t [K].

To verify (12) assume (x, v) ; t [K] for some v ∈ N \ {x, t}. The essential fact is that
v ∈ P = paL∗(t). To evidence it observe v ↔ t [L∗] by E(K∗) = E(K) and the definition of
K∗ (v 6= x). Suppose for contradiction that v ∈ C = chL∗(t). The case v = c is excluded
since x ↔ c [L∗] but x 6↔ v [L∗] by the condition (a). The first observation is that
c ↔ v [K] since otherwise (c, v) ; t [K] which implies (c, v) ; t [L] by the assumption
(c) in the form (c̃) and (c, v) ; t [L∗] by equivalence of L and L∗ which contradicts (15).
Thus c↔ v [K] and therefore c↔ v [L∗] by E(K) = E(K∗) and the definition of K∗. The
obtained situation is shown in Figure 21. The second observation is that (x, v) ; c is not
an immorality in K as otherwise by the assumption (c) in the form (c̃) and (15) it is an
immorality in L and therefore in L∗. This means v → c in L∗ which together with the fact
v ∈ C contradicts the choice of c. Thus (x, v) ; c is not an immorality in K, i.e. one has
x−− c−− v [K] - see Figure 21. Observe that x→ c← t→ v in L∗ by (15). As L and L∗
are equivalent the condition (d) with L replaced by L∗ (see Lemma 5.6) implies that one
of these four conditions holds:

x↔ v [K] or x→ c← v [K] or x−− t−− v [K] or x→ c← t↔ v [K] .

The first option is excluded by (x, v) ; t [K], the second option was excluded above
and the last two options contradict the fact that t is a terminal node in K. Thus the
assumption v ∈ C leads to contradiction which means v ∈ P . If v ∈ P one has v → t in L∗
and therefore by definition of K∗ also v → t in K∗ and x→ t in K∗. Since E(K∗) = E(K)
it implies the desired fact (x, v) ; t [K∗]. This concludes the proof of (12).

Thus the case IV. is shown, which concludes the proof.

Remark 6 It seems strange that the condition (B:2) which was shown in Section 5.4.2 to be
a necessary condition for I(K) ⊆ I(L) (even in case of validity of (•) - see Figure 7) was not
involved in Summary 1 and was not used in the proof of Lemma 6.1. The reason is that under
assumption (•) it follows from the conditions (a)-(e). However, this is not the case in general.

The consequence of Lemma 6.1 is that the inclusion conditions are sufficient for validity of
Meek’s conjecture in the considered special case.

Consequence 6.1 Let K,L be DAGs over N such that the inclusion conditions (a), (b), (∗)
for K in L and the condition (•) hold. Then the conclusion of Lemma 6.1 hold.

33

@
@
@
@@R

A
AAU �
���

�
�
�
���

�
���

�
�
�
���@

@
@
@@R

A
AAU ?

@
@
@
@@R

A
AAU ?
�
���

�
�

�
��	

A
AAU

A
AAU

A
AAUA
AAKm m

m

m
m m m m

m

m
m m m m

m

m
m mp1

p2

x

t

c

c′ p1

p2

x

t

c

c′ p1

p2

x

t

c

c′

in L∗ in K∗ in K#
"

!
#
"

!

�
�
�
� #
"

!
#
"

!

�
�
�
� #
"

!
#
"

!

�
�
�
�

P C

X

P C

X

P C

X

Figure 20: Situation in case IV.

@
@
@
@@R

A
AAU �
���

�
�
�
���

�
���

�
�
�
���@

@
@
@@R

A
AAU ?

@
@
@
@@R

A
AAU ?
�
���

�
�

�
��	

A
AAU

A
AAU

A
AA

m m
m

m
m m m m

m

m
m m m m

m

m
m mp1

p2

x

t

c

v p1

p2

x

t

c

v p1

p2

x

t

c

v

in L∗ in K∗ in K#
"

!
#
"

!

�
�
�
� #
"

!
#
"

!

�
�
�
� #
"

!
#
"

!

�
�
�
�

P C

X

P C

X

P C

X

�
��*

�
��*

�
��

Figure 21: The case (x, v) ; t [K]; the proof of the essential fact v ∈ P by contradiction.

Proof: Combine Summary 1 and Lemma 6.1.

Let us summarize the results.

Summary 2 Let K and L are DAGs over N such that |E(K)| ≤ |E(L)|+ 1. Then the following
four conditions are equivalent:

(i) I(K) ⊆ I(L),

(ii) the inclusion conditions for K in L from Definition 5.1 hold,

(iii) five graphical conditions gathered in Summary 1 hold,

(iv) the condition (MC) from Section 5.7 holds.

Proof: Lemma 5.2 gives (i)⇒ (ii); the implication (ii)⇒ (iii) follows from Summary 1 (which
follow from Lemmas 5.3 and 5.5). Lemma 6.1 gives (iii) ⇒ (iv). The implication (iv) ⇒ (i)
can be verified by repetitive application of Lemma 3.1 and Observation 7.

7 Conjectures

In this section we gather various conjectures.

7.1 Inclusion conditions

The following conjecture was already mentioned in Section 5.3.

34

Conjecture 2 (Bouckaert)
The conditions (a),(b) and (∗) from Section 5.3 are necessary and sufficient for I(K) ⊆ I(L).

So, we conjecture that the inclusion conditions are sufficient as well as necessary for inclusion.

7.2 Graphical necessary conditions

This conjecture follows the ideas which are behind the results from Section 5.4. The basic idea
is that every dependence complex in L has a subcomplex in K. But one has carefully determine
which dependence complexes in K are supposed to be subcomplexes of a given dependence
complex in L.

The set of nodes of a complex κ in a DAG L over N between nodes a and b for a set
C ⊆ N \ {a, b} can be partitioned into several pairwise disjoint subsets. The nodes belonging to
respective active path π are divided by its collider nodes into open areas. Every collider node d
of π has its collider area which is only the node d in case d ∈ C or the set of nodes of respective
rope ρ(d) in κ in case d 6∈ C. By the root of a collider area is understood the only node in C
within this area. In case π has no collider node the nodes of κ form one open area only. The
areas are ’ordered’: after the open area which contains a a collider area follows, then another
open area etc., the last area is the open area containing b.

Subcomplexes of κ should correspond to certain subsets A of the set of nodes of κ, namely
sets A such that

• {a, b} ⊆ A,

• when A intersects a collider area then it contains the root of the area,

• when A intersects two different collider areas then it intersects at least one open area
between them.

By a subcomplex of κ in a DAG K over N determined by A can be understood a dependence
complex λ in K which has A as the set of nodes and whose active path and ropes are determined
by the requirement that every collider area of λ is a subset of a collider area of κ and the order
of nodes in λ ’follows’ the order in π and the ropes of κ. An example is the concept of shortening
(of an open path) from Section 5.4.1 or the concept of subconfiguration from Section 5.4.2.

Conjecture 3 (Studený)
The following condition

(D) Every dependence complex in L has a subcomplex in K,

is necessary and sufficient for I(K) ⊆ I(L).

The problem is to verify necessity of this general condition, namely that it is implied by the
inclusion conditions (a), (b) and (∗) - which is also a conjecture. The sufficiency for I(K) ⊆ I(L)
is quite clear because of Lemma 2.1.

Remark 7 Intuitive meaning of conditions (A), (B) and (D) is as follows. Whenever u =
w1 −− . . .−− wn = v, n ≥ 2 is an open path in a DAG G then for S ⊇ {wi; 1 < i < n} one has
u >> v | − S [G] (see Observation 3). Note that converse implication need not hold for every
minimal S ⊆ N \ {u, v} with u >> v | − S [G] as an example in Figure 22 shows. However, the
condition (A) more or less corresponds to the implication u >> v | − S [L] ⇒ u >> v | − S [K].

35

?

@
@
@
@
@R

?

�
�

�
�
�	

�
�
�

�
�	

@
@
@
@
@Rm

mm

m

m

u

yx

v

w

Figure 22: No open path between u and v through S = {x, y} exists in G but u >> v | − S [G].

Analogously, the requirement (u, v) 7→ w1, . . . , wn [G] implies by Observation 6 the fact
u >> v | + wn [G]. Thus, the condition (B) has meaning of implication u >> v | + wn [L] ⇒
u >> v | + wn [K].

Finally, let κ be a complex between u and v for C in L, T is the set of its nodes in C and S is
the set if its nodes outside C∪{u, v}. Then one has u >> v |+T−S [L]. The conjectured condition
(D) then corresponds more or less to the implication u >> v | +T−S [L] ⇒ u >> v | +T−S [K].

7.3 Extension of Meek’s conjecture

The way in which we proved the validity of Meek’s conjecture in the considered special case
indicates possible method of its verification in the general case. The conjecture says something
about the existence of a sequence of DAGs only; we specify the conjecture by saying how to
generate this sequence. We believe that the procedure described below could lead to the general
proof of Meek’s conjecture.

Conjecture 4 (Kočka)
Let K and L arer DAGs over N such that I(K) ⊆ I(L). Then following algorithm will convert
L into K (it modifies L till L = K):

1. Let Y denote the set of nodes which were already processed and put Y = ∅.

2. Choose a terminal node in the induced subgraph KN\Y and denote it by t. Continue by
Step 3.

3. Legally reverse (in L) all possible arrows having t as a tail node in LN\Y . Denote the set
of all children of t in LN\Y by C and the set of parents of t in LN\Y by P . Continue by
Step 4.

4. For every c ∈ C do this: if P \ paL(c) 6= ∅ then for every p ∈ P \ paL(c) add (legally) the
arrow p → c in L. If some arrows were added in this step then go to Step 3 otherwise
continue by Step 5.

5. Put C∗ = {c ∈ C ; anL(c) ∩ C = {c} }. If C∗ 6= ∅ then choose c′ ∈ C∗, choose x ∈
paL(c′) \ P ∪ {t}, add the arrow x → t in L and go to the Step 3. If C∗ = ∅ = C then
continue by Step 6.

36

m

mm

m
m

c1

x2x1

c2

t

m

mm

m
m

c1

x2x1

c2

t

?

��
����

HH
HHHj ?

J
J
J
J
J
J
JĴ

��
�
��*

HH
H

HHY

�

?

�
�
�

�
�
�

�
�
�

��	�
?

L K

Figure 23: The simplest example of a weak point in Kočka’s conjecture.

6. For every x ∈ paK(t) \ P add the arrow x → t in L. Put Y = Y ∪ {t}. If Y ⊂ V then
continue by Step 2, otherwise halt. Now one has L = K.

Remark 8 All parts of this conjecture can be proved in a similar way as in the proof of Lemma
6.1 except for Step 5. The weak point of this conjecture is at this step: we believe that it is
always possible to choose some c′ but we don’t know a method how to choose it in general. That
means we do not know it in case the set C∗ has more than one node. The simplest example of
this situation is in Figure 23. In this case one has to choose c′ = c2 since x1 ⊥⊥ c2 |x2 [L] is
dictated by enforced inclusion condition (∗∗) and the algorithm described in Conjecture 4 leads
to the end.

7.4 Sandwich lemma conjecture

The proof of Meek’s conjecture in the considered special case reduces the rest of the proof of
general conjecture. We call the remaining part of the conjecture sandwich lemma conjecture,
because it conjectures the existence of a DAG in between all two DAGs which differ in more
then one edge. However owing to our result it is equivalent to Conjecture 1.

Conjecture 5 (sandwich lemma conjecture)
Let K and L are DAGs over N such that I(K) ⊂ I(L) and |E(L)| + 1 < |E(K)|. Then there
exists a DAG G over N such that I(K) ⊂ I(G) ⊂ I(L) and |E(L)| < |E(G)| < |E(K)|.

8 Conclusion

The main achievements of this report are various characterizations of inclusion of DAG models
and the proof of Meek’s conjecture for DAGs that differ in at most one adjacency. As a warming
up a rigorous proof of equivalence of DAG models (which can be considered as inclusion where
the number of edges does not differ) is given.

Furthermore, we established some intuition in the characterization of inclusion and showed
that all characterizations must have a non-local component. We suggested various strategies
on how to attack Meek’s conjecture for the general case when DAGs differ in more than one
adjacency.

37

In the future, we would like to prove sufficiency of the characterization of inclusion using
the inclusion conditions. Furthermore, the Meek’s conjecture still stands to be proved for the
general case.

References

[1] M. D. Chickering: A transformational characterization of equivalent Bayesian networks, in Uncer-
tainty in Artificial Intelligence 11 (P. Besnard, S. Hanks eds.), Morgan Kaufmann 1995, pp. 87-98.

[2] M. D. Chickering: Learning equivalence classes of Bayesian network structures, in Uncertainty in
Artificial Intelligence 12 (E. Horvitz, F. Jensen eds.), Morgan Kaufmann 1996, pp. 150-157.

[3] P. Giudici, R. Castelo: Markov Chain Monte Carlo model selection for DAG models, technical report
117, University of Pavia, Department of Political Economy and Quantitative Methods, September
2000.

[4] M. Frydenberg: The chain graph Markov property, Scandinavian Journal of Statistics 17 (1990),
pp. 333-353.

[5] D. Heckerman, D. Geiger, M. D. Chickering: Learning Bayesian networks, the combination of
knowledge and statistial data, technical report MSR-TR-94-09, Microsoft, March 1994, revised
February 1995.

[6] S. L. Lauritzen, A. P. Dawid, B. N. Larsen, H.-G. Leimer: Independence properties of directed
Markov fields, Networks 20 (1990), pp. 491-505.

[7] F. Matúš: Conditional independence structures examined via minors, Annals of Mathematics and
Artificial Intelligence 21 (1997), pp. 99-128.

[8] C. Meek: Graphical models, selecting causal and statistical models, PhD thesis, Carnegie Mellon
University, 1997.

[9] J. Pearl: Probabilistic Reasoning in Intelligent Systems, Networks of Plausible Inference, Morgan
Kaufmann 1988.

[10] M. Studený: Description of structures of conditional independence by means of faces and imsets,
3rd part: examples of use and appendices, International Journal of General Systems 23 (1995), pp.
323-341.

[11] M. Studený: On recovery algorithm for chain graphs, International Journal of Approximate Rea-
soning 17 (1997), pp. 265-293.

[12] M. Studený: On mathematical description of probabilistic conditional independence structures, a
survey paper in preparation.

[13] T. Verma, J. Pearl: Influence diagrams and d-separation, technical report 880052 (R-101), UCLA,
Cognitive Systems Laboratory, March 1988.

[14] T. Verma, J. Pearl: Causal networks, semantics and expressiveness, in Uncertainty in Artificial
Intelligence 4 (R. D. Schachter, T. S. Lewitt, L. N. Kanal, J. F. Lemmer eds.), North-Holland 1990,
pp. 69-76.

[15] T. Verma, J. Pearl: Equivalence and synthesis of causal models, in Uncertainty in Artificial In-
telligence 6 (P. P. Bonissone, M. Henrion, L. N. Kanal, J. F. Lemmer eds.), Elsevier 1991, pp.
220-227.

38

