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Abstract

The basic idea of the paper is that
every Bayesian network (BN) model
is uniquely described by a certain in-
tegral vector, named a standard im-
set. Every score equivalent decom-
posable criterion Q for learning BN
models appears to be an affine func-
tion of the standard imset. The alge-
braic view can naturally be extended
to databases: if a criterion Q of the
above mentioned kind is fixed then
every database can be represented in
the form of a data vector (relative to
Q), which is a vector of the same di-
mension as the standard imset.

Keywords: Standard Imset, Learn-
ing Bayesian nets, Quality Criterion.

1 INTRODUCTION

The procedures for learning Bayesian network
(BN) models [7] can roughly be divided into
two basic groups. Some of the algorithms are
based on significance tests, that is, statisti-
cal conditional independence (CI) tests. The
second basic group of algorithms consists of
the procedures based on the maximization of
a suitable quality criterion. The algorithms
of this kind became popular in recent years.
The present paper deals with structural learn-
ing based on the maximization of a quality
criterion by the local search method — see [4].

The goal of the paper is to present briefly
an algebraic approach to this special learn-
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ing method. It brings surprisingly clear per-
spective on the method, which can possibly
be extended to a structural learning method
for general CI models. Actually, the presented
algebraic approach is an attempt to apply a
general algebraic method for describing prob-
abilistic CI structures from [10] to learning
BN models. The basic idea is that every BN
model — that is, the class of distributions sat-
isfying the CI restrictions determined by an
acyclic directed graph — can be represented
by a certain vector, whose components are in-
tegers, named a standard imset. This vector
is uniquely determined representative of the
BN model, like the well-known essential graph
[1]. The standard imset corresponding to an
acyclic directed graph G will be denoted by

uqg -

The common criteria used in practice in the
local search method typically satisfy two ba-
sic requirements: they are score equivalent [2]
and decomposable [4]. These two requirements
imply together that the criterion is necessar-
ily a shifted linear function of the standard
imset. More precisely, provided Q is a quality
criterion of this kind, it has the form

Q(G,D) = 53 — (t3,uc), (1)

where G is a graph, D a database, (x,y) de-
notes the scalar product of vectors x and v,
s% is a real constant and t% a vector depend-
ing on the database, called the data wvector
(relative to Q). Thus, all substantial infor-
mation about the database is involved in the
data vector and the problem of maximization
of Q is transformed to the problem of maxi-

mization of a linear function (determined by



tl%) on a finite set of vectors, namely on the
set of standard imsets.

A further remarkable property of standard
imsets is as follows. In the local search
method, it appears to be advantageous to con-
sider the neighborhood structure for BN mod-
els derived from the inclusion of BN models —
which is named inclusion (boundary) neigh-
borhood [6]. It is a pleasant property of the
algebraic approach that the neighborhood of
two BN models in this sense can be character-
ized in terms of the respective standard im-
sets. More specifically, it is equivalent to the
condition that their difference, named the dif-
ferential imset is a certain simple vector that
corresponds to an elementary CI statement.
These vectors are named elementary imsets
for their exceptional role in the method re-
ported in [10].

Standard imsets are also appropriate to test-
ing of the inclusion of BN models. Note that a
graphical transformational characterization of
inclusion of BN models was given by [4]. How-
ever, the algebraic characterization seems to
be more elegant. Two BN models are in inclu-
sion iff their differential imset is a combination
of elementary imsets, named a combinatorial
imset. Note that the question of computer
testing whether a given vector is a combinato-
rial imset is very close to the problem of com-
puter testing CI inference dealt with in [3].
Altogether, the algebraic approach leads to a
proposal to modify the local search method
so that some linear programming algorithms
could be utilized in the future.

The structure of the paper is as follows. In
Section 2 some basic concepts are introduced.
Section 3 is a review of the local search
method for the maximization of a quality cri-
terion. We recall the concept of a score equiv-
alent decomposable criterion (for learning BN
models) and the concept of inclusion neigh-
borhood. The algebraic approach is presented
in Section 4. The concept of a standard imset
is introduced and the above mentioned claims
are formulated in a precise way. The idea
of modification of the local search method in
light of the algebraic approach is pinpointed
in the Conclusion. Some open problems are

mentioned there as well. Note that the proofs
of the results mentioned in the present paper
can be found in Chapters 7 and 8 of [10].

2 BASIC CONCEPTS

Throughout the paper the symbol N will de-
note a non-empty finite set of variables. They
correspond to primitive factors described by
random variables. Every BN model over N
is given by an acyclic directed graph having
N as the set of nodes. The class of all these
graphs will be denoted by DAGS(N). Given
G € DAGS(N) and i € N the symbol pag(7)
will denote the set of parents of the node i,
that is, the set of j € N with j — ¢ in G.

2.1 PARAMETRIZATION OF A
BAYESIAN NETWORK
MODEL

A BN model is understood as a statistical
model, that is, a class of probability distri-
butions. To specify it the respective sample
spaces have to be fixed. In this paper, the
discrete case is only considered: let X; denote
a non-empty finite set of possible values for
a variable i € N. Given A C N, the sym-
bol X4 will denote the set of configurations of
values for A, that is, the set of lists [z;]ica
where z; € X; for any i € A.! Given z € Xy
and A C N, the symbol z4 will denote the
marginal configuration of x for A, that is, the
restriction of the list = to items indexed by
elements of A.

A probability distribution P on Xy is given
by its density p, which is a function p : Xy —
[0,1] with " {p(z); x € Xy} = 1. The BN
model given by G € DAGS(N) consists of
the class of Markovian distributions with re-
spect to GG, that is, those distributions on Xy
which satisfy CI restrictions dictated by the
d-separation criterion — for detail see [8]. It
will be denoted by Mg. One can interpret
Mg as a parameterized class of distributions.
To describe the “standard” parameterization
of Mg some conventions are needed.

Lof course, if A # () then X 4 is the Cartesian prod-
uct [T, 4 Xi- The set Xy consists of one configuration,
namely the empty list.



CONVENTION 1 The letter i will be used as a
generic symbol for a variable: i € N. We put
r(i) = |X;| and fiz an ordering v}, ... ,y:(l) of
elements of X; for everyi € N. The letter k
will be used as a generic symbol for a code of a
configuration in X;: k € {1,...,r(i)}. Given
i€ ACN and x € X4 the symbol k(i, x) will
denote the code of x;y, that is, the unique
1 <k < (i) such that xg; = yk.

Given G € DAGS(N), denote by q(i,G) the
number |X,,.)| of parent configurations for
a variable i € N. Of course, q(i,G) =
[eepoy 70). Fiz an ordering zl,... 206
of elements of X, for every i € N.
The letter j will be used as a generic sym-
bol for a code of a parent configuration: j €
{1,...,9(i,G)}. Given i € N such that
pag(i) € A € N and x € X4 the symbol
J(i,z) will denote the code of x,,.;), that
is, the unique 1 < j < q(i,G) such that
Tpag (i) = 7

The set of parameters ©g for M consists of
vectors @ = [0;;,] where 0;;, € [0,1] for i €
N,1<j<4¢q(G) and 1 < k < r(i) such
that 22(21)1 0ijr, = 1 for every i € N and 1 <
Jj < q(i,G). Given a vector parameter 6 the
respective distribution is given by its density

p’(z) = H 0w k(ie) forx€Xn. (2)
iEN

It is shown in Lemma 8.1 of [10] that p? is
always a density of a distribution P? on Xy
and the mapping 0 — P? is onto M.

2.2 EQUIVALENCE OF GRAPHS

Two acyclic directed graph G, H € DAGS(N)
are called Markov equivalent if Mg = My.
If we consider non-degenerate sample spaces,
that is, |X;| > 2 for every i € N, then this is
equivalent to the condition that G and H are
independence equivalent, by which is meant
that they define the same collection of CI re-
strictions through the d-separation criterion.?
We write G = H then. A well-known graph-
ical characterization of independence equiva-
lence is that G ~ H iff G and H have the same

2One can use Theorem 8.3 in [7].

underlying undirected graph and immorali-
ties® — for a proof see [1].

2.3 DATA

By a database over N of the length d, d € N
will be understood a sequence z!, ..., z% of el-
ements of Xyv.* Thus, complete databases are
only considered here. The class of databases
over N of the length d will be denoted by
DATA(N,d). To give elegant formulas for ba-
sic quality criteria an additional convention is
needed.

CONVENTION 2 Keeping Convention 1 in
mind let D : z',...,z% d > 1 be a database.
Introduce for everyi e N, 1< j <q(i,G):

dij=H1<t<d;a}, =2}
If, moreover, 1 < k < r(i) then put

dl]k = ’{1 < ¢ < d’ xfi}Upag(i) = (yzk7zg)}’ :

Note that the order of configurations in a
database is often considered not to be impor-
tant.

3 LOCAL SEARCH METHOD

In this section, the idea of learning BN models
based on the maximization of a quality crite-
rion is described.

3.1 QUALITY CRITERION

By a quality criterion (for learning BN mod-
els) is meant a function Q : DAGS(N) x
DATA(N,d) — R, d > 1. The reader can
find several alternative phrases in the litera-
ture, e.g. quality measure [2] and scoring cri-
terion [4, 7]. The intention of a learning pro-
cedure is, given a database D € DATA(N, d),
to find G € DAGS(N) which maximizes the
function G — Q(G, D). Of course, what is

3 An immorality is an induced subgraph a — ¢ « b,
that is, [a,b] is not an edge in the graph.

4Note that I intentionally introduce the concept of
a database as an empirical concept, that is, a concept
introduced in terms of observed evidence only. It does
not involve statistical assumptions on data generat-
ing process. In my view, these additional details only
complicate a clear view on the subject.



written here is a pure mathematical concept
and there are a number of additional implicit
assumptions on a quality criterion.

One of them is the assumption of consistency
— see §8.4.2 in [7]. The intuitive meaning of
this concept is as follows: if a database is
“generated” by a distribution P over N then
the maximum of Q is achieved in the “sim-
plest” G € DAGS(N) with P € M. This is a
natural requirement and most of the criteria
used in practice satisfy this basic statistical
assumption.

Let us give some examples of quality criteria.
A classic statistical interpretation of graphical
models as parameterized classes of probabil-
ity distributions leads to information criteria.
These are derived from maximized likelihood
—see §11.3.1 in [5]. Having fixed a BN model
Mg, G € DAGS(N) the likelihood function as-
cribes to every database D € DATA(N, d) and
to a parameter 6 € Og the probability of oc-
currence of D provided that data are “gener-
ated” from P?. The model Mg can then be
“evaluated” by the maximum of the logarithm
of the likelihood function. Provided that one
has in mind the parameterization from §2.1,
the respective maximized log-likelihood crite-
rion has the following form — see Corollary
8.1 in [10]:

q(1,G) r(7)

=D DD die ln IE L (3)

iEN j=1 k=1

MLL(G, D)

where G € DAGS(N), D € DATA(N,d) and
the convention 0 - In (0/%) = 0 is accepted.

However, this criterion does not take into ac-
count the simplicity (or complexity) of a BN
model. The complexity of Mg can be mea-
sured by its effective dimension, that is, the
number of free parameters in O¢:

Y ali.G)-[r() —1].  (4)

1EN

DIM (G) =

Information criteria can be obtained from
the maximized log-likelihood criterion by sub-
tracting a penalization term, which is typ-
ically a multiple of the effective dimension.
The simplest one is Akaike’s information cri-

terion:

AIC(G, D) = MLL(G, D) — DIM(G).

The most popular is probably Bayesian infor-
mation criterion:

BIC(G, D) = Ind

MLL(G, D) — -DIM(G) .
This criterion is claimed to be consistent — see
§8.4.3 in [7]. Another class of allegedly con-
sistent criteria is the class of various Bayesian
criteria.’ These are derived from marginal
likelihood — see §11.3.3 in [5]. The basic idea
is that a prior probability distribution mg on
the parameter space O¢ is considered for ev-
ery G € DAGS(NN). The respective Bayesian
criterion is the logarithm of the marginal like-
lihood:

LML(G, D) = ln/ L(6,D)dng(0),
O¢a

where G € DAGS(N), D € DATA(N,d) and
L(68,D) denotes the value of the likelihood
function for @ and D.

3.1.1 Score equivalent criteria

A quality criterion @ will be called score
equivalent if, for every G, H € DAGS(N) and
each D € DATA(N,d),

Q(G,D) = Q(H,D) whenever G~ H.

This basically means that whenever G and H
define the same BN model then the criterion
gives them the same “score”
database is considered. This is a natural re-
quirement from a statistical point of view.

, no matter what

Note that quality criteria used in practice
are usually score equivalent. These are both
Akaike’s and Bayesian information criteria —
see Proposition 8.2 in [10]. Most of Bayesian
criteria are also score equivalent, but there
is an example of a Bayesian criterion which
is not score equivalent, namely so-called K2
metric — see [2, 6].

5The reviewer objects my using the word ”al-
legedly”. However, I myself have not found the argu-
ments given in §8.4.3 of [7] convincing enough; they
are too sketchy and based on references. Although I

tend to believe what is claimed I was not able to really
check it (from the perspective of a mathematician).



3.1.2 Decomposable criteria

To introduce the concept of a decomposable
criterion one needs to know what is a pro-
jection of a database. Given a database D :
', .., z% d>1over N and A C N, its pro-
jection D4 onto A is the sequence of the re-

spective marginal configurations xlA, e ,xi.

A quality criterion is decomposable if there ex-
ist functions ¢;p : DATA({i} U B, D) — R,
where i € N, B C N\ {i}, d > 1 such that

Q(Ga D) = Z qi‘paG(i) (D{i}UpaG(i)) )
iEN

for G € DAGS(N), D € DATA(N,d). Infor-
mally said, a criterion is decomposable if it
decomposes recursively with respect to the
graph. The assumption of decomposability
was introduced with connection to the local
search method. It is a technical assumption
which allows one to search for a local maxi-
mum of Q by this method.

3.2 THE IDEA OF LOCAL SEARCH

The problem with the maximization of a qual-
ity criterion is that the set DAGS(N), re-
spectively the collection of equivalence classes
DAGS(N)/~, is too large and this makes di-
rect maximization infeasible. To circumvent
this task the method of local search was pro-
posed. The basic idea is to introduce in the
search space, which is either the set of graphs
DAGS(N) or the set DAGS(N)/~, a neighbor-
hood structure. Every graph, respectively ev-
ery equivalence class, is assigned a relatively
small set of neighbors; they typically differ in
the presence of one edge. Instead of looking
for a global maximizer of Q one searches for
its local maximizer relatively to the chosen
neighborhood structure. The point is that,
for a decomposable criterion Q, the difference
in the value of Q for neighbors is often easy to
compute. Thus, the method consists in travel-
ling in the search space. In each state, that is,
in each element of the search space, one con-
siders a limited collection of possible moves
to neighboring states. Each time one chooses
the move that maximizes the increase in the
value of Q.

3.3 INCLUSION NEIGHBORHOOD

A natural neighborhood structure for the
search space DAGS(N)/~ is the one derived
from the inclusion of BN models. Let Mg
denote the collection of CI restrictions de-
termined by G € DAGS(N) through the d-
separation criterion. Given K, L € DAGS(N)
we say that K is independence included in L
if Mg C Mp. Note that, if we consider non-
degenerate sample spaces, this is equivalent
to M; C Mg, that is, L is distributionally
included in K — see §8.4.1 in [7].

The symbol Mg C My, denotes strict inclu-
sion, that is, Mg C My but Mg # My.
If Mg C My and, moreover, there is no
G € DAGS(N) with Mg € Mg C My, then
we say that My is an upper inclusion neigh-
bor of My, respectively Mg is a lower in-
clusion neighbor of Mp. Then we will write
Mg © Mjp. Clearly, the inclusion neighbor-
hood has good theoretical justification. Nev-
ertheless, there are also some practical rea-
sons why reasonable neighborhood structure
for DAGS(N)/~ should involve the inclusion
neighborhood — see [6].

A graphical characterization of inclusion
neighborhood relation is as follows (see
Lemma 8.5 in [10]): Mg T My occurs iff
there exist K', L’ € DAGS(N) with K’ ~ K,
L' ~ L such that L’ is obtained from K’ by
an arrow removal.

3.4 PROBLEM OF
REPRESENTATIVE CHOICE

One of the issues related to the implementa-
tion of the local search method is the problem
of representing a BN model in the memory of
a computer. Some researchers prefer to rep-
resent a BN model by any graph in the re-
spective equivalence class DAGS(V)/~. This,
however, may lead to computational ineffi-
ciencies since these equivalence classes could
be quite large and the procedure can stick at
idle graphical operations. Other researchers
prefer to use unique graphical representatives.
Since, in general, there is no distinguished
member of an equivalence class of acyclic di-
rected graphs, the authors use special chain



graphs for this purpose. The most popu-
lar representative of this kind is the essential
graph [1], named also the completed p-dag in
[4]. The basic idea of this paper is to represent
a BN model by an algebraic representative.

4 ALGEBRAIC VIEW

The above mentioned algebraic representa-
tives of BN models will be special vectors.
Let P(N) denote the power set of the set
of variables, that is, P(N) = {4; A C N}.
By an imset over N an integer-valued func-
tion on P(N) will be understood.® Of course,
an imset over N can be viewed as an ele-
ment of ZP®), that is, an integral vector,
whose components are indexed by subsets of
N. Arithmetic operations with imsets are de-
fined coordinate-wise. This allows one to ex-
press every imset as a linear combination of
elements of a linear base of RP(Y), The usual
base of RP(V) consists of vectors that identify
subsets of N. Given A C N, the symbol d4
will denote the following imset:

5A(B):{é ig;ﬁ: for B C N.
In [10] a special class of imsets was proposed
to describe probabilistic CI structures. These
imsets can be introduced as certain combina-
tions of imsets that correspond to elementary
CI statements. Thus, every triplet (a,b|C),
where a,b € N are distinct and C C N \
{a, b}, defines the respective elementary im-
set U(a,b\c>7 by the formula:

Uiaplc) = Oapjuc T 0c — dfayuc — dpyuc -

A combinatorial imset is an imset which can
be obtained as a sum of elementary imsets
while their repetition is allowed. Every dis-
crete CI structure can perfectly be described
by a combinatorial imset — see Theorem 5.2
and Corollary 5.3 in [10].%

5The word “imset” is an abbreviation for integer-
valued multiset.

"This imset corresponds to the CI statement “a is
conditionally independent of b given C”, in notation
allb|C.

8Note for explanation that there exists an algebraic
criterion determining CI restrictions dictated by an

o c} {b, c}

O (o) (D) ()

{6y J {c}

Figure 1: A graph and a standard imset.

4.1 STANDARD IMSETS

Given G € DAGS(N), the respective standard
imset ug is given by the following formula:

ug = IN=0p+ > {0pue(i) =i 1umac (i) }- (5)
ieN

It is shown in Lemma 7.1 in [10] that the stan-
dard imset ug is always a combinatorial imset
and defines the same collection of CI restric-
tions as the graph G through the d-separation
criterion. To illustrate this concept consider
the graph G over N = {a,b, c} shown on the
left-hand side of Figure 1. The respective
standard imset is shown in the diagram on
the right-hand side of the figure.

Note that it follows from the definition that
every standard imset over N has at most
2|N| 4+ 2 non-zero components. This can be
utilized for effective representation standard
imsets in the memory of a computer.

4.1.1 Equivalence characterization

The basic observation is as follows — for a
proof see Corollary 7.1 in [10].

PROPOSITION 4.1 Given K,L € DAGS(N)
one has K =~ L iff ug = uy,.

In particular, the standard imset is a unique
representative of the respective equivalence
class of acyclic directed graphs, and, there-
fore, of the respective BN model. Note that

imset of this kind — see §4.4.1 in [10]. This crite-

rion can be viewed as an analog of the graphical d-
separation criterion from [8].



there exists a direct formula for the standard
imset on basis the essential graph and an in-
verse reconstruction algorithm — see [9].

4.1.2 Inclusion characterization

Another advantage of standard imsets is as
follows.

PROPOSITION 4.2 Assume K, L € DAGS(N).
Then Mg C My iff up —ug is a combinato-
rial imset. Moreover, one has Mg T My, iff
ur, — ug 18 an elementary imset.

The proof can be found in §8.4.1 of [10]. The
characterization of inclusion neighborhood re-
lationship is straightforward since the recogni-
tion elementary imsets is immediate. Suppos-
ing Mg C My the unique elementary imset
ur, — ug will be called the differential imset
for K and L.

4.2 FORMULAS FOR CRITERIA

The main result of the paper is as follows.

THEOREM 4.1 Let Q be a quality criterion
for learning BN models which is both score
equivalent and decomposable.  Then every
database D € DATA(N,d), d > 1 can be
assigned a number s% € R and a function
t2 : P(N) — R such that, for every A C N,
t%(A) only depends on the projection D4 of
the database and

Q(G, D) =53 — Y t3(A)-uac(4) (6)
ACN

for G € DAGS(N), D € DATA(N, d). 9

For the proof see Lemmas 8.7 and 8.3 in [10].
Of course, the function t[Q) can be interpreted
as a real vector [t2(A)]acy € RPW) called
the data vector (for the database D relative to
Q). Then the sum in (6) is the scalar prod-
uct of the data vector and the standard imset.
Thus, (6) is nothing but the formula (1) men-
tioned in the Introduction.

Let us illustrate the result by examples. The
maximized log-likelihood criterion given by
9Provided one accepts a standardization conven-

tion t2(A) = 0 whenever |A| < 1, the numbers s%
and t% (A), A C N are uniquely determined.

(3) is an example of a decomposable criterion.
Let P denote the empirical distribution com-
puted from D with density

ply)=d M{1<e<d; 2t =y} foryeXy.

Then sY' is the (—d)-multiple of the entropy
of P:

RIS

yEXN,P(y)>0

p(y) - In py) .

Given A C N, the value of t¥'-(4) is
the d-multiple of the multiinformation of the
marginal P4 of P on X4:1°

A (A) = d-H(Pa|[[ 7)) for ACN.
€A

For a proof see Proposition 8.4 in [10]. The
effective dimension (4) can be viewed as a
special criterion which does not depend on
D. Thus, Corollary 8.6 in [10] gives sP'™ =

—1 4 [Lien (i) and

tPM(A) = [A] =1+ ] r6) =D r(i)

i€EA i€A

for A C N. Hence, the respective data vector
for the Bayesian information criterion is

_Ind om

(4) =tk (A) -

(A) for ACN.
Theorem 4.1 has the following easy conse-
quence which explains the role of the differ-
ential imset.

COROLLARY 4.1 Given K,L € DAGS(N)
such that Mg T My, let wipicy be the dif-
ferential imset for K and L. Then

Q(Ka D) - Q(LaD) = <t%vu(a,b|0)>

for every D € DATA(N, d) and a score equiv-
alent decomposable quality criterion Q.

10Recall that the multiinformation of a distribution
Q is the relative entropy of @@ with respect to the
product R =[], Q: of its one-dimensional marginals:
H(QIR) =22, 4)>09(y) -In[q(y)/r(y)] where g, r are
densities of Q, R.



CONCLUSIONS

The algebraic approach presented in this pa-
per leads to the following proposal of how
to modify the method of local search de-
scribed in § 3.2. The states of the search space
could be standard imsets and the moves be-
tween states can be represented by differen-
tial imsets. Given a quality criterion Q every
database can be represented by the respective
data vector.

Thus, graphical representatives of BN models
are replaced by algebraic ones and, moreover,
an algebraic representative of a database is
incorporated. The algebraic interpretation of
moves is possible owing to Corollary 4.1; note
that an important fact is that every move of
this kind has CI interpretation.

Of course, there are several open problems re-
lated to this topic. One of them is what are
mutual geometric positions of standard im-
sets in RPW). Tt is desirable to confirm the
hypothesis that every standard imset is an ex-
treme point of the polytope consisting of con-
vex combinations of standard imsets. If this is
true then the methods of linear programming
can possibly be applied in this area.

Another open problem is to characterize, in
algebraic terms, all the moves from a given
standard imset to its inclusion neighbors.
Note that these moves were already charac-
terized in terms of the essential graph.
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