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One of the most common ways of representing classes of equivalent Bayesian networks is 
the use of essential graphs which are also known in the literature as completed patterns or 
completed pdags. The name essential graph was proposed by Andersson, Madigan and 
Perlman who also gave a graphical characterization of essential graphs. In this paper 
an alternative characterization of essential graphs is presented. The main observation 
is that every essential graph is the largest chain graph within a special class of chain 
graphs. More precisely, every equivalence class of Bayesian networks is contained in an 
equivalence class of chain graphs without flags (= certain induced subgraphs). A special 
operation of legal merging of (connectivity) components for a chain graph without flags 
is introduced. This operation leads to an algorithm for finding the essential graph on the 
basis of any graph in that equivalence class of chain graphs without flags which contains 
the equivalence class of a Bayesian network. In particular, the algorithm may start with 
any Bayesian network. 

Keywords: Chain graph; acyclic directed graph; essential graph; flag; legal merging. 

1. Introduction 

This is to explain the motivation in brief. Several approaches to learning Bayesian 
networks are based on the idea of maximization of a score metric. Some of these 
approaches 6 use the method of travelling in a search space which is often the 
collection of equivalence classes of Bayesian networks over a fixed set of variables. 

For this purpose one needs a suitable representative of an equivalence class of 
this type to be kept in memory of a computer. A quite popular representative 
of an equivalence class of Bayesian networks is its essential graph. This term was 
introduced by Andersson, Madigan and Perlman x but some alternative names 
for this graph have appeared in the literature: completed pattern 17, maximally 
oriented graph for a pattern 10 and completed pdag 6. A graphical characterization 
of essential graphs was presented in 1 as Theorem 4.1. 

The author's plan has been to develop an arithmetic method of description of the 
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44 M. Student/ 

equivalence classes of Bayesian networks by means of certain integral vectors, that 
is, vectors whose components are integers. The hope is that this approach could be 
utilized to make existing local search methods of learning Bayesian networks more 
effective - for a description of the main ideas of this algebraic approach see Chapter 
8 in 14. In connection with the effort to establish the relationship between essential 
graph representation and integral vector representation, an alternative characteri
zation of essential graphs was found as a byproduct. The characterization is based 
on a special operation of legal merging of components and leads to an algorithm for 
converting a Bayesian network into the respective essential graph presented in this 
paper. Unlike former algorithms presented in 10 and 5, this alternative algorithm 
avoids indicating essential (= compelled) arrows. Note that similar characterization 
of essential graphs has been found independently in a recent paper 12 by Roverato 
who has had another source of motivation. 

2. Basic concepts 

2.1. Graphical concepts 

Graphs considered in this paper will have a finite non-empty set N as the set of 
nodes, which will be represented by small circles in pictures, and two possible types 
of edges. An undirected edge or a line over iV is a subset of N of cardinality two, 
that is, an unordered pair {a, 6} where a,b € N, a ^ b. The respective notation 
a — b corresponds to its pictorial representation by means of an undirected link 
between circles which represent the nodes a and b. A directed edge or an arrow over 
N is an ordered pair (a,b) where a,b £ N, a ^ b. The notation a -> b reflects its 
pictorial representation by a directed link from a circle representing the node a to 
a circle representing the node b. 

Moreover, "multiple" edges are not allowed in the graphs considered in this 
paper. More specifically, by a hybrid graph (over iV) a triplet H = (N, C{H), A(H)) 
will be understood where iV is a set of nodes, £(H) a set of lines over N and A(H) 
a set of arrows over N such that whenever (a, b) € -4(H) then (b, a) $ A(H) and 
{a,b} = {b,a} $ £(H). Note that the above definition also implies that two or 
more lines between fixed nodes a and b are not allowed in H because the pair {a, b} 
cannot be 'repeated' in the set C(H). Analogously, two arrows a -> b cannot occur 
in H because the pair (a, b) cannot be 'repeated' in .4(H). A pair [a,b] of distinct 
elements of N will be called an edge in H (between a and b) if one of the following 
options occurs: a — b in H, a -» b in H and b ->• a in H. 

An undirected graph is a hybrid graph having lines only, that is, A(H) = 0. A 
directed graph is a hybrid graph having arrows only, that is, C(H) — 0. Given 0 ^ 
A C N the induced subgraph HA of H is the triplet (A, C{H)nV(A),A(H)n(AxA)) 
where V(A) denotes the power set of A (= the collection of all subsets of A). 

A set K C N is complete in a hybrid graph H over N if Vx,y € K x ^ y 
one has x — y in H. A set C C N is connected in H if for every a,b G C there 
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Fig. 1. An immorality and a flag. 

exists an undirected path connecting them, that is, a sequence of distinct nodes 
a = c\,... ,c„ = b, n > 1 such that c» — Cj+i in H for i = l , . . . , n - 1. A 
connectivity component of H is a maximal connected set in i7 (with respect to set 
inclusion). Of course, all the components of a directed graph are singletons (= sets 
of cardinality one). 

An acyclic directed graph (ADG) is a directed graph without directed cycles, 
that is, without any sequence di,...,dn, d„+i = d\, n > 3 such that d\,... ,dn are 
distinct and di ->• d;+i in H for i = 1 , . . . , n. A well-known fact (whose proof is 
omitted) is that a directed graph is acyclic iff there exists a total ordering of all 
nodes of iV (= ordering into a sequence) a i , . . . , am, m > 1 which is consistent with 
the direction of arrows, that is, whenever ai —> aj in H then i < j . 

A chain graph is a hybrid graph H for which there exists a chain, that is, an 
ordered partitioning of N into non-empty blocks B\,..., Bm, m > 1 such that 

• if a — b in H then a,b 6 Bi for some i, 
• if a —• b in H then a 6 Bi, b G J5j with i < j . 

Of course, both undirected graph and acyclic directed graph are special cases of a 
chain graph. Note that a chain for a given chain graph is not determined uniquely. 
An equivalent definition of a chain graph is that it is a hybrid graph H without 
semi-directed cycles - see Lemma 2.1 in 13. Recall that a semi-directed cycle is a 
sequence d\,..., dn, dn+\ = d\, n > 3 such that d\,..., dn are distinct, d\ -> d<i in 
H and Vi = 2 , . . . , n either d; —> cij+i or dj — dj+i in H. 

It follows from the equivalent definition that, in a chain graph H over N, there 
is no arrow between nodes of a connected set C C JV; in other words, the induced 
subgraph He is undirected. In particular, the set of parents of C, that is, 

paH(C) = {aeN;3b&C a-> 6 in H} 

is disjoint with C. The set 

nejf(C) = { a e N\C;3beC a-binH} 

will be named the set of neighbors of C. The notation paH(x), respectively nen (x), 
for x €. N will sometimes substitute paH({x}), respectively nen({%})• A descending 
path in a chain graph if is a sequence d\,..., dn, n> 1 of distinct nodes such that 
Vi = 1 , . . . , n — 1 either di -> di+\ in H or di — di+\ in i l . 
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46 M. Student/ 

2.2. Bayesian networks 

A Bayesian network is a special statistical model determined by an ADG. It can 
be introduced as the class of multidimensional probability distributions (on a fixed 
sample space) which factorize according to the ADG in a certain way. Note that, in 
the area of computer science, a Bayesian network model is typically a class of discrete 
probability distributions and some authors in that area prefer to define a Bayesian 
network as one distribution belonging to this class. An alternative definition of this 
class of distributions can also be given in terms of conditional independence, using 
the d-separation criterion from n . Nevertheless, related (statistical) concepts are 
not dealt with in this paper for which reason the phrase "Bayesian network" will 
be understood as a synonym for an ADG throughout the rest of this paper. 

Another concept is the concept of equivalence of Bayesian networks. A statis
tician would expect the following definition: two Bayesian networks are Markov 
equivalent if they represent the same statistical model. In standard situations this 
requirement is equivalent to the condition that the d-separation criterion induces 
the same collections of conditional independence statements for both ADGs. This 
condition means that the Bayesian networks are independence equivalent. Fortu
nately, Verma and Pearl17 gave a direct graphical characterization of independence 
equivalence of Bayesian networks which is as follows. 

The underlying graph of a hybrid graph H over N is an undirected graph Hu 

over N such that a — b in Hu iff [a, b] is an edge in H. An immorality in H is 
an induced subgraph of H shown in the left-hand picture of Figure 1, that is, the 
configuration o -» c <- b where a, b, c are distinct nodes and the pair [a, b] is not 
an edge in H. Two Bayesian networks Gi,Gi over N are independence equivalent 
iff they have the same underlying graph and the same collection of immoralities. 
Throughout the rest of this paper, the phrase "Bayesian networks are equivalent" 
will mean that this requirement is fulfilled. 

2.3. Equivalence class representation 

An equivalence class Q of Bayesian networks (over N) can be described by its 
essential graph which is a hybrid graph G* (over N) such that 

• o -> b in G* if and only if a -> b in G for every G G Q, 
• a — b in G* if and only if there exist G\, G2 G Q such that a ->• b in Gi and 

b —> a i n G<i. 

Example 1. Let us consider the equivalence class Q of Bayesian networks over 
N = {a, b, c, d} shown on the left-hand side of Figure 2. The respective essential 
graph G* is in the right-hand picture of the same figure. 

A graphical characterization of essential graphs was presented in 1. Let us recall 
the definitions of relevant concepts. An undirected graph H is chordal (alternative 
names are triangulated and decomposable) if, for each undirected cycle in H which 
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Fig. 2. An equivalence class of Bayesian networks and the respective essential graph. 
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Fig. 3. A strongly protected arrow a —> b. 

has the length at least four, that is, for each sequence c i , . . . ,cn,cn+i = ci, n > 4 
where c i , . . . , c„ are distinct and Cj — Cf+i in i l for i — 1 , . . . , n, there exists a 
c/iord in i?, that is, an edge Cj — Cj where 1 < i,j < n and 1 < j — i < n — 1. 
A /?a<7 in a hybrid graph if is an induced subgraph of H shown in the right-hand 
picture of Figure 1, that is, the configuration a —» c — b where a,b,c are distinct 
nodes and the pair [a, b] is not an edge in H. An arrow a —> b in a hybrid graph i l 
is called strongly protected if it belongs to at least one induced subgraph of H of 
the types (a)-(d) shown in Figure 3. 

Lemma 1. A hybrid graph H over N is an essential graph of an equivalence class 
of Bayesian networks over N iff the following four conditions are fulfilled: 

(i) H is a chain graph; 
(ii) for every connectivity component C of H the induced subgraph He is chordal; 
(iii) H has no flags; 
(iv) every arrow in H is strongly protected. 

Proof. See Theorem 4.1 in 1 . D 
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48 M. Studeny 

Corollary 1. Let H be the essential graph of an equivalence class of Bayesian 
networks over N and 0 ^ A C JV is a set closed under parents in H, that is, 
x € paH{y) and y E A implies x E A. Then HA is the essential graph of an 
equivalence class of Bayesian networks over A. 

Proof. It suffices to show that the conditions (i)-(iv) from Lemma 1 for H imply 
the same conditions for HA- Because the induced subgraph of a chain graph is a 
chain graph and the induced subgraph of a chordal (undirected) graph is a chordal 
graph this is easy for (i)-(iii). To verify (iv) the assumed condition on A is needed. 
Supposing a —> b is an edge in HA one has a —> b in H and by (iv) it belongs to an 
induced subgraph of H of one of the types (a)-(d) in Figure 3. The fact a,b E A 
and the form of these induced subgraphs implies c E A, respectively C\,C2 E A, 
which means that HA has the respective induced subgraph as well. • 

Remark 1. Note that there are other possible ways of representing equivalence 
classes of Bayesian networks. One of them uses the concept of the largest chain 
graph which is based on results of Frydenberg 7. Let us call by a (minimal) complex 
in a hybrid graph H a special induced subgraph of H, namely, the configuration 
a -> ci — . . . — Cfc f- b, k > 1 where c» — Cj+1 for i — 1 , . . . , k - 1 and there is no 
other edge in H between distinct nodes a,b,c\,..., c^. Of course, an immorality is a 
special case of a complex. Frydenberg 7 gave a characterization of Markov equivalent 
chain graphs which can be viewed as a generalization of the result by Verma and 
Pearl 17: two chain graphs are equivalent iff they have the same underlying graph 
and the same (minimal) complexes. Throughout the rest of this paper, the phrase 
"chain graphs are equivalent" will mean that these graphical conditions are satisfied. 

Moreover, Frydenberg 7 also showed that every equivalence class % of chain 
graphs over N has a distinguished representative H^ which can be obtained as 
follows: 

• a —)• b in H^ iff a —> b in H for every H E H, 
• a — b in H,*, iff a — b in H for at least one H Erl. 

This is the graph with the maximum number of lines in 7i, and he named it the 
largest chain graph (LCG) of %. Frydenberg's result naturally leads to an idea 
mentioned in 13: every equivalence class Q of Bayesian networks over N is a subclass 
of the uniquely determined (wider) equivalence class Qx of chain graphs over N, 
and one can represent Q by means of the LCG of Qx. In general, the LCG of Qx and 
the essential graph of Q may differ - the simplest example is in Figure 4. The chain 
graph on the left-hand side is the essential graph and the graph on the right-hand 
side is the LCG. Observe that they are equivalent. 

Another alternative is an algebraic approach described in Chapter 8 of 14. The 
main idea of that approach is to represent every equivalence class of Bayesian net
works by a special integral (= integer-valued) vector, called a standard imset, whose 
components correspond to subsets of N. This approach can be viewed as a special 
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a b o , b 

O, O O p 
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dO dO 

Fig. 4. An essential graph and the respective largest chain graph. 

case of a more general method used to describe models of probabilistic conditional 
independence structure which is described in details in preceding chapters of 14. 

3. Chain graphs without flags 

The goal of this paper is to characterize every essential graph as a distinguished 
member of a certain class of chain graphs. Actually, the concept of essential graph 
can be viewed as an analogy of the concept of LCG. The only difference is that 
the collection of chain graphs is replaced by the collection of chain graphs without 
flags. These chain graphs are slightly special in certain respects. For example, the 
parent set of a node is an invariant of a connectivity component. 

Proposition 1. Let H be a chain graph without flags and C a connectivity com
ponent of H. Then paH(x) = paH(y) for every x,y 6 C; in particular, paH(x) = 
paH(C). 

Proof. If z -> x — y in H then z -» y in H because of the absence of flags and 
semi-directed cycles in H. Thus, x — y in H implies paH{x) C paH(y) and hence 
paH(x) = paH(y) by symmetry. If x,y € C then there exists an undirected path 
connecting them and the repeated use of the above observation implies that every 
node of the path has the same set of parents. • 

Equivalence of chain graphs without flags is characterized in a simple way. 

Lemma 2. Two chain graphs without flags are equivalent iff they have the same 
underlying graph and immoralities. 

Proof. Use Frydenberg's characterization 7 of equivalent chain graphs mentioned 
in Remark 1. Observe that the only (minimal) complex in a chain graph without 
flags is an immorality. • 

Corollary 2. Let G be a Bayesian network over N and Q denotes the equivalence 
class of Bayesian networks containing G. IfG* the essential graph ofQ then G and 
G* are equivalent (chain graphs). 
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50 M. Studeny 

Proof. Due to the construction of G*, the hybrid graphs G and G* have the same 
underlying graph and immoralities. As a result of Lemma 1, G* is a chain graph 
without flags and the same claim is evident for G. Then use Lemma 2. • 

Lemma 3. A chain graph H without flags is equivalent to a Bayesian network iff, 
for every connectivity component C of H, the induced subgraph He is chordal. 

Proof. Use Proposition 4.2 and Remark 4.2 in 2 where chain graphs equivalent 
to ADGs are characterized. A more explicit characterization in Remark 4.2 there 
contains three conditions: (i), (ii) and (iii). The reader can consult 2 and verify by 
means of Proposition 1 that the conditions (ii) and (iii) are always fulfilled for chain 
graphs without flags. The last condition (i) requires exactly what is mentioned in 
Lemma 3. • 

4. Legal merging of components 

A special concept of legal merging of components is introduced in this section. Its 
significance is as follows: it appears to be an elementary operation applicable to 
chain graphs without flags whose result is an equivalent chain graph without flags. 

To distinguish the components which are to be merged, one of them will be 
named the upper component and denoted by Cu while the other one will be named 
the lower component and denoted by Ci-

Definition 1. Let H be a chain graph without flags and Cu,Ci two components 
of H such that 

(i) K = {paH(Ci) n Cu} is a non-empty complete set in H, 
(ii) paH{Cu) = paH(Q) \ Cu. 

If all arrows from (nodes in) Cu to (nodes in) C; are replaced by lines then the 
resulting hybrid graph H' is said to arise from H by a legal merging of the (upper) 
component Cu and the (lower) component C;. 

Remark 2. The assumptions that the set K from (i) is non-empty and H is a chain 
graph imply that Cu and Cj are distinct. Moreover, one can derive by Proposition 
1 that a -¥ b in H for a 6 Cu, b 6 Ci iff a 6 K (and b 6 Ci). By the condition (ii) 
from Definition 1 paH(Cu) C paH(Ci). This observation allows one to show that 
the only type of an edge between Cu and C; is an arrow from K to Ci. Indeed, by 
contradiction: if a — b for a £ Cu, b S Ci then Cu = Ci and if a «— b for a £ Cu, 
b € Ci then b € paH(Cu) \ paH(Ci) because of Ci n paH(Ci) = 0. The situation 
described in Definition 1 is illustrated by Figure 5. 

The next result justifies the concept of legal (component) merging. 

Theorem 1. Assuming the situation from Definition 1, the constructed graph H' 
is a chain graph without flags which is equivalent to the original graph H and has 
C = {Cu U Ci} as a component. 
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Fig. 5. The situation before and after a legal merging of components. 

Proof. I. The graph H' is a chain graph. 

This can be shown by contradiction. Assume that H' contains a semi-directed cycle 
di, n > 3 with di ->• d2. Then it necessarily contains at least 

one line between Cu and Ci as otherwise it is also a semi-directed cycle in H, 
which contradicts the assumption that H is a chain graph. Let j = min {i; 2 < i < 
n + 1, di G Cu U C/} and fc = max {i;2 < i < n+1, di £ Cul)Ci}. Clearly, j ^ k 
and the section dk, • • •,dn+i = d\, di, • • •, dj is a descending path which does not 
contain an edge between Cu and Ci (recall that d\ —> di in H'). Thus, it is a path in 
a chain graph H, which implies dk G Cu and dj 6 C; (other options are excluded). 
Observe that dj-i -> dj in i? (because if j > 2 and dj_i — dj then <ij_i G Ci, which 
contradicts the definition of j ) . Similarly observe dj-\ g Cu (if j = 2 then d,-_i — dj 
in i? ' contradicts the fact di -> d2). Thus, dj_i € paH(Ci) \ Cu and, by the 
assumption (ii) from Definition 1 and Proposition 1, dj-i E paH(Cu) = paH{dk)-
Therefore, dj_i,dfc,... ,d„+ i = d\,...,dj-i is a semi-directed cycle in H which 
contradicts the assumption that H is a chain graph. 

II. The graph H' has no Bags. 

This can again be shown by contradiction. Assume that W has an induced subgraph 
a -> c — b. Clearly, a —> c in H and the option c — b in H is excluded. If 
c -^ b in H then c G Cu, b G C; and, by the assumption (ii) and Proposition 
1, a G paH(Cu) C paH{C{) — paH(b), which contradicts the assumption that 
[a, b] is not an edge. If b -¥ c in H then 6 G C„, c G Cj and 6 G paH(Ci) n Cu, 
a G paH{Ci). This allows one to derive a contradictory conclusion that [a, b] is 
an edge: if a G Cu then a, 6 G paH{Ci) C\ Cu and one can use the assumption 
(i); if a ^ Cu then the assumption (ii) and Proposition 1 can be used to write 
a G paH{Ci) \CUC paH(Cu) = paH(b). 

III. The graphs H and H' are equivalent. 

Use Lemma 2. To this end, suppose that there is an immorality a —> c <- b in if 
which is cancelled in if' and show that it leads to a contradiction. The situation 
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where a flag is created in H' has already been excluded in Step II. Therefore, 
necessarily a — c — 6 in H' and hence c G C;, a,b G Cu . By the assumption (i), a 
contradictory conclusion that [a, b] is an edge in H can be derived. 

IV. The set C = {Cu U d) is a component of H1. 

The fact that C is connected is evident. Its maximality can be verified by contra
diction: if a G C, a — bin H' and b £ C then, by the construction of H', we observe 
that a — b in H and the fact that both C„ and C\ are components of H implies 
that b G Cu U Ci = C. • 

Corollary 3. T/ie operation of legal merging of components of a chain graph with
out flags preserves the validity of the condition that induced subgraphs for compo
nents are chordal. 

Proof. Use Lemma 3 and Theorem 1. • 

5. Characterization of essential graphs 

Lemma 4. Let H be a chain graph without flags. If no pair of components Cu 

and Ci fulfills the conditions from Definition 1, then each arrow in H is strongly 
protected. 

Proof. Let a -> b be an arrow in H, denote by Cu the component of H containing a 
and by Ci the component of H containing b. The aim is to show that a -> b belongs 
to one of the configurations (a)-(d) shown in Figure 3. Since the conditions (i)-(ii) 
from Definition 1 are not met, one of the following three cases occurs: 

(I) paH(Cu)\paH{G)?Q, 
(II) p a i r ( C , ) \ [ C f l U p a H ( C u ) ] # 0 ) 

(III) paH(Ci) n Cu is not complete. 

If (I) occurs then by Proposition 1 find c € paH(Cu)\paH(Ci) = paH(a)\paH(b) 
and observe that a —• b belongs to the configuration (a) from Figure 3. 

If (II) occurs then take c G paH(Ci) \ [Cu l)paH(Cu)] = paH(b) \ [Cu UpaH(Cu)]. 
Thus, the cases a «— c in H and a — c in H are excluded. If a —̂  c in if then a —> b 
belongs to the configuration (c) otherwise it belongs to the configuration (b). 

If (III) occurs then there exist distinct ci,c2 G paH(Ci) n Cu such that the pair 
[ci, c2] is not an edge. By Proposition 1 conclude that cx ->• b 4- c-i is an immorality 
in H. If either a G {01,02} or [a,Cj\ is not an edge for at least one i then a —> b 
belongs to the configuration (b). If a £ {c\,C2} and [a,Cj] is an edge for i = 1,2 
then the fact d G Cu implies a — Cj and a -¥ b belongs to the configuration (d). • 

The above lemma leads to the following characterization of essential graphs. 
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Characterization of Essential Graphs 53 

Theorem 2. Let H be a chain graph without flags which is equivalent to a Bayesian 
network. Then H is an essential graph iff no pair of its components can be legally 
merged. 

Proof. I. The sufficiency of the condition follows from preceding lemmas. 

Use Lemma 1. The conditions (i) and (iii) are assumed, (ii) follows from Lemma 3 
and (iv) from Lemma 4. 

I I . The necessity of the condition can be verified by contradiction with the help 
of its sufficiency. 

Let Hi = H and start a process of creating a sequence Hi, H2, • • • of equivalent 
graphs: if the operation of legal component merging can be applied to Hi, then 
perform this operation and construct a graph H;+ i . By Theorem 1, H;+i is again 
a chain graph without flags which is equivalent to Hi (and therefore to H) but has 
more lines. Since the number of edges is finite, the process has to terminate after 
a finite number of steps and the resulting graph Hn, n > 1 must be an essential 
graph (by Step I). The fact Hi ^ H„ is in contradiction with the uniqueness of the 
essential graph. • 

Remark 3. Note that the condition in Lemma 4 is also necessary in the sense 
that if there is an arrow from a component Cu to a component C/ of a chain graph 
without flags then the components can be legally merged iff no arrow from Cu 

to Ci is strongly protected. Thus, the characterization in Theorem 2 is essentially 
equivalent to the original characterization from l. However, the formulation of the 
condition in terms of connectivity components is more elegant than the original one. 

Definition 2. Let Hi and H2 be two equivalent chain graphs. One says that Hi 
is larger than H2 if a — b in H2 implies a — b in Hi and a —> b in H2 implies that 
a -^ b in Hi or a — b in Hi. 

Of course, the relation "being larger" is a partial ordering. For example, the 
graph on the right-hand side of Figure 4 is larger than the graph on the left-hand 
side. 

Corollary 4. Let G be a Bayesian network over N, Q the equivalence class of 
Bayesian networks containing G and ri{G) the collection of chain graphs without 
flags which are equivalent to G (evidently Q C rl(G)). Then a hybrid graph over N 
is the essential graph of Q iff it is the largest graph in rl(G). 

Proof. Let G* denote the essential graph of Q. By Lemma 1 and Corollary 2, 
G* € H(G). Let us show that G* is larger than any other graph H € rl(G). Put 
Hi—H and start the process of creating a sequence of graphs Hi, H2, . . . in %{G) 
described in Step II of the proof of Theorem 2. The process has to terminate after 
a finite number of steps, resulting in a graph Hn £ Ti{G). The only difference from 
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the situation in the proof of Theorem 2 is that now the case n = 1 can occur. By 
Theorem 2, Hn = G*, which implies that G* is larger than H. Thus, G* is the 
unique "largest" graph in V.{G). 

To show the converse, consider the largest chain graph H in %{G) and observe 
(by contradiction with the aid of Theorem 1) that its components cannot be legally 
merged. Then use Theorem 2. O 

6. Algorithms 

The above results lead to the following procedure which is 'blind' in the sense that 
one has to look for components which can be merged. For this reason the procedure 
is not fully deterministic. 

BLIND ALGORITHM 
Let H be any chain graph without Hags which is equivalent to a Bayesian network 
G. If the operation of legal merging of some components Cu and Ci of H can be 
done, then perform it and replace H by the resulting graph. The algorithm stops 
when legal merging of components is not possible. 

Of course, one can take a Bayesian network G in place of H. It follows from 
Theorems 1 and 2 (and Corollary 2) that the algorithm stops with the essential 
graph of the equivalence class of G. 

However, in the case of a Bayesian network even a more specific version of 
this algorithm can be designed. In this procedure, the tentative step of looking for 
components to be merged is removed and the procedure is 'guided' by an ordering 
of nodes which is consistent with the direction of arrows. Once the ordering is 
fixed, the algorithm is fully deterministic. The procedure is based on the following 
concept, which is formally introduced for a general hybrid graph although it only 
has reasonable sense for a chain graph without flags. 

Definition 3. Let H be a hybrid graph over N and a 6 iV. By a parent component 
for a € N will be meant any connectivity component P of H such that 

(i) paH{a) fl P is a non-empty complete set in H, 
(ii) paH{P)=paH{a)\P. 

Proposition 2. Let H be a chain graph without flags over N and a € N. Then a 
parent component for a is uniquely determined if it exists. 

Proof. This can be shown by contradiction. Assume that two distinct components 
Pi and Pi of H satisfy the conditions (i) and (ii) from Definition 3. Owing to (i) for 
Pi there exists di € paH(a) nPi for i — 1,2. Since d\ £ P2, respectively d2 & Pi, by 
(ii) derive d\ £ paH(a) \ P2 = paH(P2), respectively d2 G paH(a) \Pi = paH(Pi). 
By Proposition 1 d\ —> d2, respectively d2 —> d\, which is impossible in a hybrid 
graph. • 
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GUIDED ALGORITHM 
Let G be a Bayesian network over N and CL\ , . . . , o,m, m > 1 a total ordering of 
its nodes which is consistent with the direction of arrows in G. Let us construct a 
sequence of hybrid graphs G1,..., Gm over N as follows: 

• put G1 = G, 
• fork — 2,...,m check whether there exists a parent component P for ak in Gfc_1. 

If it exists then define Gk as the hybrid graph obtained from Gk~l by replacing 
arrows from paGk-i(ak) C\P to ak by lines; otherwise put Gk = Gk~l. 

The algorithm stops with Gm. 

The following lemma established the consistency of the steps of the algorithm. 

Lemma 5. Let G be a Bayesian network over N. Then the guided algorithm defines 
a sequence of chain graphs without flags which are equivalent to G and a potential 
change of a graph is realized by means of the operation of legal component merging. 
More specifically, if 2 < k < m then {a^} = C; is a component of Gk~l and if 
a parent component P for ak exists in Gk~l then it is uniquely determined and 
P = Cu C { a i , . . . , a/fc_i}. In particular, if the ordering a\,... am is fixed then the 
algorithm if fully deterministic, that is, G1,..., Gm is uniquely determined. 

Proof. The idea is to show by induction onfc = 2 , . . . , m + l that the following 
four statements are true: 

(a) Gfc_1 is a chain graph without flags which is equivalent to G, 
(b) if ai —> a,j in Gk~x then i < j , 
(c) VI > k neGk-i{ai) = ill, 
(d) if a parent component P for o^ in Gk~l exists then it is uniquely determined 
and P C {oi,. ..,ak-i}-

The condition (c) implies that {a&} is a component of Gk~1. Therefore, if a parent 
component P for ak in Gk~l exists then the assumptions for legal merging of Cu = P 
and C\ — {ak} in Gfc_1 from Definition 1 are fulfilled and Gk arises from Gk~l by 
this operation (compare Definitions 3 and 1 and recall what is mentioned in Remark 
2). The above observation implies the claims in Lemma 5. 

Since G1 = G the conditions (a)-(c) for k = 2 follow easily from the assumptions. 
As concerns (d), for any fixed 2 < k < m, the uniqueness of P follows from (a) by 
Proposition 2 while the fact P C {o i , . . . , ak-i} is implied by (b) and (c). 
Indeed, the condition (i) from Definition 3 implies that there exists aj £ P such that 
a; -> ak in Gk~l. Suppose a; G P. If aj = a; then / < k by (b). If aj •£ a, then the fact 
that P is a connectivity component of G implies that there exists an undirected path 
in G between a; and aj. In particular, neGk-i(a[) ^ 0 which implies I < k by (c). 

If the conditions (a)-(d) hold for some 2 < k < m then the induction step, 
that is, the proof that (a)-(d) hold for k + 1, can be done as follows. The condition 
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(a), that is, the claim that Gk is a chain graph without flags which is equivalent 
to G, follows from the induction hypothesis and Theorem 1. As concerns (b), the 
assumption a* -> a,j in Gk implies aj -> a,j in Gfe_1 by the definition Gk and this 
fact implies i < j by the induction hypothesis. The condition (c), that is, VZ > k 
neGk(ai) = 0 is implied by the induction hypothesis as follows. 

By the construction of G the only difference between Gk and Gk~1 can occur for edges 
between P and a*.. As P C {ai, . . . , aj._i} by (d) for k one has neGk(ai) = neGk-i(ai) for 
I > k. Thus, neGk(a{) = 0 follows from (c) for fc. 

The observation that if k < m then the condition (d) for k + 1 is implied by the 
conditions (b) and (c) for k + 1 has already been made above. The condition (d) 
for m + 1 is an empty claim. • 

Theorem 3. Let G be a Bayesian network over N and a\,..., am, m > 1 a total 
ordering of its nodes which is consistent with the direction of arrows in G. The 
graph Gm obtained by the guided algorithm is the essential graph of the equivalence 
class ofG. 

Proof. Let H denote the essential graph of the equivalence class of G. The first 
observation is as follows. 

I. For every 1 < k < m, .ff{ai)...,<„,} is an essential graph over {a i , . . . ,o/t}. 

First, observe that {a\,... ,a,k} is closed under parents in H: ai -> a,j in H, j < 
k implies ai —> aj in G by the definition of essential graph. Since a\,..., am is 
consistent with the direction of arrows in G one has i < j < k. By Corollary 1, 
H{ai,...,ak} is the essential graph of an equivalence class of ADGs over {a\,..., a^}. 

The basic idea of the proof of Theorem 3 is to verify the following two facts by 
induction on k = 1 , . . . , m: 

[A] the edges in Gk between nodes of {o i , . . . ,Ofc} share type and direction (of 
potential arrows) with corresponding edges in H, that is, Gk, ,ah\— H{ai,...,ak}! 

[B] the edges in Gk which hit {o^+i,.. . , o m } , that is, those edges which are 
not edges between nodes of {a\,..., o^}, share type and direction (of potential 
arrows) with corresponding edges in G. 

As G1 = G the conditions [A] and [B] are evident for k = 1. To verify the 
induction step suppose k > 2 and observe the following series of facts II - VII. 

I I . All edges in Gk_1 between { a i , . . . , a ^ - i } and a^ are arrows towards a^. 
This follows from the induction hypothesis [B] for k — 1 and the assumption that 
G is a directed graph and the ordering a\,..., am is consistent with the direction 
of arrows in G. 

III. Every edge in H between {a i , . . . ,ak-i} and Ok is either a line or an arrow 
towards a^. 
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Suppose for contradiction that ai 4- a& in H for some I < k. Then aj 4- a^ in G 
by the definition of an essential graph, which contradicts the assumption that the 
ordering a\,..., am is consistent with the direction of arrows in G. 

IV. If ai — afc in H for some I < k then the component P in Gk~x containing ai 
is a parent component for a^ • 

It suffices to verify the conditions (i) and (ii) from Definition 3. Note that, by 
Corollary 2, Lemma 5 and Lemma 2, the graphs G, H and Gk~l have the same 
underlying graph. 

For (i) observe, by Step II, that a/ -» ak in Gk~l which implies that the set 
L = paGk-i(ak) n P contains ai and is, therefore, non-empty. The next step is to 
verify by contradiction that L is complete in Gk~x. 

Assume that distict x, y € L C P exist such that [x, y] is not a line in G . Because G 
is a chain graph, there is no arrow between nodes of its component P for which [x, y] is not 
an edge in Gk~l. Thus, x,y e P exist such that x -¥ a\. <— y is an immorality in Gk~l. As 
G and H are equivalent (by Lemma 5) it is an immorality in H by Lemma 2. Because 
al — ak m Hi the fact that H has no flags and semi-directed cycles allows one to derive 
that x —> a; <— y is an immorality in H. Hence, it is an immorality in G which implies 
a contradictory conclusion that a\ and {x,y} do not belong to the same component P of 
Gk~1. Therefore, L is complete in Gk~l. 

The first step to verify (ii) is to show that paGk-i (P) C paGk-i (ak) \ P- Suppose 
o-i € paGk-i(P). Because Gfc_1 is a chain graph without flags (Lemma 5) by Propo
sition 1 ai -¥ ai in G*_1. Observe that i < k: otherwise i > k implies ai -> aj in 
G by the induction hypothesis [B] for k - 1, which gives a contradictory conclusion 
i <l < k. Thus, ai, ai € {a\,... a^_i} and by the induction hypothesis [A] for k — 1 
observe aj —> a; in H. As H has no flags and semi-directed cycles aj -> a/ — ak 
in H implies aj —> a^ in iJ and a« -> a^ in G by the definition of an essential 
graph. Hence, by the induction hypothesis [B] for k — 1 get at -> a^ in Gk~l. Thus, 
ai e paGk-i (ak); the facts ai e P and aj -> a; in GA_1 imply a; ^ P . 

The second step is to verify (ii) is to showpaGk-i(au)\P C paGk-i(P). Suppose 
aj € paGk-i (ak) \ P . By the induction hypothesis [B] for k — 1 derive aj -> a^ in G 
(and a; —>• a^ in G). Observe that [aj,aj] is an edge in G: otherwise ai —> a^ <- aj 
is an immorality in G, and, therefore, in H (by Corollary 2 and Lemma 2), which 
contradicts the assumption ai — ak in H. Thus, [ai,aj] must be an edge both in 
G and H. The fact â - —> a^ in G also implies j < k and by Step III observe that 
either aj — ak in H or aj —> a^ in if. We show that the alternative aj — ak leads 
to contradiction. 

Assume that aj — a^ in H. Then the facts ak — a/ in H and [oj,0(] is an edge in H 
imply that aj — a; in H because of the absence of semi-directed cycles in H. Hence, the 
induction hypothesis [A] for k — 1 gives aj — a; in G which implies a contradictory 
conclusion aj 6 P. 

Thus, aj —> ak — ai in H, which implies aj —> a; in H as H is a chain graph 
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without flags. The induction hypothesis [A] for k - 1 yields a,j -> a; in Gk *, that 
is, aj € paGk-i(P). 

V. If there exists a parent component P for ak in Gk~1 then there exists I < k 
such that ai — o^ in H. 

First observe that G' — Gk,~x
 a , is a chain graph without flags to which the 

operation of legal component merging is applicable. 

By the induction hypothesis [B] for k — 1 and the assumption that a\,..., am is consistent 
with the direction of arrows in G observe that every edge in G between {a\,..., a^} 
and {a^+i,..., am} is an arrow towards the node in {ak+i,..., am}. Thus, P&QI (A) = 
paGk-i(A) for any set A C {ai, . . . , a^}. This fact together with Lemma 5 allows one 
to show that both C; = {a^} and Cu = P Q {ai, • • •, o-k-i) a r e components of G' and, 
moreover, the conditions (i) and (ii) from Definition 1 are fulfilled for G'. 

The claim of Step V can be verified by contradiction. If no / < k with a/ — a*, 
in H exists then by Step III observe that every edge in H between {oi , . . . , a^- i} 
and ak is an arrow towards ak- This together with Step II and the induction hy
pothesis [A] for k — 1 implies Gk,~l

 a , = i?{ai,...,afc} which is an essential graph 
over {o i , . . . , ak} by Step I. This implies by Theorem 2 that the operation of legal 
component merging is not applicable to G' = G^1

 a -, = ff{a, „t} and this 
contradicts the original observation that this operation is applicable to G'. 

VI. If there exists a parent component P for ak in Gk~1 then for each i < k such 
that ai —> ak in Gk~l one has fa — a^ in H] iff ai £ P. 

The necessity of the condition follows from Step IV which says that the component 
of Gk~l containing a; is a parent component for ak, that is, P (it is uniquely 
determined by Lemma 5). 

For sufficiency of the condition use the claim in Step V which implies the ex
istence of / < k such that a; — ak in H. By Step IV (and Lemma 5) at E P-
Therefore, an undirected path in Gfc_1 connecting at and a* exists. The nodes of 
the path are in P and, therefore, in {ai,... ,a&-i} (by Lemma 5). The induction 
hypothesis [A] for k — 1 says that the path is in H as well. As a; — a^ in H, [ai, a*] 
is an edge in H and H has no semi-directed cycles one has ai — a^ in H. 

VII. Induction step: the conditions [A] and [B] are valid for k. 

It follows from Lemma 5 that Gk may only differ from Gk~x in edges between 
{o i , . . . , Ofc_i} and a^. The induction hypothesis [A] for k — 1, therefore, implies 
Gk

Sn „ i = Gk<~x i = Hi„, a. , i . To verify [AI for k it suffices to show 
t<*i, . . . ,aj ,_i) {ai aj._i} toi,...,oi,_ij- J i j 

that the edges between {a i , . . . ,o*_i} and ak have the same type and direction 
(of potential arrows) in Gk and H. By Steps IV and V conclude that a parent 
component for a^ in Gk~x exists iff there exists a line in H between { a i , . . . , ak-\) 
and ak- Therefore, if the parent component does not exist the claim follows from 
Steps II and III. If a parent component P for ak in Gfc_1 exists then by Step VI 
observe paQk-i(ak) HP = {oj; I < k, ai — ak in H}. The graph Gk is made from 
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Gk x by replacing the arrows from this set to a^ by lines which implies, with the 
help of Steps II and III, what is desired. 

The induction hypothesis [B] for k — 1 and the construction of Gk from Gfc_1 

also easily implies [B] for k, which concludes the proof of the induction step. • 

Remark 4. Note that the question of verification of the existence of a parent 
component for a node a in a chain graph H without flags is a local question in 
the sense it only concerns the nodes in paH(a) (and their parents). Indeed, the 
reader can easily show that, provided paH(a) ^ 0, the conditions (i) and (ii) from 
Definition 3 are valid for a component P of H iff the set 

K = {x € paH(a); no y £ paH(a) with x -» y in H exists } 

is complete and has just the remaining nodes of paH(a) as parents, that is, 

(J) Vx, y G K if x ^ y then x — y in H, 
(jj) VxeK paH{x) = paH(o) \ K. 

Moreover, the set K is nothing but paH(d) fl P then. Note that as H has no flags, 
if (j) is verified, then by Proposition 1 it only suffices to verify (jj) for one element 
x € K. The advantage of the guided algorithm is that it guarantees that, at each 
iteration, we obtain a chain graph without flags. 

The guided algorithm is different from other algorithms in the literature that 
have the same purpose as the following overview indicates. 

The first option is to utilize Meek's algorithm for the construction of the essential 
graph on the basis of its "pattern", which is described in § 2.1.2 of 10. Recall that 
the pattern of an equivalence class Q of ADGs is a hybrid graph which has the same 
underlying graph as any G € Q and which has only those arrows which belong to 
immoralities (these are again shared by G € Q - see Section 2.2). Thus, the pattern 
can be obtained on the basis of any G G Q. Meek's algoritm 10 consists in repeated 
application of certain 'orientation rules'. The application of a rule of this type means 
that one line in the considered hybrid graph is 'directed', that is, replaced by an 
arrow. Thus, at each step of the algorithm, only one edge is modified for which 
reason the iterations of the algorithm are general hybrid graphs. 

The second option is to use the algorithm proposed by Chickering in §4.1 of 5 . 
Like the guided algorithm, Chickering's algorithm starts with a total ordering of 
nodes which is consistent with the direction of arrows in a given G EQ. The aim of 
the algorithm is to indicate "compelled edges'", that is, the arrows in the respective 
essential graph. This is done by repeated application of certain rules following a 
schedule dictated by the prescribed total ordering of nodes. An arrow is indicated 
either on the basis of an observation that it belongs to an immorality or on the 
basis of previously indicated compelled arrows. In my view, Chickering's rules are 
analogous to the orientation rules used by Meek, and I think that Chickering's algo
rithm can be interpreted as a 'guided' version of Meek's algorithm. If we interpret 
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his algorithm in this way, then it is also an algorithm whose iterations are general 
hybrid graphs. Moreover, the algorithm has a feature that only edge is modified at 
each step. 

The third option is the "construction algorithm" proposed by Andersson, Madi-
gan and Perlman in § 5 of1 . Like the algorithm presented here, their algorithm goes 
in the other way: arrows are replaced by lines (unlike the former two algorithms). 
The main idea is to indicate all the arrows which are not strongly protected in a 
given G £ Q. Another difference (shared with the algorithm presented in this paper) 
is that a whole bunch of arrows in changed into a bunch of lines in one step. How
ever, unlike the algorithm presented in this paper, their algorithm has iterations 
which need not be chain graphs - they are general hybrid graphs (see Remark 5.1 
of 1 ) . 

On the other hand, the stepwise procedure for the construction of the essential 
graph presented in § 5 of12 is basically equivalent to the blind algorithm presented 
here. 

7. Conclusions 

The presented results hopefully clarify the role of the essential graph in the class 
of chain graphs which are equivalent to a fixed Bayesian network and explain its 
relationship to the respective largest chain graph (LCG). Note again that the results 
presented in Theorems 1 and 2 here have also been (independently) achieved in 12, 
in which paper, moreover, an analogous characterization of LCGs is given. On the 
other hand, this paper brings a new effective algorithm for the construction of the 
essential graph on basis of any Bayesian network in Theorem 3. 

However, in order to judge the contribution of these results to local search 
methods for learning Bayesian networks thoroughly, other theoretical questions need 
to be answered. For example, quite an important task is the task to characterize 
natural neighbors of an equivalence class of Bayesian networks, that is, neighboring 
equivalence classes in the sense of the "inclusion boundary" mentioned in 8. Note 
that Chickering 6 recently gave an algorithm which, on the basis of the respective 
essential graph, tentatively generates neighbors of an equivalence class of Bayesian 
networks and is able to generate all neighbors; similar (but only partial) results 
were presented in 4. A direct characterization of the neighborhood in terms of the 
essential graph will be presented in 15>16. 

In my view, a direct characterization of the (whole) neighborhood in terms of 
a suitable representative of the equivalence class is desirable for making learning 
methods based on local search even more effective. The suitable representative may 
appear to be the essential graph or perhaps the integral (= integer-valued) vector 
from 14 named a standard imset. The main advantage of that algebraic approach 
14 is that reasonable classic score criteria are linear functions of standard imsets. 
A relationship between essential graph representation and standard imset represen
tation has already been established but an elegant characterization of neighbors in 
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terms of s tandard imsets remains to be an open task. 

R e m a r k 5. A reviewer of this paper made several proposals for changes in the paper 
and I accepted most of them. I think that the reader may also be interested in the reasons 
for which I did not accept some of them. 

The reviewer suggested I should not to distinguish between ordered and unordered pairs 
of nodes in the definition of a hybrid graph in Section 2.1 and start with a convention in 
Chapter 2 of Lauritzen's book . According that proposal a hybrid graph H over JV can 
be introduced by giving a collection £ of ordered pairs (o, b) of distinct elements of N and 
by introducing a convention is that one has a —¥ b in H iff (a, 6) € £ and (6, a) £ £ while 
one has o — 6 iff (a, 6), (6, a) € £. This convention originates from Frydenberg's paper 7 

where it helped to define briefly the relation "being larger" for chain graphs. I have several 
reasons for insisting on my definition of a hybrid graph. 

• In my view, the idea that a collection £ of ordered pairs generates both arrows and lines 
is superfluous and does not have a reasonable intuitive basis. What is actually used in 
the paper (and in other papers on chain graphs) is the set of edges, divided into arrows 
and lines. Following Occam's razor principle I wish to avoid superfluous notions. 

• If one takes the above-mentioned convention from into consideration then the over
all length of my definition is esssentially the same as the definition suggested by the 
reviewer. The only argument in favour of the latter one is a tradition started by . 

• The definition of an undirected edge using Lauritzen's convention tempts to interpret it 
either as a pair of directed edges with opposite directions or as a bi-directed edge. This 
interpretation is, however, in clash with the respective moralization criterion from 

• The area of graphical models is developing quite fast. Researchers in this area have 
recently introduced new classes of graphs which admit several types of edges (for an 
overview see Chapter 3 of ). The 'traditional' way to define a hybrid graph cannot be 
exteded to cope with these advanced graphs which may either involve both undirected 
and bi-directed edges or, even, arrows and lines of various different types (solid and 
dashed ones). 

I am trying to follow recent developments in the area of graphical models and I believe 
that my definition of a hybrid graph is more suitable than the 'traditional' because it can 
be extended easily. To summarize my reasons, although my definition may seem to be 
awkward to a reader who is accustomed to Lauritzen's book, it is actually a well-thought 
intention! 

Another suggestion made by the reviewer is to define the concept of "chain component" 
as Lauritzen did on p. 7 of his book 9 . However, Lauritzen also introduced the concept of 
chain component as a special case of "connectivity component" for a hybrid graph. The 
point is that he used another definition of that concept: two nodes a and 6 are connected 
in his sense if there exists both a descending path from a to 6 and a descending path from 
b to a. This is a different concept from that one I need in my paper (although they coincide 
for chain graphs). I do need the concept of an "undirected" connectivity component of a 
general hybrid graph introduced in Section 2.1 because I use it as an auxiliary notion within 
the proof of Theorem 1. Thus, my insisting on my definition of connectivity component 
also has a deeper reason. 

Finally, the standard concept of an ancestral set, which was proposed by the reviewer 

to replace the condition in Corollary 1 is actually strictly stronger than the requirement 

that a set is closed under parents. What I really use in the paper is a stronger claim made 

in Corollary 1. 
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