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Abstract. It is shown that for every undirected graph G over a finite set NV
and for every nonempty 7' C N there exists an undirected graph G over
T, called the marginal graph of G for T, such that the class of marginal
distributions for T' of (discrete) G-Markovian distributions coincides with
the class of GT-Markovian distributions. An example shows that this is
not true within the framework of strictly positive probability distributions.
However, an analogous positive result holds for hypergraphs and classes of
strictly positive factorizable distributions.

1. Introduction

Frydenberg [2] characterized in graphical terms the situation when an undi-
rected graph G over a set of nodes N is collapsible onto a set T' C N, that is
when the class of marginals (for T') of Markovian distributions (with respect
to G) coincides with the class of Markovian distributions with respect to
the induced subgraph Gp. An analogous problem was treated in [1] where
collapsibility of loglinear models onto a set of variables was characterized.

In this paper a more general point of view on these results is presented.
It is shown that both undirected graphs within the framework of all dis-
crete probability distributions without fixed domain, and hypergraphs (that
is loglinear models) within the framework of strictly positive discrete prob-
ability distributions (without fixed domain) possess precollapsibility prop-
erty. This means that for any undirected graph G (resp. hypergraph C) over
N and any nonempty subset T' C N there exists a so-called marginal graph
GT (resp. marginal hypergraph CT) such that the class of marginals for T
of all discrete Markovian distributions with respect to G (resp. of strictly
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positive discrete distributions factorizable with respect to C) is exactly the
class of discrete Markovian distributions with respect to the marginal graph
(resp. the class of strictly positive distributions factorizable with respect
to the marginal hypergraph). Thus, the operation of marginalization on
classes of ’structured’ distributions can be performed by simple change of
the object, describing the structure. Evidently, the collapsibility occurs iff
the marginal graph GT' coincides with the induced graph G (similarly for
hypergraphs).

On the other hand, an example shows that precollapsibility property
does not hold for undirected graphs within the framework of strictly positive
probability distributions. In the final discussion further possible mathemat-
ical objects (describing structure of distributions) for which the concept of
precollapsibilty can be considered, are mentioned: directed acyclic graphs
and structural imsets.

2. Basic concepts

2.1. DISCRETE DISTRIBUTIONS

Throughout the paper N will denote a nonempty finite set of factors. For
its subsets A, B C N the juxtaposition AB will be used to shorten A U B.
A potential over a set B C N is specified by two entities: by a collection
of nonempty finite sets {X;; ¢ € B} and by a nonnegative real function
R on the cartesian product [[;c5 X;. If we wish to make the domain of R
explicit, then we say that R is (a potential) on [[;c5 X;. If R(x) > 0 for all
x € [[;cp X; then R is called strictly positive.

The marginal of a potential R over B for a set ) # A C B is a potential
R4 over A defined as follows: if R is on [I;cn X, then R4 is defined on
[l;c4 Xi, given by the formula R4(a) = Y {R(a,d); d € [LienaXits
where a € [[;c4 Xi.

A discrete probability distribution over N is a potential P over N such
that > {P(x); x € [[;cn X;} =1 (supposing P is on [[;c X;). The class
of discrete probability distributions over N will be denoted by P(N), the
class of strictly positive discrete probability distributions over N by P, (N).
Note that they involve distributions on all possible domains [[;c v X;.

Let us extend the notation of marginalization to classes of distributions.
Having £ C P(N) and § # T C N we denote LT = {PT; P € L}. Clearly,
the operation of marginalization treated for classes of distributions respects
inclusion, that is X ¢ £ € P(N), 0 # T C N implies KT c LT, and is
idempotent, that is £7 = (£%)T whenever L C P(N),0 #T Cc S C N.

Let T (N) denote the collection of triplets (A, B|C) of disjoint subsets of
N whose first two components A and B are nonempty. Having P € P(N),
defined on [];cx X, and (A, B|C) € T(N) we say that A is conditionally
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independent of B given C with respect to P and write A 1L B|C (P) if
Vac HiEAXi b e HiGBXi (S HieCXi

PABC@ b, c)- PYc) = P1%a,c) - PP (b,c).

Evidently the statement depends on the marginal PAB¢ only, and therefore
for every ABC C T C N one has A 1. B|C (PT) iff A 1L B|C (P).

2.2. UNDIRECTED GRAPHS

An undirected graph over a set N is specified by a set of two-element subsets
of N called lines. The symbol u — v denotes that {u,v} is a line. The class
of undirected graphs over N will be denoted by U(N).

A path in G € U(N) is a sequence uq,..., Uy, n > 1 of elements of N
such that u; — u;11 fori =1,...,n—1. Having G € U(N) and (A, B|C) €
T(N) we say that C separates A from B in G and write A 1L B|C (G) if
every path in G from a node in A to a node in B contains a node in C.

We say that P € P(N) is Markovian with respect to G € U(N) (or
shortly G-Markovian) if A 1L B|C (G) implies A 1L B|C (P) for every
(A,B|C) € T(N). The class of (discrete) Markovian distributions with
respect to G will be denoted by M(G), the symbol M, (G) denotes the
class of strictly positive G-Markovian distributions, that is P (N)NM(G).

The induced subgraph of G € U(N) for a nonempty set T' C N is the
graph Gr over T such that u — v in G iff u — v in G for every u,v € T.

2.3. HYPERGRAPHS

By a hypergraph over N is understood a system of incomparable subsets C
of N, that is for every couple of different sets A, B € C neither A C B nor
B C A, such that the union of sets in C is N. The class of hypergraphs over
N will be denoted by H(N).

Having C € H(N) we say that a potential R on [[;cn X; is factorizable
with respect to C (or shortly C-factorizable) if there exists a collection of real
functions fr, on HiEL X;, L € C such that R([Xi]iEN) = HLGC fL([Xi]iEL)-
Note that equivalently functions fr, can be demanded to be strictly positive
real functions on [];c;, X;. The symbol F. (C) denotes the class of all strictly
positive discrete probability distributions over N which are factorizable
with respect to C € H(N).

The induced hypergraph of C € H(N) for ) # T C N consists of maxi-
mal sets (with respect to inclusion) of the system { LNT; L € C}.



4 M. STUDENY

3. Precollapsibility for undirected graphs

In this section the precollapsibility property for undirected graphs within
the framework of P(N) is verified.

Having G € U(N) and ) # T C N we introduce the marginal graph of
G for T, denoted by GT, as a graph over T such that
u—vin GT & =[{u} 1L {v}|T\ {u,v}(G)].
Thus, u and v form a line in GT iff they are connected by a path in G outside
T \ {u,v}. Especially, G is a subgraph of GT. Moreover, the operation of
marginalization for undirected graphs is also idempotent, that is GT =
(G%)T whenever ) #T C S C N.

LEMMA 3.1 A 1L B|C(G) iff A 1L B|C (GT) for any (A, B|C) € T(T).

Proof. Having a path in G from A to B outside C every its section between
nodes u,v € T whose all internal nodes are outside T can be replaced by
an edge v — v in G7. Conversely, having a path in G” from A to B outside
C every its line w; — wj;y1 can be replaced by a roundabout way from w;
to w;t1 in G which is outside T'\ {w;, w;;+1} and therefore outside C. [

LEMMA 3.2 Supposing G € U(N), 0 #T = N \ {w} and Q € M(G") let
us denote Z = {v € T; v — w in G}. Then there exists P € P(N) such
that
- PT = Q7
— {w} L (T\ 2) | Z (P), i i i
— whenever (A, B|C) € T(T) with (A\ Z) 1 (B\ Z)|CZ (GT), then
A U B|CU{w} (P).

Proof. Supposing the distribution @) is defined on a cartesian product
[Lier X let us put Xy, = [[;c X; and define

P([xi]ieN) = Q([xi]ieT) in case Xw = [Xi]igz, P([Xi]iEN) = 0 otherwise.
We leave it to the reader to verify that P satisfies the desired conditions.[]

THEOREM 3.1 If G € U(N), 0 #T C N, then M(GT) = M(G)".

Remark In our set-up the inclusion M(G”) € M(G)" means that there ex-
ists a G-Markovian distribution having prescribed G”-Markovian marginal
for T but it is not claimed that it has also prescribed domain [[;c X;! In
fact, the sets X; for s € N \ T are a part of the constuction, they depend
both on G and [];c7 X;. An analogous remark holds for Theorem 4.1.

Proof. To see M(G@)T c M(GT) let us consider P € M(@). Then for every
(A, B|C) € T(T) the statement A 1l B|C (GT) implies A 1. B|C (G) by
Lemma 3.1 and hence A 1L B|C (P), that is A 1. B|C (PT). Thus, the
fact PT € M(GT) was verified.
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To prove M(GT) ¢ M(G)T let us consider Q € M(GT) and try to find
P € M(G) with PT = Q. However, owing to the fact that the operation of
marginalization is idempotent (both for graphs and classes of distributions)
and respects inclusion, it suffices to prove this statement only for the case
T = N \ {w} where w € N. Let us use the construction from Lemma 3.2.
One needs to verify that P € M(G).

Thus, suppose (A,B|C) € T(N) such that A 1L B|C(G). In case
ABC C T one derives by Lemma 3.1 and from the fact P7 = Q € M(GT)
that A 1L B|C (Q), that is A 1L B|C (P).

Ifw € C,then A 1l B|C (G) implies that (4\Z) 1L (B\Z) | CZ\{w} (GT).
Indeed, otherwise the considered path in G from A\ Z to B\ Z outside
CZ\{w} belongs to T'\ Z and will remain in G. Thus, by the third property
of P from Lemma 3.2 (C'= C'\ {w}) one has A 1. B|C (P).

Ifw € A (the case w € B is dual), then BNZ = () (otherwise a line w — v for
v € BNZ is apathin G from A to B outside C') and AD\{w} 1. B|C (GT)
for D = Z \ AC. Indeed, otherwise consider a path in G from u € B to
AD \ {w} outside C' and take its possible first node v in Z. Its part from
u to v can be lenghthened by the line v — w into a path in G from B to
w € A outside C. If the considered path from u € B to AD \ {w} is outside
7, then it leads to A what also contradicts the assumption A Il B|C (G).
The fact Q € M(GT) implies B 1L AD \ {w}|C (Q) and therefore B 1L
AD\ {w} | C (P). Moreover, we know from the second condition of Lemma
3.2 that {w} 1L (T'\ Z)| Z (P). Now, well-known semigraphoid properties
of conditional independence [5] can be used to derive {w} 1L B|ACD \
{w} (P), that is B 1L {w} | ACD\{w} (P) what with B 1L AD\{w}|C (P)
gives B Il AD|C (P) and hence A 1l B|C (P). 0

4. Precollapsiblity for hypergraphs

In this section the precollapsibility property for hypergraphs within the
framework P, (N) is treated. Note for explanation that the loglinear model
with a generating class (hypergraph) C can be equivalently introduced as
the class of C-factorizable strictly positive distributions.

Having C € H(N) and nonempty 7' C N, the marginal hypergraph
is constructed as follows. We say that S, R € C are connected outside T
if there exists a sequence S = Ly,...,L, = R, n > 1 in C such that
LinLigy \T # 0 for i =1,...,n — 1. The relation ’be connected outside
T’ decomposes C into equivalence classes, let us consider the collection D
of sets which are unions of the equivalence classes. Of course, D covers C
in sense that VL€ C K €D LCK.

Then the marginal hypergraph of C for T, denoted by CT, consists of
maximal sets (with respect to inclusion) of the class {DNT'; D € D}. The
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reader can verify that the operation of marginalization on hypergraphs is
also idempotent.

LEMMA 4.1 Suppose 0 # T = N \ {w}, C = {{w,t};t € T} and R is
a strictly positive potential over T. Then there exists a strictly positive
C-factorizable potential P over N such that PT = R.

Proof. Without loss of generality one can supose that R is a probability
distribution defined on [[;. X;. Then we put X,, = [[;c7 X;. The con-
structed probability distribution has the form

P([xilier, z) = o(2) [licr Siz(xi) for z = [z;]jer € Xo, [Xilier € [lier X,
where a(z) > 0 are searched parameters summing to 1 and S; , are probabil-
ity distributions (determined by parameter ¢ > 0) on X; defined S; ,(x;) =
9 =1 — (cardX; — 1) - € in case x; = z; and S, 5(x;) = ¢ otherwise.

One can show that for sufficiently small choice of € one can find parame-
ters a(z) such that PT = R. To comply with the requirement that P should
be strictly positive the set X,, can be reduced to the set { z;a(z) > 0}. Ev-
idently, P is C-factorizable. To prove the existence of parameters «(z) one
can use the Banach fixed-point theorem. The idea is to consider a certain
mapping T on the metric space [,cx [0, [T;cr 0; ' - R(z)] which is contrac-
tive for sufficiently small e. The solution « of the equation T'(«r) = « then
forms the desired collection of parameters. For limited scope of a conference
contribution I omit technically complicated details. [

THEOREM 4.1 IfC € H(N), 0 £ T C N, then F(CT) = F,(C)T.

Proof. The inclusion F (C)T C F,(CT) is easy as the system D (see the
definition of marginal hypergraph) covers C and therefore every P € F,(C)
factorizes with respect to D. Because of DNE\T = () for different D, E € D
the marginal PT factorizes with respect to CT and therefore PT € F, (CT).

To prove F(CT) C FL(C)T let us take Q € F,(CT) and try to find
P € F,(C) with PT = . By the same reasons as explained in the proof of
Theorem 3.1 one can suppose without loss of generality that 7= N \ {w}
where w € N. In this special situation, the union of the class C,, of sets
in C containing w forms one set in D, the remaining elements of C \ C,,
also belong to D. Let us denote by Z the union of sets in C,, with removed
w. In case Z € CT (otherwise trivial) one considers a factorization of Q
with respect to C” and the only problem is to show that the potential
corresponding to Z (in this factorization) is marginal of a potential over
Z U{w} which is Cy-factorizable. However, it follows from Lemma 4.1 (for
T = 7) since the hypergraph { {w,z}; z € Z } is covered by C,. O
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5. Counterexample

On the other hand, the precollapsibility property for undirected graphs does
not hold within the framework of P, (N) as the following example shows.

Example 5.1 Take N = {1,2,3,4}, the graph G € U(N) consisting of
the cycle 1 — 2 — 3 — 4 — 1 and T = {1,2,3}. No other graph over
T except the complete graph K over T can be considered as a candi-
date for a ’'marginal graph’ within the framework P, (N). The reason is
that one can find P € M (G) such that =[A 1L B|C(P)] for every
(A,B|C) € T(T) and therefore PT ¢ M (H) for any other H € U(T)
except K. Consider the distribution @ over T' defined on [];c7 {0, 1} where
Q(0,0,0) = 1/12, Q(0,1,0) = 1/6 and Q(x1,x92,x3) = 1/8 for remain-
ing points [x;];er of [I;c7 {0, 1}. Since Q(0,22,0) - Q(1,22,1)/Q(0,z2,1) -
Q(1,22,0) does depend on x9, the distribution @ cannot be factorized
with respect to the hypergraph C = {{1,2},{1,3},{2,3} }. However, ev-
ery P € M (QG) is factorizable with respect to the system of its cliques
S ={{1,2},{2,3},{3,4},{1,4} } by well-known Hammersley-Clifford the-
orem (see [6] or [3]) and therefore its marginal PT is factorizable with re-
spect to its marginal hypergraph ST = C by Theorem 4.1. So, Q & M, (G)T
although Q € P (T) = M, (K).

6. Discussion

Note that the concept of marginal hypergraph is equivalent to the concept of
derivative of a generating class of a loglinear model treated in [4]. To clarify
the connection with that result, let us recall that Malvestuto [4] showed that
the inclusion F,(C)T ¢ F,(B) holds just for those hypergraphs B over T
which cover CT and no other hypergraphs over 7. Here, a more special fact
Fo(CTY\ FL(C)T =0 is showed.

The precollapsibility condition can be also considered for other mathe-
matical objects describing structures of discrete probability distributions.
For example, directed acyclic graphs define the class of recursively factoriz-
able distributions [3] or structural imsets [7] allow to describe all structures
of probabilistic conditional independence for discrete distributions. I conjec-
ture that the precollapsibility property does not hold for directed acyclic
graphs since there is no ’reasonable candidate’ for the marginal directed
acyclic graph. On the other hand, I have some reasons to hope that the
precollapsibility property holds for structural imsets. Well, I believe that
the precollapsibility property is a very natural demand which should be one
of the important criteria for choice of methods of structural description.
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