
ON MARGINALIZATION, COLLAPSIBILITYAND PRECOLLAPSIBILITY
M. STUDEN�YInstitute of Information Theory and AutomationAcademy of Sciences of Czech RepublicPod vod�arenskou v�e�z�� 4, 18208 Prague, Czech RepublicAbstract. It is shown that for every undirected graph G over a �nite set Nand for every nonempty T � N there exists an undirected graph GT overT , called the marginal graph of G for T , such that the class of marginaldistributions for T of (discrete) G-Markovian distributions coincides withthe class of GT -Markovian distributions. An example shows that this isnot true within the framework of strictly positive probability distributions.However, an analogous positive result holds for hypergraphs and classes ofstrictly positive factorizable distributions.1. IntroductionFrydenberg [2] characterized in graphical terms the situation when an undi-rected graph G over a set of nodes N is collapsible onto a set T � N , that iswhen the class of marginals (for T ) of Markovian distributions (with respectto G) coincides with the class of Markovian distributions with respect tothe induced subgraph GT . An analogous problem was treated in [1] wherecollapsibility of loglinear models onto a set of variables was characterized.In this paper a more general point of view on these results is presented.It is shown that both undirected graphs within the framework of all dis-crete probability distributions without �xed domain, and hypergraphs (thatis loglinear models) within the framework of strictly positive discrete prob-ability distributions (without �xed domain) possess precollapsibility prop-erty. This means that for any undirected graph G (resp. hypergraph C) overN and any nonempty subset T � N there exists a so-called marginal graphGT (resp. marginal hypergraph CT ) such that the class of marginals for Tof all discrete Markovian distributions with respect to G (resp. of strictly



2 M. STUDEN�Ypositive discrete distributions factorizable with respect to C) is exactly theclass of discrete Markovian distributions with respect to the marginal graph(resp. the class of strictly positive distributions factorizable with respectto the marginal hypergraph). Thus, the operation of marginalization onclasses of 'structured' distributions can be performed by simple change ofthe object, describing the structure. Evidently, the collapsibility occurs i�the marginal graph GT coincides with the induced graph GT (similarly forhypergraphs).On the other hand, an example shows that precollapsibility propertydoes not hold for undirected graphs within the framework of strictly positiveprobability distributions. In the �nal discussion further possible mathemat-ical objects (describing structure of distributions) for which the concept ofprecollapsibilty can be considered, are mentioned: directed acyclic graphsand structural imsets.2. Basic concepts2.1. DISCRETE DISTRIBUTIONSThroughout the paper N will denote a nonempty �nite set of factors. Forits subsets A;B � N the juxtaposition AB will be used to shorten A [B.A potential over a set B � N is speci�ed by two entities: by a collectionof nonempty �nite sets fXi ; i 2 Bg and by a nonnegative real functionR on the cartesian product Qi2BXi. If we wish to make the domain of Rexplicit, then we say that R is (a potential) on Qi2BXi. If R(x) > 0 for allx 2 Qi2BXi then R is called strictly positive.The marginal of a potential R over B for a set ; 6= A � B is a potentialRA over A de�ned as follows: if R is on Qi2BXi, then RA is de�ned onQi2AXi, given by the formula RA(a) = PfR(a;d); d 2 Qi2BnAXig,where a 2 Qi2AXi.A discrete probability distribution over N is a potential P over N suchthat PfP (x); x 2 Qi2N Xig = 1 (supposing P is on Qi2N Xi). The classof discrete probability distributions over N will be denoted by P(N), theclass of strictly positive discrete probability distributions over N by P+(N).Note that they involve distributions on all possible domains Qi2N Xi.Let us extend the notation of marginalization to classes of distributions.Having L � P(N) and ; 6= T � N we denote LT = fP T ; P 2 Lg. Clearly,the operation of marginalization treated for classes of distributions respectsinclusion, that is K � L � P(N), ; 6= T � N implies KT � LT , and isidempotent, that is LT = (LS)T whenever L � P(N), ; 6= T � S � N .Let T (N) denote the collection of triplets hA;BjCi of disjoint subsets ofN whose �rst two components A and B are nonempty. Having P 2 P(N),de�ned on Qi2N Xi, and hA;BjCi 2 T (N) we say that A is conditionally



ON MARGINALIZATION, COLLAPSIBILITY 3independent of B given C with respect to P and write A ?? B jC (P ) if8 a 2 Qi2AXi b 2 Qi2BXi c 2 Qi2C XiPABC(a;b; c) � PC(c) = PAC(a; c) � PBC(b; c):Evidently the statement depends on the marginal PABC only, and thereforefor every ABC � T � N one has A ?? B jC (P T ) i� A ?? B jC (P ).2.2. UNDIRECTED GRAPHSAn undirected graph over a set N is speci�ed by a set of two-element subsetsof N called lines. The symbol u ! v denotes that fu; vg is a line. The classof undirected graphs over N will be denoted by U(N).A path in G 2 U(N) is a sequence u1; : : : ; un, n � 1 of elements of Nsuch that ui ! ui+1 for i = 1; : : : ; n� 1. Having G 2 U(N) and hA;BjCi 2T (N) we say that C separates A from B in G and write A ?? B jC (G) ifevery path in G from a node in A to a node in B contains a node in C.We say that P 2 P(N) is Markovian with respect to G 2 U(N) (orshortly G-Markovian) if A ?? B jC (G) implies A ?? B jC (P ) for everyhA;BjCi 2 T (N). The class of (discrete) Markovian distributions withrespect to G will be denoted by M(G), the symbol M+(G) denotes theclass of strictly positive G-Markovian distributions, that is P+(N)\M(G).The induced subgraph of G 2 U(N) for a nonempty set T � N is thegraph GT over T such that u ! v in GT i� u ! v in G for every u; v 2 T .2.3. HYPERGRAPHSBy a hypergraph over N is understood a system of incomparable subsets Cof N , that is for every couple of di�erent sets A;B 2 C neither A � B norB � A, such that the union of sets in C is N . The class of hypergraphs overN will be denoted by H(N).Having C 2 H(N) we say that a potential R on Qi2N Xi is factorizablewith respect to C (or shortly C-factorizable) if there exists a collection of realfunctions fL on Qi2LXi, L 2 C such that R([xi]i2N ) = QL2C fL([xi]i2L).Note that equivalently functions fL can be demanded to be strictly positivereal functions onQi2LXi. The symbol F+(C) denotes the class of all strictlypositive discrete probability distributions over N which are factorizablewith respect to C 2 H(N).The induced hypergraph of C 2 H(N) for ; 6= T � N consists of maxi-mal sets (with respect to inclusion) of the system fL \ T ; L 2 C g.



4 M. STUDEN�Y3. Precollapsibility for undirected graphsIn this section the precollapsibility property for undirected graphs withinthe framework of P(N) is veri�ed.Having G 2 U(N) and ; 6= T � N we introduce the marginal graph ofG for T , denoted by GT , as a graph over T such thatu ! v in GT , :[ fug ?? fvg jT n fu; vg (G) ].Thus, u and v form a line inGT i� they are connected by a path inG outsideT n fu; vg. Especially, GT is a subgraph of GT . Moreover, the operation ofmarginalization for undirected graphs is also idempotent, that is GT =(GS)T whenever ; 6= T � S � N .Lemma 3.1 A ?? B jC (G) i� A ?? B jC (GT ) for any hA;BjCi 2 T (T ).Proof. Having a path in G from A to B outside C every its section betweennodes u; v 2 T whose all internal nodes are outside T can be replaced byan edge u ! v in GT . Conversely, having a path in GT from A to B outsideC every its line wi ! wi+1 can be replaced by a roundabout way from wito wi+1 in G which is outside T n fwi; wi+1g and therefore outside C.Lemma 3.2 Supposing G 2 U(N), ; 6= T � N n fwg and Q 2 M(GT ) letus denote Z = fv 2 T ; v ! w in G g. Then there exists P 2 P(N) suchthat� P T = Q,� fwg ?? (T n Z) jZ (P ),� whenever h ~A; ~B j ~Ci 2 T (T ) with ( ~A n Z) ?? ( ~B n Z) j ~CZ (GT ), then~A ?? ~B j ~C [ fwg (P ).Proof. Supposing the distribution Q is de�ned on a cartesian productQi2T Xi let us put Xw = Qi2Z Xi and de�neP ([xi]i2N ) = Q([xi]i2T ) in case xw = [xi]i2Z , P ([xi]i2N ) = 0 otherwise.We leave it to the reader to verify that P satis�es the desired conditions.Theorem 3.1 If G 2 U(N), ; 6= T � N , then M(GT ) =M(G)T .Remark In our set-up the inclusionM(GT ) �M(G)T means that there ex-ists a G-Markovian distribution having prescribed GT -Markovian marginalfor T but it is not claimed that it has also prescribed domain Qi2N Xi! Infact, the sets Xi for i 2 N n T are a part of the constuction, they dependboth on G and Qi2T Xi. An analogous remark holds for Theorem 4.1.Proof. To seeM(G)T �M(GT ) let us consider P 2M(G). Then for everyhA;BjCi 2 T (T ) the statement A ?? B jC (GT ) implies A ?? B jC (G) byLemma 3.1 and hence A ?? B jC (P ), that is A ?? B jC (P T ). Thus, thefact P T 2M(GT ) was veri�ed.



ON MARGINALIZATION, COLLAPSIBILITY 5To prove M(GT ) �M(G)T let us consider Q 2M(GT ) and try to �ndP 2M(G) with P T = Q. However, owing to the fact that the operation ofmarginalization is idempotent (both for graphs and classes of distributions)and respects inclusion, it su�ces to prove this statement only for the caseT = N n fwg where w 2 N . Let us use the construction from Lemma 3.2.One needs to verify that P 2M(G).Thus, suppose hA;BjCi 2 T (N) such that A ?? B jC (G). In caseABC � T one derives by Lemma 3.1 and from the fact P T = Q 2M(GT )that A ?? B jC (Q), that is A ?? B jC (P ).If w 2 C, thenA ?? B jC (G) implies that (AnZ) ?? (BnZ) jCZnfwg (GT ).Indeed, otherwise the considered path in GT from A n Z to B n Z outsideCZnfwg belongs to T nZ and will remain in G. Thus, by the third propertyof P from Lemma 3.2 ( ~C = C n fwg) one has A ?? B jC (P ).If w 2 A (the case w 2 B is dual), thenB\Z = ; (otherwise a line w ! v forv 2 B\Z is a path inG from A to B outside C) and ADnfwg ?? B jC (GT )for D = Z n AC. Indeed, otherwise consider a path in GT from u 2 B toAD n fwg outside C and take its possible �rst node v in Z. Its part fromu to v can be lenghthened by the line v ! w into a path in G from B tow 2 A outside C. If the considered path from u 2 B to AD nfwg is outsideZ, then it leads to A what also contradicts the assumption A ?? B jC (G).The fact Q 2 M(GT ) implies B ?? AD n fwg jC (Q) and therefore B ??AD n fwg jC (P ). Moreover, we know from the second condition of Lemma3.2 that fwg ?? (T n Z) jZ (P ). Now, well-known semigraphoid propertiesof conditional independence [5] can be used to derive fwg ?? B jACD nfwg (P ), that is B ?? fwg jACDnfwg (P ) what withB ?? ADnfwg jC (P )gives B ?? AD jC (P ) and hence A ?? B jC (P ).4. Precollapsiblity for hypergraphsIn this section the precollapsibility property for hypergraphs within theframework P+(N) is treated. Note for explanation that the loglinear modelwith a generating class (hypergraph) C can be equivalently introduced asthe class of C-factorizable strictly positive distributions.Having C 2 H(N) and nonempty T � N , the marginal hypergraphis constructed as follows. We say that S;R 2 C are connected outside Tif there exists a sequence S = L1; : : : ; Ln = R, n � 1 in C such thatLi \ Li+1 n T 6= ; for i = 1; : : : ; n � 1. The relation 'be connected outsideT ' decomposes C into equivalence classes, let us consider the collection Dof sets which are unions of the equivalence classes. Of course, D covers Cin sense that 8L 2 C 9K 2 D L � K.Then the marginal hypergraph of C for T , denoted by CT , consists ofmaximal sets (with respect to inclusion) of the class fD \T ; D 2 Dg. The



6 M. STUDEN�Yreader can verify that the operation of marginalization on hypergraphs isalso idempotent.Lemma 4.1 Suppose ; 6= T � N n fwg, C = f fw; tg ; t 2 T g and R isa strictly positive potential over T . Then there exists a strictly positiveC-factorizable potential P over N such that P T = R.Proof. Without loss of generality one can supose that R is a probabilitydistribution de�ned on Qi2T Xi. Then we put Xw = Qi2T Xi. The con-structed probability distribution has the formP ([xi]i2T ; z) = �(z)�Qi2T Si;z(xi) for z = [zj ]j2T 2 Xw; [xi]i2T 2 Qi2T Xi,where �(z) � 0 are searched parameters summing to 1 and Si;z are probabil-ity distributions (determined by parameter " > 0) on Xi de�ned Si;z(xi) =�i = 1� (cardXi � 1) � " in case xi = zi and Si;z(xi) = " otherwise.One can show that for su�ciently small choice of " one can �nd parame-ters �(z) such that P T = R. To comply with the requirement that P shouldbe strictly positive the set Xw can be reduced to the set f z ;�(z) > 0 g. Ev-idently, P is C-factorizable. To prove the existence of parameters �(z) onecan use the Banach �xed-point theorem. The idea is to consider a certainmapping T on the metric space Qz2Xw [0;Qi2T ��1i �R(z)] which is contrac-tive for su�ciently small ". The solution � of the equation T (�) = � thenforms the desired collection of parameters. For limited scope of a conferencecontribution I omit technically complicated details.Theorem 4.1 If C 2 H(N), ; 6= T � N , then F+(CT ) = F+(C)T .Proof. The inclusion F+(C)T � F+(CT ) is easy as the system D (see thede�nition of marginal hypergraph) covers C and therefore every P 2 F+(C)factorizes with respect to D. Because of D\EnT = ; for di�erentD;E 2 Dthe marginal P T factorizes with respect to CT and therefore P T 2 F+(CT ).To prove F+(CT ) � F+(C)T let us take Q 2 F+(CT ) and try to �ndP 2 F+(C) with P T = Q. By the same reasons as explained in the proof ofTheorem 3.1 one can suppose without loss of generality that T = N n fwgwhere w 2 N . In this special situation, the union of the class Cw of setsin C containing w forms one set in D, the remaining elements of C n Cwalso belong to D. Let us denote by Z the union of sets in Cw with removedw. In case Z 2 CT (otherwise trivial) one considers a factorization of Qwith respect to CT and the only problem is to show that the potentialcorresponding to Z (in this factorization) is marginal of a potential overZ [ fwg which is Cw-factorizable. However, it follows from Lemma 4.1 (forT = Z) since the hypergraph f fw; zg ; z 2 Z g is covered by Cw.



ON MARGINALIZATION, COLLAPSIBILITY 75. CounterexampleOn the other hand, the precollapsibility property for undirected graphs doesnot hold within the framework of P+(N) as the following example shows.Example 5.1 Take N = f1; 2; 3; 4g, the graph G 2 U(N) consisting ofthe cycle 1 ! 2 ! 3 ! 4 ! 1 and T = f1; 2; 3g. No other graph overT except the complete graph K over T can be considered as a candi-date for a 'marginal graph' within the framework P+(N). The reason isthat one can �nd P 2 M+(G) such that : [A ?? B jC (P ) ] for everyhA;BjCi 2 T (T ) and therefore P T 62 M+(H) for any other H 2 U(T )except K. Consider the distribution Q over T de�ned on Qi2T f0; 1g whereQ(0; 0; 0) = 1=12, Q(0; 1; 0) = 1=6 and Q(x1;x2;x3) = 1=8 for remain-ing points [xi]i2T of Qi2T f0; 1g. Since Q(0; x2; 0) � Q(1; x2; 1)=Q(0; x2; 1) �Q(1; x2; 0) does depend on x2, the distribution Q cannot be factorizedwith respect to the hypergraph C = f f1; 2g; f1; 3g; f2; 3g g. However, ev-ery P 2 M+(G) is factorizable with respect to the system of its cliquesS = f f1; 2g; f2; 3g; f3; 4g; f1; 4g g by well-known Hammersley-Cli�ord the-orem (see [6] or [3]) and therefore its marginal P T is factorizable with re-spect to its marginal hypergraph ST = C by Theorem 4.1. So, Q 62 M+(G)Talthough Q 2 P+(T ) =M+(K).6. DiscussionNote that the concept of marginal hypergraph is equivalent to the concept ofderivative of a generating class of a loglinear model treated in [4]. To clarifythe connection with that result, let us recall that Malvestuto [4] showed thatthe inclusion F+(C)T � F+(B) holds just for those hypergraphs B over Twhich cover CT and no other hypergraphs over T . Here, a more special factF+(CT ) n F+(C)T = ; is showed.The precollapsibility condition can be also considered for other mathe-matical objects describing structures of discrete probability distributions.For example, directed acyclic graphs de�ne the class of recursively factoriz-able distributions [3] or structural imsets [7] allow to describe all structuresof probabilistic conditional independence for discrete distributions. I conjec-ture that the precollapsibility property does not hold for directed acyclicgraphs since there is no 'reasonable candidate' for the marginal directedacyclic graph. On the other hand, I have some reasons to hope that theprecollapsibility property holds for structural imsets. Well, I believe thatthe precollapsibility property is a very natural demand which should be oneof the important criteria for choice of methods of structural description.
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