The list of citations
revised on March 28, 2015

The article [A1] (3 citations)
is cited in the following publications:

The article [A2] (3 citations)
is cited in the following publications:

The article [A3] (56 citations)
M. Studený “Multiinformation and the problem of characterization of conditional independence relations” Problems of Control and Information Theory 18 (1989), n. 1, pp. 3-16.
is cited in the following publications:

- (a preprint cited by) I. Kramosil “A note on nonaxiomatizability of independence relations generated by certain probabilistic structures” Kybernetika 24 (1988), n. 6, pp. 439-446. (an article, SCI)
- W. Spohn “Direct and indirect causes” TOPOI - an International Review of Philosophy 9 (1990), n. 2, pp. 125-145. (an article, WoS)

• F. Matúš “Stochastic independence, algebraic independence and abstract connectedness” Theoretical Computer Science A 134 (1994), n. 2, pp. 455-471. (an article, SCI, WoS)

• P. Fonck “A comparative study of possibilistic conditional independence and lack of interaction” International Journal of Approximate Reasoning 16 (1997), n. 2, pp. 149-171. (an article, scopus, WoS)

• J. Zvárová “Expert systems and relevant information” Environmetrics 10 (1999), n. 4, pp. 493-504. (an article, scopus, WoS)

• C. J. Butz, P. Lingras “On the practical irrelevance of diverging implication between probabilistic conditional independence and embedded multivariate dependency” in 2005 Proceedings of the 2nd Indian International Conference on Artificial Intelligence (IICAI), art. n. 94847, pp. 2464-2475. (a conference contribution, scopus)

• L. C. van der Gaag, S. Renooij “Probabilistic Reasoning” University of Utrecht 2006. (lecture notes)

• G. Marrelec, P. Fransson “Assesing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditions” PLoS ONE 6 (2011), n. 4, art. n. e14788. (an article, scopus, WoS)

The article [A4] (19 citations)
M. Studený “Attempts at axiomatic description of conditional independence” *Kybernetika* 25 (1989), supplement to n. 3, pp. 72-79.
is cited in the following publications:

• L. M. de Campos “Independency relationships and learning algorithms for singly connected networks” Journal of Experimental and Theoretical Artificial Intelligence 10 (1998), n. 4, pp. 511-549. (an article, scopus)

• A. Slobodová “Decision making under uncertainty and mixed models” Neural Networks World 13 (2003), n. 5, pp. 581-589. (an article, scopus)

The remark [A5] (3 citations)
F. M. Malvestuto, M. Studený “Comment on ’A unique formal system for binary decompositions of database relations, probability distributions, and graphs’ ” Information Sciences 63 (1992), n. 1-2, pp. 1-2.

is cited in the following publication:

The article [A8] (14 citations)

is cited in the following publications:

- P. Frasconi, M. Gori, G. Soda “Data categorization using decision trellises” IEEE Transactions on Knowledge and Data Engineering 11 (1999), n. 5, pp. 697-712. (an article, SCI, scopus)

- R. Lněnička, F. Matúš “On Gaussian conditional independence structures” Kybernetika 43 (2007), n. 3, pp. 327-342. (an article, scopus)

The articles [A9-A11] (5 citations)
are cited in the following publications:

The article [A12] (37 citations)
is cited in the following publications:

• J. M. Robins, R. Scheines, P. Spirtes, L. Wasserman “Uniform consistency in causal inference” Biometrika 90 (2003), n. 3, pp. 491-515. (an article)

• P. Šimeček “Classes of Gaussian, discrete and binary representable independence models have no finite characterization” in Prague Stochastics (M. Hušková and M. Janžura eds.), Matfyzpress, 2006, pp. 622-632. (a conference contribution)

• P. Šimeček “Gaussian representation of independence models over four random variables” in Proceedings of the 17th COMPSTAT, Rome, Italy, 2006, pp. 1404-1412. (a conference contribution)

• R. Dougherty, C. Freiling, K. Zeger “Networks, matroids, and non-Shannon information inequalities” IEEE Transactions on Information Theory 53 (2007), n. 6, pp. 1949-1969. (an article)

• P. Šimeček “Independence models” in Proceedings of the 7th workshop on Uncertainty Processing (WUPES’06), Mikulov, September 16-20, 2006, pp. 151-161. (a conference contribution)

• S. Shadbakht, B. Hassibi “Cayley’s hyperdeterminant, the principal minors of a symmetric matrix and the entropy region of 4 Gaussian random variables” in 46th Anual Allerton Conference on Communication, Control, and Computing, 2008, pp. 185-190. (a conference paper)
• W. Mao, B. Hassibi “Violating the Ingleton inequality with finite groups” in 47th Annual Allerton Conference on Communication, Control, and Computing, 2009, pp. 1053-1060. (a conference paper)

• Q. Chen, R. W. Yeung “Characterizing the entropy function region via extreme rays” in 2012 IEEE Information Theory Workshop, pp. 272-276. (a conference contribution)

• N. Boston, T. T. Nan “A refinement of the four-atom conjecture” 2013 International Symposium on Network Coding (NETCOD) (a proceedings paper, WoS)

• Y. S. Liu, J. M. Walsh “Bounding the entropic region via information geometry” 2013 IEEE Information Theory Workshop (ITW) 2013, (a proceedings paper, WoS)

• D. Heckerman, C. Meek, T. Richardson “Variations on undirected graphical models and their relationships” Kybernetika 50 (2014) 363-377. (an article, WoS)

The article [A13] (7 citations)
is cited in the following publications:

- D. Ślezak “Degrees of conditional (in)dependence: a framework for approximate Bayesian networks and examples related to the rough set-based feature selection” Information Sciences 179 (2009), n. 3, pp. 179-209. (an article, scopus)

The article [A14] (33 citations)
is cited in the following publications:

- A. Slobodová “Decision making under uncertainty and mixed models” Neural Network World 13 (2003), n. 5, pp. 581-589. (an article, scopus)

• P. Antal, G. Fannes, D. Timmerman, Y. Moreau, B. de Moor “Using literature and data to learn Bayesian networks as clinical models of ovarian tumors” Artificial Intelligence in Medicine 30 (2004), n. 3, pp. 257-281. (an article, scopus, WoS)

• N. Ben Amor, S. Benferhat “Graphoid properties of qualitative possibilistic independence relations” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 13 (2005), n. 1, pp. 59-96. (an article, scopus, WoS)

• E. San Martín, M. Mouchart, J.-M. Rolin “Ignorable common information, null sets and Basu’s first theorem” Sankhya: The Indian Journal of Statistics 67 (2005), n. 4, pp. 674-698. (an article, scopus)

• A. Paz “A property of independency relations induced by probabilistic distributions with binary variables” Fundamenta Informaticae 73 (2006), n. 1-2, pp. 229-236. (an article, scopus)

• P. Šimeček “Classes of Gaussian, discrete and binary representable independence models have no finite characterization” in Prague Stochastics (M. Hušková and M. Janžura eds.), Matfyzpress, 2006, pp. 622-632. (a conference contribution)

M. Baioletti, G. Busanello, B. Vantaggi “Acyclic directed graphs to represent conditional independence models” in Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), Lecture Notes in Computer Science 5590, Springer 2009, pp. 530-541. (a proceedings paper, scopus, WoS)

D. Petturiti “Asymmetric decomposability and persegram representation in coherent conditional probability theory” Soft Computing 17 (2013) 2131-2145. (an article, scopus, WoS)

The article [A15] (12 citations)
J. Zvárová, M. Studený “Information theoretical approach to constitution and reduction of medical data” *International Journal of Medical Informatics* 45 (1997), n. 1-2, pp. 65-74. is cited in the following publications:

- D. Blokh, I. Stambler, E. Afrimzon, M. Platkov, Y. Shafran, E. Korech, J. Sandbank, N. Zurgil, M. Deutsch “Comparative analysis of cell parameter groups for breast cancer detection” *Computer Methods and Programs in Biomedicine* 94 (2009), n. 3, pp. 239-249. (an article, Scopus)
- D. Blokh “Information-theory analysis of cell characteristics in breast cancer patients” *International Journal of Bioinformatics and Bioscience* 3 (2013), n. 1, pp. 1-5. (a note)

The article [A16] (15 citations)
M. Studený “A recovery algorithm for chain graphs” *International Journal of Approximate
is cited in the following publications:

- A. Roverato “A unified approach to the characterization of equivalence classes of DAGs, chain graphs with no flags and chain graphs” Scandinavian Journal of Statistics 32 (2005), n. 2, pp. 295-312. (an article, SCI, scopus)

- B. Liu, Z. Zheng, H. Zhao “An efficient algorithm for finding the largest chain graph according to a given chain graph” Science in China, Series A - Mathematics 48 (2005), n. 11, pp. 1517-1530. (an article, scopus)

- L. La Rocca, A. Roverato “Chain graph models: topological sorting of meta-arrows and efficient construction of B-essential graphs” Statistical Methods and Applications 17 (2008), n. 1, pp. 73-83. (an article, scopus)

- W. Li, W. Liu, K. Yue “Recovering the global structure from multiple local Bayesian networks” International Journal on Artificial Intelligence Tools 17 (2008), n. 6, pp. 1067-1088. (an article, scopus)

is cited in the following publications:

• N. Wermuth, D. R. Cox “A sweep operator for triangular matrices and its statistical applications” ZUMA research report 00/04, June 2000 (ISSN 1437-4110). (a research report)

• E. Castillo, B. Lacruz, P. Lasala, A. Leucona “Estimating transition probabilities in a dynamic graphical model with unobservable variables” IEEE Transactions on Reliability 50 (2001), n. 2, pp. 135-144. (an article, scopus, WoS)

• B. Vantaggi “Conditional independence structures and graphical models” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11 (2003), n. 5, pp. 545-571. (an article, scopus, WoS)

• J. Ferrándiz, E. F. Castillo, P. Sanmartín “Temporal aggregation in chain graph models” Journal of Statistical Planning and Inference 133 (2005), n. 1, pp. 69-93. (an article, scopus, WoS)

• E. San Martín, M. Mouchart, J.-M. Rolin “Ignorable common information, null sets and Basu’s first theorem” Sankhya: The Indian Journal of Statistics 67 (2005), n. 4, pp. 674-698. (an article, scopus, WoS)

- B. Vantaggi “A note on non-symmetric independence models”, in Proceedings of the 7th workshop on Uncertainty Processing (WUPES’06), Mikulov, September 16-20, 2006, pp. 162-172. (a conference contribution)

- M. Drton, M. D. Perlman “Multiple testing and error control in Gaussian graphical model selection” Statistical Science 22 (2007), n. 3, pp. 430-449. (an article, scopus, WoS)

- M. Baioletti, G. Busanello, B. Vantaggi “Acyclic directed graphs to represent conditional independence models” in Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), Lecture Notes in Computer Science 5590, Springer 2009, pp. 530-541. (a proceedings paper, scopus, WoS)

• J. M. Peña “Faithfulness in chain graphs: the discrete case” International Journal of Approximate Reasoning 50 (2009), n. 8, pp. 1306-1313. (an article, scopus, WoS)

• F. M. Stefanini “Graphical models for eliciting structural information” in Classification and Data Mining, Studies in Classification, Data Analysis, and Knowledge Organization 2013, pp. 139-146. (a conference paper)

The article [A18] (21 citations)

is cited in the following publications:

• A. Roverato “A unified approach to the characterization of equivalence classes of DAGs, chain graphs with no flags and chain graphs” Scandinavian Journal of Statistics 32 (2005), n. 2, pp. 295-312. (an article, SCI, scopus, WoS)

• B. Liu, Z. Zheng, H. Zhao “An efficient algorithm for finding the largest chain graph according to a given chain graph” Science in China, Series A - Mathematics 48 (2005), n. 11, pp. 1517-1530. (an article, scopus, WoS)

• G. Kleiter “Counting essential graphs”, in Proceedings of the 7th workshop on Uncertainty Processing (WUPES’06), Mikulov, September 16-20, 2006, pp. 62-73. (a conference contribution)

• L. La Rocca, A. Roverato “Chain graph models: topological sorting of meta-arrows and efficient construction of B-essential graphs” Statistical Methods and Applications 17 (2008), n. 1, pp. 73-83. (an article, scopus, WoS)

• J. Corander, M. Ekdahl, T. Koski “Parallel interacting MCMC for learning of topologies of graphical models” Data Mining and Knowledge Discovery 17 (2008), n. 3, pp. 431-456. (an article, scopus, WoS)

• A. Garrido “Asymptotic behaviour of essential graphs” AMO - Advanced Modeling and Optimization 11 (2009), n. 3, pp. 195-210. (an article)

• A. Garrido “Computational methods in medicine” Broad Research in Artificial Intelligence and Neuroscience 1 (2010), n. 1, pp. 7-11.

The article [A19] (4 citations)

is cited in the following publications:

• N. Wermuth, D. R. Cox “A sweep operator for triangular matrices and its statistical applications” ZUMA research report 00/04, June 2000 (ISSN 1437-4110). (a research report)

The article [A20] (12 citations)

is cited in the following publications:

• R. Jiroušek “On a conditional irrelevance relation for belief functions based on the operation of composition” in Dynamics of Knowledge and Belief, Proceedings of KI-2007 (C. Beierle, G. Kern-Isberner eds.), pp. 28-41. (a conference contribution)

• R. Jiroušek “Compositional belief function models” in SCIS & ISIS 2008, pp. 1311-1316. (a conference contribution)

• R. Jiroušek “An attempt to define graphical models in Dempster-Shafer theory of evidence” in Advances in Intelligent and Soft Computing 77 (2010), pp. 361-368. (a conference paper, scopus)

• R. Jiroušek “Approximation of data by decomposable belief models” in Proceedings of IPMU 2010, part I, Communications in Computer and Information Science 80 (2010), pp. 40-49. (a conference contribution)

• M. Baiocletti, G. Busanello, B. Vantaggi “Exploiting independencies to compute semi-graphoid and graphoid structures” International Journal of Approximate Reasoning 52 (2011), n. 5, pp. 562-579. (an article, scopus)

• R. Jiroušek “Local computations in Dempster-Shafer theory of evidence” International Journal of Approximate Reasoning 53 (2012), n. 8, pp. 1155-1167. (an article, scopus)

The article [A21] (5 citations)

is cited in the following publications:

• A. Roverato “A unified approach to the characterization of equivalence classes of DAGs, chain graphs with no flags and chain graphs” Scandinavian Journal of Statistics 32 (2005), n. 2, pp. 295-312. (an article, SCI, scopus)

• L. La Rocca, A. Roverato “Chain graph models: topological sorting of meta-arrows and efficient construction of B-essential graphs” Statistical Methods and Applications 17 (2008), n. 1, pp. 73-83. (an article, scopus)
• A. Garrido “Essential graphs and bayesian networks” in Proceeding of the 1st International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems, CANS 2008, Article number 5231454, pp. 149-156. (a conference contribution, scopus)

• A. Garrido “Chain graphs and directed acyclic graphs improved by equivalence classes and their essential graphs” Studies in Informatics and Control 18 (2009), n. 1, pp. 39-40. (a note)

The article [A22] (2 citations)
is cited in the following publications:

• S. Byrne “Hyper and structural Markov laws for graphical models” PhD thesis, University of Cambridge (UK), 2011. (a thesis)

The article [A23] (12 citations)
is cited in the following publications:

• M. Drton, M. D. Perlman “Multiple testing and error control in Gaussian graphical model selection” Statistical Science 22 (2007), n. 3, pp. 430-449. (an article, scopus, WoS)

• J. Corander, M. Ekdahl, T. Koski “Parallel interacting MCMC for learning of topologies of graphical models” Data Mining and Knowledge Discovery 17 (2008), n. 3, pp. 431-456. (an article, scopus, WoS)

• A. Garrido “Essential graphs as tools to improve the efficiency of learning graphical model” Complexity in Artificial and Natural Systems 2008 pp. 278-283. (a conference contribution, WoS)

• A. Garrido “Essential graphs and Bayesian networks” in Proceeding of the 1st International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems, CANS 2008, Article number 5231454, pp. 149-156. (a conference contribution, scopus, WoS)

• A. Garrido “Chain graphs and directed acyclic graphs improved by equivalence classes and their essential graphs” Studies in Informatics and Control 18 (2009), n. 1, pp. 39-40. (a note, WoS)

The article [A24] (11 citations)

is cited in the following publications:

• B. Li, S. Cai, J. Guo “A computational algebraic-geometry method for conditional-independence inference” Frontiers of Mathematics in China 8 (2013), n. 3, pp. 567-582. (an article, scopus, WoS)

• M. Gyssens, M. Niepert, D. van Gucht “On the completeness of the semigraphoid axioms for deriving arbitrary from saturated conditional independence statements” Information Processing Letters 114 (2014), n. 11, pp. 628-633. (an article, WoS)

The article [A25] (2 citations)
is cited in the following publications:

• O. Kríz “Comparing algorithms based on marginal problem” Kybernetika 43 (2007), n. 5, pp. 633-647. (an article, scopus, WoS)

The article [A26] (6 citations)
is cited in the following publications:

• B. Li, S. Liu, Z. Li “Combined algorithm for the essential graph of Bayesian network structures” Journal of Electronics 27 (2010), n. 6, pp. 822-829. (an article, scopus)

• L. Shuang, H. Zhi “Analysis of distributed information retrieval” in 2011 International Conference on Multimedia Technology (ICMT), art. n. 6002305, pp. 5297-5300. (a conference paper, scopus)

• S. Byrne “Hyper and structural Markov laws for graphical models” PhD thesis, University of Cambridge (UK), 2011. (a thesis)

• B. H. Li, S. Y. Liu, Z. G. Li “Improved algorithm based on mutual information for learning Bayesian network structures in the space of equivalence classes” Multimedia Tools and Applications 60 (2012), n. 1, pp. 129-137. (an article, scopus)

The article [A27] (3 citations)
M. Studený, A. Roverato, Š. Štěpánová “Two operations of merging and splitting components in a chain graph” Kybernetika 45 (2009), n. 2, pp. 208-248.
is cited in the following publication:

• J. M. Peña “Faithfulness in chain graphs: the discrete case” International Journal of Approximate Reasoning 50 (2009), n. 8, pp. 1306-1313. (an article, scopus)

The article [A28] (6 citations)
is cited in the following publications:

• J. I. Alonso-Barba, L. dela Ossa, J. A. Gámez, J. M. Puerta “Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes” International Journal of Approximate Reasoning 54 (2013), n. 4, pp. 429-451. (an article, scopus, WoS)
• B. C. Li, J. H. Guo “Decomposition of two classes of structural models” Frontier of Mathematics in China 8 (2013), n. 6, pp. 1323-1349. (an article, WoS)

The article [A29] (5 citations)
is cited in the following publications:
The article [A30] (5 citations) M. Studený, J. Vomlel “On open questions in the geometric approach to structural learning Bayesian nets” International Journal of Approximate Reasoning 52 (2011) 627-640. is cited in the following publications:

The article [A31] (4 citations) R. Hemmecke, S. Lindner, M. Studený “Characteristic imsets for learning Bayesian network structure” International Journal of Approximate Reasoning 53 (2012) 1336-1349. is cited in the following publications:
• J. I. Alonso-Barba, L. del Ossa, J. A. Gámez, J. M. Puerta “Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes” International Journal of Approximate Reasoning 54 (2013), n. 4, pp. 429-451. (an article, scopus, WoS)

The article [A33] (3 citations)

is cited in the following publications:

The monograph [M1] (102 citations)

is cited in the following publications:

• T. Kroupa “Many-dimensional observables on Lukasiewicz tribe: constructions, conditioning and conditional independence” Kybernetika 41 (2005), n. 4, pp. 451-468. (an article, scopus)

• F. Matúš “Inequalities for Shannon entropies and adhesivity of polymatroids” in the 9th Canadian Workshop on Information Theory, Montreal, Canada, 2005, pp. 28-31. (a conference paper)

• T. Kahle, N. Ay “Support sets of distributions with given interaction structure” in Proceedings of the 7th workshop on Uncertainty Processing (WUPES'06), Mikulov, September 16-20, 2006, pp. 52-61. (a conference contribution)

• J. M. Peña, R. Nilsson, J. Björkegren, J. Tegnér “Reading dependencies from the minimal undirected independence map of a graphoid that satisfies weak transitivity” in Proceedings of the 3rd European Workshop on Probabilistic Graphical Models, Prague, 2006, pp. 247-254. (a conference contribution)

• P. Šimeček “Gaussian representation of independence models over four random variables” in Proceedings of the 17th COMPSTAT, Rome, Italy, 2006, pp. 1404-1412. (a conference contribution)

• P. Šimeček “Classes of Gaussian, discrete and binary representable independence models have no finite characterization” in Prague Stochastics (M. Hušková and M. Janžura eds.), Matfyzpress, 2006, pp. 622-632. (a conference contribution)

• P. Šimeček “Independence models” in Proceedings of the 7th workshop on Uncertainty Processing (WUPES'06), Mikulov, September 16-20, 2006, pp. 151-161. (a conference contribution)

• N. Ay, E. Olbrich, N. Bertschinger, J. Jost “A unifying framework for complexity measures of finite systems” Santa Fé Institute working paper 06-8-029, August 2006. (a research report)

• M. Drton, M. D. Perlman “Multiple testing and error control in Gaussian graphical model selection” Statistical Science 22 (2007), n. 3, pp. 430-449. (an article, scopus, WoS)

• R. Lněnička, F. Matúš “On Gaussian conditional independence structures” Kybernetika 43 (2007), n. 3, pp. 327-342. (an article, scopus, WoS)

- I. Flesch, P. J. F. Lucas “Graphical reasoning with Bayesian networks” in Research and Development in Intelligent Systems XXIII (2007), section 1, pp. 71-84. (a proceedings paper)

- R. Jiroušek “On a conditional irrelevance relation for belief functions based on the operation of composition” in Dynamics of Knowledge and Belief, Proceedings of KI-2007 (C. Beierle, G. Kern-Isberner eds.), pp. 28-41. (a conference contribution)

- J. Q. Smith, P. E. Anderson “Conditional independence and chain event graphs” Artificial Intelligence 172 (2008), n. 1, pp. 42-68. (an article, SCI, scopus, WoS)

• R. Jiroušek “Compositional belief function models” in SCIS & ISIS 2008, pp. 1311-1316. (a conference contribution)

• G. M. Marchetti, N. Wermuth “Matrix representations and independencies in directed acyclic graphs” Annals of Statistics 37 (2009), n. 2, pp. 961-978. (an article, SCI, scopus, WoS)

• D. Šlezak “Degrees of conditional (in)dependence: a framework for approximate Bayesian networks and examples related to the rough set-based feature selection” Information Sciences 179 (2009), n. 3, pp. 179-209. (an article, scopus, WoS)

• J. M. Peña “Faithfulness in chain graphs: the discrete case” International Journal of Approximate Reasoning 50 (2009), n. 8, pp. 1306-1313. (an article, scopus, WoS)

• T. Rudas, W. Bergsma, R. Németh “Marginal log-linear parameterization of conditional independence models” Biometrika 97 (2010), n. 4, pp. 1006-1012. (an article, scopus, WoS)

• O. Schulte, W. Luo, R. Greiner “Mind change optimal learning of Bayes net structure from dependency and independency data” Information and Computation 208 (2010), n. 1, pp. 63-82. (an article, scopus, WoS)

• G. M. Marchetti, M. Luppanelli “Chain graph models of multivariate regression type for categorical data” Bernoulli 17 (2011), n. 3, pp. 827-844. (an article, scopus, WoS)

• N. Wermuth “Probability distributions with summary graph structure” Bernoulli 17 (2011), n. 3, pp. 845-879. (an article, scopus, WoS)

• D. Feng, F. Chen, W. Xu “Analysis of Markov boundary induction in Bayesian network: a new view from matroid theory” Fundamenta Informaticae 107 (2011), n. 4, pp. 415-434. (an article, scopus, WoS)

• M. Baioletti, G. Busanello, B. Vantaggi “Finding P-maps and I-maps to represent conditional independencies” in Lecture Notes in Computer Science 6717 (2011), pp. 239-250. (a proceedings paper, scopus)

• S. Byrne “Hyper and structural Markov laws for graphical models” PhD thesis, University of Cambridge (UK), 2011. (a thesis)

• N. Wermuth, K. Sadgahi “Sequences of regressions and their independencies” TEST 21 (2012), pp. 215-252. (a review article, scopus)

• F. Matúš “On conditional independence and log-convexity” Annales de l’Institute Henri Poincaré Probabilités et Statistiques 48 (2012), n. 4, pp. 1137-1147. (an article)

• N. Wermuth, K. Sadeghi “Rejoinder on: Sequences of regressions and their independencies” TEST 21 (2012), n. 2, pp. 274-279. (a discussion to a paper)

• P. Betliński, D. Ślezak “The problem of finding the sparsest Bayesian network for an input data set is NP-hard” in Foundations of Intelligent Systems, lecture Notes in Computer Science 7661, 2012, pp. 21-30. (a conference paper)

• V. Kratochvíl “An attempt to implement compositional models in Dempster-Shafer theory of evidence” in Proceedings of the 9th Workshop on Uncertainty Processing, Mariánské Lázně, Czech Republic, 2012, pp. 102-113. (a conference contribution)

• P. Moritz, J. Reichardt, N. Ay “A new common cause principle for Bayesian networks” in Proceedings of the 9th Workshop on Uncertainty Processing, Mariánské Lázně, Czech Republic, 2012, pp. 149-162. (a conference contribution)

• B. Li, S. Cai, J. Guo “A computational algebraic-geometry method for conditional-independence inference” Frontiers of Mathematics in China 8 (2013), n. 3, pp. 567-582. (an article, scopus, WoS)

• S. Link “Sound approximate reasoning about saturated conditional probabilistic independence under controlled uncertainty” Journal of Applied Logic 11 (2013), n. 3, pp. 309-327. (an article, WoS)

• D. Petturiti “Asymmetric decomposability and persegam representation in coherent conditional probability theory” Soft Computing 17 (2013) 2131-2145. (an article, scopus, WoS)
• K. Sadeghi “Stable mixed graphs” Bernoulli 19 (2013), n. 5B, pp. 2330-2358. (an article, WoS)

• B. C. Li, J. H. Guo “Decomposition of two classes of structural models” Frontier of Mathematics in China 8 (2013), n. 6, pp. 1323-1349. (an article, WoS)

• M. Gyssens, M. Niepert, D. van Gucht “On the completeness of the semigraphoid axioms for deriving arbitrary from saturated conditional independence statements” Information Processing Letters 114 (2014), n. 11, pp. 628-633. (an article, WoS)

The edited volume paper [B1] (100 citations)

is cited in the following publications:

• (a preprint is cited by) F. Matúš “Probabilistic conditional independence structures and matroid theory: backgrounds” in Proceedings of the 2nd Workshop on Uncertainty processing in Expert Systems (WUPES’91), Alšovice, Czechoslovakia 1991. (a conference contribution)

• N. Wilson “Generating graphoids from generalized conditional probability” in Uncertainty in Artificial Intelligence 10 (R. L. de Mantaras, D. Poole eds.), Morgan Kaufmann, San Francisco 1994, pp. 583-590. (a conference paper)

• S. Parsons: Current approaches to handling imperfect information in data and knowledge bases, IEEE Transactions on Knowledge and Data Engineering 8 (1996), n. 3, pp. 353-372. (an article, scopus, WoS)

• D. Galles, J. Pearl “Axioms of causal relevance” Artificial Intelligence 97 (1997), n. 1-2, pp. 9-43. (an article, SCI, scopus, WoS)

• P. Fonck “A comparative study of possibilistic conditional independence and lack of interaction” International Journal of Approximate Reasoning 16 (1997), n. 2, pp. 149-171. (an article, scopus, WoS)

• L. M. de Campos “Independency relationships and learning algorithms for singly connected networks” Journal of Experimental and Theoretical Artificial Intelligence 10 (1998), n. 4, pp. 511-549. (an article, scopus, WoS)

• A. Becker, D. Geiger, C. Meek “Perfect tree-like Markovian distributions” in Proceedings of the 16th conference Uncertainty in Artificial Intelligence (UAI), Morgan Kaufmann 2000, pp. 19-23. (a proceedings paper)
• S. K. M. Wong, C. J. Butz “Constructing the dependency structure of a multagent probabilistic network” IEEE Transactions on Knowledge and Data Engineering 13 (2001), n. 3, pp. 395-415. (an article, scopus, WoS)

• C. J. Butz, P. Lingras “On the practical irrelevance of diverging implication between probabilistic conditional independence and embedded multivariate dependency” in 2005 Proceedings of the 2nd Indian International Conference on Artificial Intelligence (IICAI), art. n. 94847, pp. 2464-2475. (a conference contribution, scopus)

• F. Huber “Ranking functions and rankings of languages” Artificial Intelligence 170 (2006), n. 4-5, pp. 462-471. (an article, SCI, scopus, WoS)

• A. Paz “A property of independency relations induced by probabilistic distributions with binary variables” Fundamenta Informaticae 73 (2006), n. 1-2, pp. 229-236. (an article, scopus)

• P. Šimeček “Gaussian representation of independence models over four random variables” in Proceedings of the 17th COMPSTAT, Rome, Italy, 2006, pp. 1404-1412. (a conference contribution)

• P. Šimeček “Classes of Gaussian, discrete and binary representable independence models have no finite characterization” in Prague Stochastics (M. Hušková and M. Janžura eds.), Matfyzpress, 2006, pp. 622-632. (a conference contribution)

• P. Šimeček “Independence models”, in Proceedings of the 7th workshop on Uncertainty Processing (WUPES’06), Mikulov, September 16-20, 2006, pp. 151-161. (a conference contribution)

• S. J. Sinnott “Results in computational algebra of Bayesian networks” PhD thesis, Cornell University 2006. (a thesis)

• L. C. van der Gaag, S. Renooij “Probabilistic Reasoning” University of Utrecht 2006. (lecture notes)

• R. Lněnička, F. Matúš “On Gaussian conditional independence structures” Kybernetika 43 (2007), n. 3, pp. 327-342. (an article, scopus, WoS)

• S. Sullivant “ Gaussian conditional independence relations have no finite complete characterization” Journal of Pure and Applied Algebra 213 (2009), n. 8, pp. 1502-1506. (an article, scopus, WoS)

• B. Leuridan “Causal discovery and the problem of ingorance. An adaptive logic approach” Journal of Applied Logic 7 (2009), n. 2, pp. 188-205. (an article, scopus, WoS)

• M. Ivanovska, M. Giese “Probabilistic logic with conditional independence formulae” in Frontiers in Artificial Intelligence and Applications 222 (2010), pp. 127-139. (a conference paper, scopus)

• M. Baioletti, G. Busanello, B. Vantaggi “Exploiting independencies to compute semi-graphoid and graphoid structures” International Journal of Approximate Reasoning 52 (2011), n. 5, pp. 562-579. (an article, scopus)

• U. Saint-Mont “Synthese” (in German) chapter 5 in Statistik im Forschungsprozess, Springer 2011, pp. 351-537. (a chapter in a book)

• P. Naumov, B. Nicholls “Game semantics for the Geiger-Paz-Pearl axioms of independence” in Logic, Rationality, and Integration, Lecture Notes in Computer Science (LNAI) 6953, 2011, pp. 220-232. (a conference paper, scopus)

• S. L. Lauritzen “Elements of Graphical Models” lectures from the 36th International Probability Summer School in Saint Flour, France, 2006, manuscript of lecture notes, updated September 2011. (lecture notes)

• B. Li, S. Cai, J. Guo “A computational algebraic-geometry method for conditional-independence inference” Frontiers of Mathematics in China 8 (2013), n. 3, pp. 567-582. (an article, scopus, WoS)

• S. Link “Approximate reasoning about generalized conditional independence with complete random variables” Scalable Uncertainty Management (SUM 2013), Lecture Notes in Artificial Intelligence 8078 (2013) 269-282. (a proceedings paper, WoS)

• S. Link “Sound approximate reasoning about saturated conditional probabilistic independence under controlled uncertainty” Journal of Applied Logic 11 (2013), n. 3, pp. 309-327. (an article, WoS)

• P. Naumov, B. Nicholls “On interchangeability of Nash equilibria in multi-player strategic games” Synthese 190 (2013), pp. 57-78. (an article, WoS)

• H. Koehler, S. Link “Logics for approximating implication problems of saturated conditional independence” Logics in Artificial Intelligence (JELIA), Lecture Notes in Artificial Intelligence 8761 (2014), pp. 224-238. (a proceedings paper, WoS)

• M. Gyssens, M. Niepert, D. van Gucht “On the completeness of the semigraphoid axioms for deriving arbitrary from saturated conditional independence statements” Information Processing Letters 114 (2014), n. 11, pp. 628-633. (an article, WoS)

The edited volume paper [B3] (71 citations)
is cited in the following publication:
• G. D. Kleiter “The posterior probability of Bayes nets with strong dependences” Soft Computing 3 (1999), pp. 162-173. (an article)

• E. Schneidman, S. Still, M. J. Berry, W. Bialek “Network information and connected correlations” Physical Review Letters 91 (2003), n. 23, art. n. 238701. (a note)

• I. Erb, N. Ay “Multi-information in the thermodynamic limit” Journal of Statistical Physics 115 (2004), n. 3-4, pp. 949-976. (an article, scopus)

• T. Wennekers, N. Ay “Finite state automata from temporal information maximization and a temporal learning rule” Neural Computation 17 (2005), n. 10, pp. 2258-2290. (an article, scopus)

• D. Tuckar “Stochastic realization theory for exact and approximate multiscale models” PhD thesis, Massachusetts Institute of Technology, 2005. (a thesis)

• M. Bethge “Factorial coding of natural images: how effective are linear models in removing higher-order dependencies?” Journal of the Optical Society of America A: Optics and Image Science, and Vision 23 (2006), n. 6, pp. 1253-1268. (an article, scopus, WoS)

• N. Slonim, N. Friedman, N. Tishby “Multivariate information bottleneck” Neural Computation 18 (2006) n. 8, pp. 1739-1789. (an article, scopus, WoS)

• P. Šimeček “Classes of Gaussian, discrete and binary representable independence models have no finite characterization” in Prague Stochastics (M. Hušková and M. Janžura eds.), Matfyzpress, 2006, pp. 622-632. (a conference contribution)

• P. Šimeček “Independence models”, in Proceedings of the 7th workshop on Uncertainty Processing (WUPES’06), Mikulov, September 16-20, 2006, pp. 151-161. (a conference contribution)

• N. Ay, E. Olbrich, N. Bertschinger, J. Jost “A unifying framework for complexity measures of finite systems” Santa Fé Institute working paper 06-8-029, August 2006. (a research report)

• E. Alhoniemi, A. Honkela, K. Lagus, S. J. Seppä, P. Wagner, H. Valpola “Compact modeling of data using independent variable group analysis” IEEE Transactions on Neural Networks 18 (2007), n. 6, pp. 1762-1776. (an article, scopus)

• A. Honkela, J. Seppä, E. Alhoniemi “Agglomerative independent variable group analysis” Neurocomputing 71 (2008), n. 7-9, pp. 1311-1320. (an article, scopus)

• S. W. Lyu, E. P. Simoncelli “Nonlinear extraction of ‘Independent components’ of natural images using radial Gaussianization” Neural Computation 21 (2009), n. 6, pp. 1485-1519. (an article, scopus, WoS)

• Z.-H. Zhou, N. Li “Multi-information ensemble diversity” Lecture Notes in Computer Science 5997, pp. 13-144. (a conference paper, scopus)

• S. A. Abdallah, M. Plumbley “Predictive information, multi-information, and binding information” technical report C4DM-TR10-10, Queen Mary University of London, December 2010. (a research report)

• V. Misra, V. K. Goyal, L. R. Varshney “Distributed scalar quantification for computing: high-resolution analysis and extensions” IEEE Transactions on Information Theory 57 (2011), n. 8, art. n. 5961835, pp. 5298-5325. (an article, SCI, scopus, WoS)
• S. Lyu “Dependency reduction with divisive normalization: justification and effectiveness” Neural Computation 23 (2011), n. 11, pp. 2942-2973. (an article, scopus, WoS)

• G. Marrelec, P. Fransson “Assessing the influence of different ROI selection strategies on functional connectivity analyses of fMRI data acquired during steady-state conditions” PLoS ONE 6 (2011), n. 4, art. n. e14788. (an article, scopus)

• G. Marrelec, H. Benali “Large-sample asymptotic approximations for the sampling and posterior distributions of differential entropy for multivariate normal distributions” Entropy 13 (2011), n. 4, pp. 805-819. (an article, scopus)

• V. Laparra, G. Camps-Valls, J. Malo “Iterative Gaussianization: from ICA to random rotations” IEEE Transactions on Neural Networks 22 (2011), n. 4, pp. 537-549. (an article)

• T. van de Cruys “Two multivariate generalizations of pointwise mutual information” in Proceedings of the Workshop on Distributional Semantics and Compositionality, 2011, pp. 16-20. (a conference contribution)

• S. A. Abdallah, M. D. Plumbley “A measure of statistical complexity based on predictive information with application to finite spin systems” Physics Letters A 376 (2012), n. 4, pp. 275-281. (an article, WoS)

• Z. Banković, D. Fraga, J. M. Moya, J. C. Vallejo “Detecting unknown attacks in wireless sensor networks that contain nodes” Sensors 12 (2012), pp. 10834-10850. (an open access article)

• L. Chen, V. P. Singh, S. L. Guo “Measure of correlation between river flows using the copula-entropy method” Journal of Hydrologic Engineering 18 (2013), n. 12, pp. 1591-1606. (an article, WoS)

• S. Ikemoto, F. DallaLibera, K. Hosoda, H. Ishiguro “Spurious correlation as an approximation of the mutual information between redundant outputs and an unknown input” Communications in Nonlinear Science and Numerical Simulation 19 (2014) 3611-3616. (an article, WoS)

The edited volume paper [B4] (3 citations)
is cited in the following publication:

• A. Garrido “Essential graphs and bayesian networks” in Proceeding of the 1st International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems, CANS 2008, Article number 5231454, pp. 149-156. (a conference contribution, scopus)

The conference paper [C1] (44 citations)
is cited in the following publications:

• P. Fonck “A comparative study of possibilistic conditional independence and lack of interaction” International Journal of Approximate Reasoning 16 (1997), n. 2, pp. 149-171. (an article, scopus)

• R. Sangüesas, U. Cortés “Learning causal networks from data: a survey and new algorithm for recovering possibilistic causal network” AI Communications 10 (1997), n. 1, pp. 31-61. (a review, scopus)

• L. M. de Campos “Independency relationships and learning algorithms for singly connected networks” Journal of Experimental and Theoretical Artificial Intelligence 10 (1998), n. 4, pp. 511-549. (an article, scopus)

• J. A. T. Koster “Marginalizing and conditioning in graphical models” Bernoulli 6 (2002), n. 6, pp. 817-840. (an article, scopus)

• B. Ben Yaghlane, P. Smets, K. Mellouli “Belief function independence: II. the conditional case” International Journal of Approximate Reasoning 31 (2002), n. 1-2, pp. 31-75. (an article, scopus)

• L. Ferracuti, B. Vantaggi “Independence and conditional possibility for strictly monotone triangular norms” International Journal of Intelligent Systems 21 (2006), n. 3, pp. 299-323. (an article, scopus)

• G. Coletti, B. Vantaggi “Possibility theory: conditional independence” Fuzzy Sets and Systems 157 (2006), n. 11, pp. 1491-1513. (an article, SCI, scopus)

• R. Jiroušek “Compositional belief function models” in SCIS & ISIS 2008, pp. 1311-1316. (a conference contribution)

• R. Jiroušek “An attempt to define graphical models in Dempster-Shafer theory of evidence” in Advances in Intelligent and Soft Computing 77 (2010), pp. 361-368. (a conference paper, scopus)

• R. Jiroušek “Approximation of data by decomposable belief models” in Proceedings of IPMU 2010, part I, Communications in Computer and Information Science 80 (2010), pp. 40-49. (a conference contribution)

• R. Jiroušek J. Vejnarová “Compositional models and conditional independence in evidence theory” International Journal of Approximate Reasoning 52 (2011), n. 3, pp. 316-334. (an article, scopus)

• R. Jiroušek “Local computations in Dempster-Shafer theory of evidence” International Journal of Approximate Reasoning 53 (2012), n. 8, pp. 1155-1167. (an article, scopus)

• K. Chalak, H. White “Causality, conditional independence, and graphical separation in setttable systems” Neural Computation 24 (2012), n. 7, pp. 1611-1668. (an article)

• J. Vejnarová “A comparison of evidential networks and compositional models” Kybernetika (2014), n. 2, pp. 246-267. (an article, WoS)

• M. Gyssens, M. Niepert, D. van Gucht “On the completeness of the semigraphoid axioms for deriving arbitrary from saturated conditional independence statements” Information Processing Letters 114 (2014), n. 11, pp. 628-633. (an article, WoS)

The conference paper [C2] (1 citation)

is cited in the following publication:

The conference paper [C3] (3 citations)

is cited in the following publications:
• B. Vantaggi “The role of coherence for handling probabilistic evaluations and independence” Soft Computing 9 (2005), n. 8, pp. 617-628. (an article)

The conference paper [C4] (10 citations)
is cited in the following publications:

• F. V. Jensen “Graphical models as languages for computer assisted diagnosis and decision making” in Symbolic and Quantitative Approaches to Reasoning and Uncertainty, Lecture Notes in Computer Science 2143, 2001, pp. 1-15. (a conference paper)

• L. Zeng, S. Zhou “Inferring the interactions in complex manufacturing processes using graphical models” Technometrics 49 (2007), n. 4, pp. 373-381. (an article)

• A. Hommersom, N. Ferreira, P. J. F. Lucas “Integrating logical reasoning and probabilistic chain graphs” in Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science 5781, 2009, pp. 548-593. (a conference paper)
The conference paper [C5] (8 citations)
is cited in the following publications:

- A. Roverato “A unified approach to the characterization of equivalence classes of DAGs, chain graphs with no flags and chain graphs” Scandinavian Journal of Statistics 32 (2005), n. 2, pp. 295-312. (an article, SCI, scopus)

The conference paper [C6] (6 citations)
is cited in the following publication:

• J. Ferrández, E. F. Castillo, P. Sanmartín “Temporal aggregation in chain graph models” Journal of Statistical Planning and Inference 133 (2005), n. 1, pp. 69-93. (an article)

• S. Byrne “Hyper and structural Markov laws for graphical models” PhD thesis, University of Cambridge (UK), 2011. (a thesis)

The conference paper [C7] (11 citations)

is cited in the following publications:

• J. A. T. Koster “Marginalizing and conditioning in graphical models” Bernoulli 6 (2002), n. 6, pp. 817-840. (an article, scopus)

• D. Wu, M. Wong “Marginal factorization of Bayesian networks and its application” International Journal of Intelligent Systems 19 (2004), n. 8, pp. 767-786. (an article, scopus)

• J. Corander, M. Ekdahl, T. Koski “Parallell interacting MCMC for learning of topologies of graphical models” Data Mining and Knowledge Discovery 17 (2008), n. 3, pp. 431-456. (an article, scopus)

• J. M. Peña “Faithfulness in chain graphs: the discrete case” International Journal of Approximate Reasoning 50 (2009), n. 8, pp. 1306-1313. (an article, scopus)

The conference paper [C8] (12 citations)
is cited in the following publications:

- B. Ben Yaghlane, P. Smets, K. Mellouli “Belief function independence: II. the conditional case” International Journal of Approximate Reasoning 31 (2002), n. 1-2, pp. 31-75. (an article, scopus)
- S.-H. Kim “Learning model structures on marginal model structures of undirected graphs” research report n. BK21, Department of Mathematical Sciences, Korea Institute of Science and Technology, March 2009. (a technical report)
- M. S. Massa, S. L. Lauritzen “Combining statistical models” Contemporary Mathematics 516 (2010), pp. 239-259. (an article)

The conference paper [C9] (10 citations)
is cited in the following publication:

• A. Delaplace “Approche évolutionnaire de l’apprentissage de structure pour les réseaux bayésiens” (in French), PhD thesis, Université François Rabelais Tours, 2007. (a thesis)

• D. Vidaurre, C. Bielza, P. Larrañaga “Learning an L1-regularized Gaussian Bayesian network in the equivalence class space” IEEE Transactions on Systems, Man, and Cybernetics B 40 (2010), n. 5, pp. 1231-1242. (an article)

The conference paper [C10] (2 citations)

is cited in the following publication:

• D. Wu, M. Wong “Marginal factorization of Bayesian networks and its application” International Journal of Intelligent Systems 19 (2004), n. 8, pp. 767-786. (an article, scopus)

The conference contribution [D1] (1 citation)

is cited in the following publication:

The conference contribution [D3] (1 citation)
is cited in the following publication:

• L. Ferracuti, B. Vantaggi “Independence and conditional possibility for strictly monotone triangular norms” International Journal of Intelligent Systems 21 (2006), n. 3, pp. 299-323. (an article, scopus)

The conference contribution [D5] (4 citations)
is cited in the following publications:

• P. Šimeček “Independence models”, in Proceedings of the 7th workshop on Uncertainty Processing (WUPES’06), Mikulov, September 16-20, 2006, pp. 151-161. (a conference contribution)

The conference contribution [D6] (2 citations)
is cited in the following publications:

The conference contribution [D7] (16 citations)

is cited in the following publications:

• B. Li, S. Cai, J. Guo “A computational algebraic-geometry method for conditional-independence inference” Frontiers of Mathematics in China 8 (2013), n. 3, pp. 567-582. (an article, Scopus, WoS)

• D. Petturiti “Asymmetric decomposability and persegram representation in coherent conditional probability theory” Soft Computing 17 (2013) 2131-2145. (an article, Scopus, WoS)

The conference contribution [D11] (1 citation)

is cited in the following publication:

The conference contribution [D12] (3 citations)

is cited in the following publications:

• F. Matúš “Inequalities for Shannon entropies and adhesivity of polymatroids” in the 9th Canadian Workshop on Information Theory, Montreal, Canada, 2005, pp. 28-31. (a conference paper)

The conference contribution [D15] (2 citations)

is cited in the following publications:

- B. C. Li, J. H. Guo “Decomposition of two classes of structural models” Frontier of Mathematics in China 8 (2013), n. 6, pp. 1323-1349. (an article, WoS)

The conference contribution [D16] (2 citations)

is cited in the following publication:

- A. Garrido “Essential graphs and bayesian networks” in Proceeding of the 1st International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems, CANS 2008, Article number 5231454, pp. 149-156. (a conference contribution, scopus)
- B. Li, S. Liu, Z. Li “Combined algorithm for the essential graph of Bayesian network structures” Journal of Electronics 27 (2010), n. 6, pp. 822-829. (an article, scopus)

The conference contribution [D19] (4 citations)

is cited in the following publication:

The thesis [E1] (4 citations)

is cited in the following publication:

- D. Preiss “Geometry of measures in \(\mathbb{R}^n \): Distribution, rectifiability, and densities” Annals of Mathematics 125 (1987), pp. 537-643. (an article, SCI)

The thesis [E2] (4 citations)

is cited in the following publications:

- F. Matúš “Discrete marginal problem for complex measures” Kybernetika 24 (1988), n. 1, pp. 36-44. (an article, SCI)

The thesis [E3] (6 citations)

is cited in the following publications:

• X. Che “Spatial graphical models with discrete and continuous components” PhD thesis, Oregon State University, 2012. (a thesis)

The research report [F2] (1 citation)

is cited in the following publication:

• F. Matúš “Discrete marginal problem for complex measures” Kybernetika 24 (1988), n. 1, pp. 36-44. (an article, SCI)

The research report [F3] (1 citation)

is cited in the following publication:

• N. Wilson “Generating graphoids from generalized conditional probability” in Uncertainty in Artificial Intelligence 10 (R. L. de Mantaras, D. Poole eds.), Morgan Kaufmann, San Francisco 1994, pp. 583-590. (a conference paper)

The research reports [F5,F6] (2 citations)

are cited in the following publications:

• F. Matúš “Extreme convex set functions with many nonnegative differences” Discrete Mathematics 135 (1994), pp. 177-191. (an article)

The research report [F9] (3 citations)

is cited in the following publications:

is cited in the following publications:

• B. Li, S. Cai, J. Guo “A computational algebraic-geometry method for conditional-independence inference” Frontiers of Mathematics in China 8 (2013), n. 3, pp. 567-582. (an article, scopus)

is cited in the following publications:

• D. Wu, M. Wong “Marginal factorization of Bayesian networks and its application” International Journal of Intelligent Systems 19 (2004), n. 8, pp. 767-786. (an article, scopus)

• I. Tsamardinos, L. E. Brown, C. F. Aliferis “The max-min hill-climbing Bayesian network structure learning” Machine Learning 65 (2006), n. 1, pp. 31-78. (an article)

• V. Kratochvíl “Motivation for different characterization of equivalent persegrams” in Proceedings of the 12th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, Litomyšl, Czech republic 2009. (a conference contribution)

• V. Kratochvíl “Characteristic properties of equivalent structures in compositional models” International Journal of Approximate Reasoning 52 (2011), n. 5, pp. 599-612. (an article)

The research report [F16] (2 citations)
is cited in the following publications:

• A. Jarraya, P. Leray, a. Masmoudi “Discrete exponential Bayesian networks: definition, learning and application for density estimation” Neurocomputing 137 (2014), pp. 142-149. (an article, WoS)

The paper available in electronic form [H1] (5 citations)
is cited in the following publication:

is cited in the following publications:

• R. Jiroušek “On a conditional irrelevance relation for belief functions based on the operation of composition” in Dynamics of Knowledge and Belief, Proceedings of KI-2007 (C. Beierle, G. Kern-Isberner eds.), pp. 28-41. (a conference contribution)