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Chapter 1IntroductionThe central topic of this work is how to describe the structures of probabilistic conditionalindependence in a way that the corresponding mathematical model has both relevantinterpretation and o�ers the possibility of computer implementation.It is a mathematical work which, however, found its motivation in arti�cial intelligenceand statistics. In fact, these two �elds are the main areas where the concept of conditionalindependence was successfully applied. More speci�cally, graphical models of conditionalindependence structure are widely used in� analysis of contingency tables which is an area of discrete statistics dealing withcategorical data,� multivariate analysis which is a branch of statistics investigating mutual relation-ships among continuous real-valued variables,� probabilistic reasoning which is an area of arti�cial intelligence where decision-making under uncertainty is done on basis of probabilistic models.Moreover, (non-probabilistic) concept of conditional independence was introduced andstudied in several other calculi for dealing with knowledge and uncertainty in arti�cial in-telligence (e.g. relational databases, possibility theory, Spohn's kappa-calculus, Dempster-Shafer's theory of evidence). Thus, the presented work has multidisciplinary avour. Nev-ertheless, it certainly falls within the scope of informatics or theoretical cybernetics, andthe main emphasis is put on mathematical groundings.The work uses concepts from several branches of mathematics, in particular measuretheory, discrete mathematics, information theory and algebra. Occasional links to furtherareas of mathematics occur throughout the work, e.g. to probability theory, mathematicalstatistics, topology and mathematical logic.1.1 Motivation accountThe reader is asked to excuse the following 'methodological' consideration which perhapsexplains my motivation. In the sequel I formulate six general questions of interest whichmay arise in connection with every particular method of description of conditional inde-pendence structures. I think that these questions should be answered in order to judgefairly and carefully the quality and suitability of every particular considered method.6
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Figure 1.1: Theoretical groundings (informal illustration).To be more speci�c one can assume a general situation illustrated by Figure 1.1.One would like to describe conditional independence structures (shortly CI structures)induced by probability distributions from a given �xed class of distributions over a setof variables N . For example, one can consider the class of discrete measures over N (seep. 13), the class of non-degenerate Gaussian measures over N (see p. 28), the class ofCG measures over N (see p. 54) or any speci�c parametrized class of distributions. Inprobabilistic reasoning every particular discrete probability measure over N represents'global' knowledge about a (random) system involving variables of N . That means, itserves as a knowledge representative. Thus, one can take even a more general pointof view and consider a general class of knowledge representatives within an (alternative)uncertainty calculus of arti�cial intelligence instead of the class of probability distributions(e.g. a class of possibilistic distributions over N , a class of relational databases over Netc.).Every knowledge representative of this kind induces a formal independence model overN (for de�nition see Section 2.2.1 on p. 14). Thus, the class of induced conditional inde-pendence models is de�ned, or in other words, the class of CI structures to be describedis speci�ed (the shaded respectively coloured area in Figure 1.1). Well, one has in minda method of description of CI structures in which objects of discrete mathematics, forexample graphs, �nite lattices or discrete functions, are used to describe CI structures.Typical examples are classic graphical models widely used in multivariate statistics andprobabilistic reasoning (for details see Chapter 3). It is supposed that every object of thistype induces a formal independence model over N . Intended interpretation is that theobject then 'describes' the induced independence model so that it can possibly describea conditional independence model, that is one of the CI structures to be described.The de�nition of the induced model depends on the type of considered objects. Ev-ery class of objects has its speci�c criterion according to which a formal independencemodel is ascribed to a particular object. For example, various separation criteria for clas-sic graphical models were obtained as a result of development of miscellaneous Markovproperties (see Remark 3.1 in Section 3.1). Evolution ended by the concept of 'global7



Markov condition' which establishes a graphical criterion how to determine the maximalset of conditional independence statements represented in a given graph. This set is theinduced formal independence model then. The above mentioned implicit assumption isa basic requirement of consistency , that is the requirement that every object in the con-sidered class of objects has undoubtedly ascribed a certain formal independence model.Note that some recently developed graphical approaches (see Section 3.5.3) still need tobe developed up till the concept of global Markov condition so that they will comply withthe basic requirement of consistency.Under situation above I can formulate �rst three questions of interest which, in myopinion, are the most important theoretical questions in this general context.� Faithfulness is the question whether every considered object indeed describes oneof the CI structures to be described.� Completeness is the question whether every CI structure to be described is describedby one of the considered objects. In case this is not the case an advanced subtaskoccurs, namely to characterize conveniently those formal independence models whichcan be described by the considered objects.� Equivalence question involves the taks to characterize in a suitable way equivalentobjects, that is objects describing the same CI structure. An advanced subquestionis whether one can �nd a suitable representative for every class of equivalent objects.The phrase 'faithfulness' was inspired by terminology of [94] where it has similar meaningfor graphical objects. Of course, the above notions depend on the considered class ofknowledge representatives so that one can di�erentiate between faithfulness in discreteframework (= relative to the class of discrete measures) and faithfulness in Gaussianframework. Note that in case of classic graphical models faithfulness is usually ensuredwhile completeness is not (see Section 3.6). To avoid misunderstanding let me explain thatsome authors in the area of (classic) graphical model, including myself, have also used atraditional term \(strong) completeness of a separation graphical criterion" [31, 69, 112,54]. However, according to the classi�cation above, results of this type belong to theresults gathered under label 'faithfulness' (customary reasons of traditional terminologyare explained in Remark 3.2 on p. 38). Thus, I distinguish between 'completeness of acriterion' on one hand and 'completeness of a class of objects' (for description of a classof CI structures) one the other hand. Let me remark that not all relevent theoreticalquestions can be included in the above classi�cation, e.g. the 'inclusion problem' (see p.129) which can perhaps be regarded as a speci�c extension of the equivalence questionmotivated by additional practical questions.Let me formulate three remaining questions of interest which, in my opinion, are themost important practical questions in this context (for an informal illustrative picture seeFigure 1.2).� Interpretability is the question whether considered objects of discrete mathematicscan be conveyed to humans in an acceptable way. That usually means whether theycan be visualized in a way that they are understood easily and interpreted correctlyas CI structures. 8



'& $% - �'
&

$
%

'
&

$
%-�

�� ��??

�� ��??HUMAN interpretationlearning
COMPUTERimplementation

DATAlearning
THEORETICAL GROUNDINGS (seeFigure1

.1)

Figure 1.2: Practical questions (informal illustration).� Learning or 'identi�cation' is the question how to determine the most suitable CIstructure either on basis of statistical data (= estimation problem) or on basis ofexpert knowledge provided by human experts. An advanced statistical subtask isto determine even a particular probability distribution inducing the CI structure.� Implementation is the question how to manage the corresponding computationaltasks. An advanced subquestion is whether acceptance of a particular CI structureallows one to do respective subsequent calculation with probability distributionse�ectively, namely whether the describing objects clue in calculation.Classic graphical models are easily acceptable by humans but their pictorial representationmay sometimes lead to another interpretation. For example, acyclic directed graphscan be either interpreted as CI structures or one can prefer 'causal' or 'deterministic'interpretation of their edges [94] which is di�erent. Concerning computational aspectsalmost ideal framework is provided by the class of decomposable models which is a specialclass of graphical models (see Section 3.4.1). This is a basis of well-known method of 'localcomputation' [49] which is behind several working probabilistic expert systems [17, 35].Of course, the presented questions are connected each other. For example, structurelearning from experts certainly depends on interpretation while (advanced) distributionlearning is closely related to the 'parametrization problem' (see p. 147) which has a strongcomputational aspect.The goal of this motivation account is the idea that the practical questions are alsostrongly connected with theoretical groundings. Thus, in my opinion, before inspectionof practical questions one should �rst solve the related theoretical questions thoroughly.Regretably, some researches in arti�cial intelligence (marginally in statistics) do not pay9



enough attention to theoretical groundings and concentrate mainly on practical issues likesimplicity of accepted models either from the point of view of computation or visualization.They usually settle in a certain class of 'nice' graphical models (e.g. Bayesian networks- see p. 39) and do not realize that their later technical problems are caused by thislimitation.Even worse, limitation to a small class of models may lead to serious methodologicalerrors! Let me give an example which is my main source of motivation. Consider ahypothetical situation when one is trying to learn CI structure induced by a discretedistribution on basis of statistical data. Suppose, moreover, that one is limited to acertain class of classic graphical models, say Bayesian networks. It is known that thisclass is not complete in discrete framework (see Chapter 3). Therefore one searches for'the best approximation'. Well, some of the learning algorithms for graphical modelsbrowse thorough the class of possible graphs as follows. One starts with a graph withmaximal number of edges, performs certain statistical tests for conditional independencestatements and represents the acceptance of these statements by removal of certain edgesin the graph. Well, this is a correct procedure in case that the underlying probabilitydistribution indeed induces a CI structure which can be described by a graph within theconsidered class of graphs. However, in general, this edge removal represents acceptanceof a new graphical model together with all other conditional independence statementswhich are represented in the 'new' graph but which may not be valid with respect to theunderlying distribution. Let me emphasize once more that this erroneous acceptance offurther conditional independence statements is made on basis of a 'correctly recognized'conditional independence statement!Thus, this error is indeed forced by the limitation to a certain class of graphicalmodels which is not complete. Note that an attitude like this was already criticizedseveral times (see e.g. [125]). In my opinion, these repeated problems in solving practicalquestion of learning are inevitable consequences of omission of theoretical groundings,namely the question of completeness. This maybe motivated several recent attempts tointroduce wider and wider classes of graphs which, however, loose easy interpretation anddo not achieve completeness. Therefore, in this work, I propose a non-graphical methodof description of probabilistic CI structures which primarily solves the completeness andhas a potential to take care of practical questions.1.2 Goals of the workThe aim of the present work is threefold. The �rst goal is to make an overview of clas-sic methods of description of (probabilistic) CI structures. These methods use mainlygraphs whose nodes correspond to variables as a basic tool for visualization and inter-pretation. The overview involves basic results about conditional independence includingthose published in my earlier papers.The second goal is to present a mathematical basis of an alternative method of descrip-tion of probabilistic CI structures. My alternative method removes certain basic defectsof classic methods.The third goal is an outline of those directions in which the presented method needsto be developed in order to satisfy the requirements of practical applicability. It involvesthe list of open problems and promising directions of research.10



The work is perhaps longer and more detailed than it could be. The reason is thatnot only experts in the �elds and mathematicians are expected audience. My intentionwas to write a report which can be read and understood by PhD students in computerscience and statistics. This was the main stimulus which made me to solve the dilemma'understandability' versus 'conciseness' in favour of preciseness and understandability.1.3 Structure of the workChapter 2 is an overview of basic de�nitions, tools and results concerning the concept ofconditional independence. These notions, including the notion of imset which is a certaininteger-valued discrete function, are supposed to be a theoretical basis of the rest of thework.Chapter 3 is an overview of graphical methods for description of CI structures. Bothclassic approaches (undirected graphs, acyclic directed graphs and chain graphs) andrecent attempts are included. The chapter makes for a conclusion that a non-graphicalmethod achieving completeness (see Section 1.1, p. 8) is needed.Chapter 4 introduces a method of this type. The method uses certain imsets, calledstructural imsets, to describe probabilistic CI structures. It is shown that three possibleways of associating probability distributions and structural imsets are equivalent.Chapter 5 compares two di�erent (but equivalent) ways of description CI structures bymeans of imsets. It is shown that every probabilistic CI structure can be described usingthis approach and a duality relation between these two ways of description is established.Chapter 6 is devoted to an advanced question of Markov equivalence (see Section 1.1,p. 8) within the framework of structural imsets. Certain characterization of equivalentimsets is given and related implementation tasks are discussed.Chapter 7 deals with the problem of choice of a suitable representative of a classof equivalent structural imsets. Possible approaches to this problem are proposed androughly compared.Chapter 8 is an overview of open problems to be studied in order to tackle practicalquestion (see Section 1.1 p. 8-9). Chapter 9 (Conclusions) summarizes the presentedmethod.The Appendix (Chapter 10) is an overview of concepts and facts which are supposedto be elementary and can be omitted by an advanced reader. They are added for severalminor reasons: to clarify and unify terminology, to broaden circulation readership andto make reading comfortable as well. It can be used with help of the Index. Referencesconclude the work.
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Chapter 2Basic conceptsThroughout the work the symbol N will denote a non-empty �nite set of variables. In-tended interpretation is that the variables correspond to primitive factors described byrandom variables. In Chapter 3 variables will be represented by nodes of graphs. Theset N will also serve as the basic set for non-graphical tools of discrete mathematicsintroduced in this work (semi-graphoids, imsets etc.).The following convention will be used throughout the work: given A;B � N thejuxtaposition AB will denote their union A [ B. Moreover, the following symbols willbe reserved for sets of numbers: R will denote real numbers, Q rational numbers, Zintegers, Z+ non-negative integers (including 0), N natural numbers (that is positiveintegers without 0). The symbol jAj will be used to denote the number of elements of a�nite set A, that is its cardinality. Moreover, the symbol jxj will also denote the absolutevalue of a real number x, that is jxj = max fx;�xg.2.1 Conditional independenceBasic notion of this work is a probability measure over N . This phrase will be used todescribe the situation when a measurable space (Xi;Xi) is given for every i 2 N and aprobability measure P is de�ned on the Cartesian product (Qi2N Xi; Qi2N Xi). In thiscase I will use (XA;XA) as a shorthand for (Qi2A Xi; Qi2AXi) for every ; 6= A � N . Themarginal of P for ; 6= A � N , denoted by PA, is de�ned by the formulaPA(A) = P (A� XNnA) for A 2 XA :Moreover, let us accept two conventions. First, the marginal of P for A = N is P itself,that is PN � P . Second, fully formal convention is that the marginal of P for A = ;is a probability measure on a (�xed appended) measurable space (X;;X;) with trivial�-algebra X; = f;;X;g. Observe that a measurable space of this kind admits only oneprobability measure P ;.To give the de�nition of conditional independence within this framework one needscertain general understanding of the concept of conditional probability. Given a prob-ability measure P over N and disjoint sets A;C � N by conditional probability on XAgiven C (more speci�cally given XC) will be understood a function of two argumentsPAjC : XA � XC ! [0; 1] which ascribes a XC-measurable function PAjC(Aj�) to every12



A 2 XA such thatPAC(A� C) = ZC PAjC(Ajx) dPC(x) for every C 2 XC :Note that no restriction concerning the mappings A 7! PAjC(Ajx), x 2 XC (often called theregularity requirement - see Section 10.5, Remark on p. 158) is needed within this generalapproach. Let me emphasize that PAjC depends on the marginal PAC only and that itis de�ned, for a �xed A 2 XA, uniquely within the equivalence PC-almost everywhere.Observe that, owing to the convention above, in case C = ; the conditional probabilityPAjC coincides in fact with the marginal for A, that means one has PAj; � PA (because aconstant function can be identi�ed with its value).Remark 2.1 The conventions above are in concordance with the following unifying per-spective. Realize that for every ; 6= A � N the measurable space (XA;XA) is isomorphicto the space (XN ; �XA) where �XA � XN is a certain �-algebra representing the set A sothat inclusion of sets is reected, namely�XA = fA� XNnA ; A 2 XAg = fB 2 XN ; B = A� XNnA for A � XAg :It is natural to require then that the empty set ; is represented by the trivial �-algebra�X; over XN and N is represented by �XN = XN . Using this point of view, the marginalPA corresponds to the restriction of P to �XA, and PAjC corresponds to the concept ofconditional probability with respect to the �-algebra �XC . Thus, the existence and abovementioned uniqueness of PAjC follows from basic measure-theoretical facts, for details seethe Appendix, Section 10.5. 4Given a probability measure P over N and pairwise disjoint subsets A;B;C � None says that A is conditionally independent of B given C with respect to P and writesA ?? B jC [P ] if for every A 2 XA and B 2 XBPABjC(A� Bjx) = PAjC(Ajx) � PBjC(Bjx) for PC-a.e. x 2 XC : (2.1)Observe that in case C = ; it collapses to a simple equality PAB(A�B) = PA(A) �PB(B),that is to classic independence concept. Note that the validity of (2.1) does not dependon the choice of versions of conditional probabilities given C since these are determineduniquely just within equivalence PC-almost everywhere.Remark 2.2 Let me specify the de�nition for the case of discrete measures over N , whenXi is a �nite non-empty set and Xi = P(Xi) for every i 2 N . Then PAjC is determineduniquely exactly on the set fx 2 XC ; PC(fxg) > 0g by means of the formulaPAjC(Ajx) = PAC(A� fxg)PC(fxg) for every A � XA ;so that A ?? B jC [P ] is de�ned as follows:PABjC(A� Bjx) = PAjC(Ajx) � PBjC(Bjx)for every A � XA; B � XB and x 2 XC with PC(fxg) > 0. Of course, A and B can bereplaced by singletons in this case. Note that the fact that the equality PC-a.e. concideswith the equality on a certain �xed set is a speciality of discrete case. Other commonequivalent de�nitions of conditional independence will be mentioned in Section 2.3. 413



However, the concept of conditional independence is not exclusively a probabilisticconcept. It was introduced in several non-probabilistic frameworks, namely in variouscalculi for dealing with uncertainty in arti�cial intelligence - for details and overview see[104, 20, 92]. Formal properties of respective conditional independence concepts maydi�er in general, but an important fact is that certain basic properties of conditionalindependence appear to be valid in all these frameworks.2.2 Semi-graphoid propertiesSeveral authors independently drew attention to these basic formal properties of condi-tional independence. In modern statistics, they were �rst accentuated by Dawid [19],then mentioned by Mouchart and Rolin [71], van Putten and van Shuppen [81]. Spohn[96] interpreted them in the context of philosophical logic. Finally, their signi�cance in(probabilistic approach to) arti�cial intelligence was discerned and highlighted by Pearland Paz [77]. Their terminology [78] was later widely accepted, so that researchers inarti�cial intelligence started to call them the semi-graphoid properties.2.2.1 Formal independence modelsFormally, a conditional independence statement over N is a statement of the form \A isconditionally independent of B given C" where A;B;C � N are pairwise disjoint subsetsof N . A statement of this kind should be always understood with respect to a certainmathematical object o over N , for example a probability measure over N . However,several other objects can occur in place of o, for example a graph over N (see Chapter 3),possibility distributions over N [14, 117], relational databases over N [88] or a structuralimset over N (see Section 4.4.1). The notation A ?? B jC [o] will be used then; but thesymbol [o] can be omitted when it is suitable.Thus, every conditional independence statement corresponds to a disjoint triplet overN , that is a triplet hA;BjCi of pairwise disjoint subsets of N . Here, the punctationanticipates the intended role of component sets. The third component, put after thestraight line, is the conditioning set while two former components are independent areas,usually interchangeable. Formal di�erence is that a triplet of this kind can be interpretedeither as the corresponding independence statement, or (alternatively) as its negation,that is the corresponding dependence statement. Occasionally, I will use the symbolA>>B jC [o] to denote the dependence statement which corresponds to hA;BjCi. Theclass of all disjoint triples over N will be denoted by T (N).Having established the concept of conditional independence within a certain frameworkof mathematical objects over N , every object o of this kind de�nes a certain set of disjointtriplets over N , namelyMo = f hA;BjCi 2 T (N); A ?? B jC [o] g:Let us call it the conditional independence model induced by o. This phrase is used toindicate that the involved triplets are interpreted as independence statements althoughfrom purely mathematical point of view it is nothing but a subset of T (N). Thus, theconditional independence model induced by a probability measure P over N (accordingto the de�nition from Section 2.1) is a special case. Conversely, any class M� T (N) of14



disjoint triplets over N can be formally interpreted as a conditional independence modelif one de�nes A ?? B jC [M] � hA;BjCi 2 M :By restriction of a formal independence modelM over N to a set ; 6= T � N will be un-destood the classM\T (T ) denoted byMT . Evidently, the restriction of a (probabilistic)conditional independence model is again a conditional independence model.Remark 2.3 This is to explain my limitation to disjoint triplets over N because some au-thors [19] do not make this restriction at all. For simplicity of explanation consider discreteprobabilistic framework. Indeed, one can introduce, for a discrete probability measure Pover N , the statement A ?? B jC [P ] even for non-disjoint triplets A;B;C � N in areasonable way [27, 61]. However, then the statement A ?? A jC [P ] has speci�c inter-pretation, namely that the variables in A are functionally dependent on the variables inC (with respect to P ), so that it can be interpreted as a functional dependence statement.Let us note (cf. Section 2 in [61]) that one can easily derive thatA ?? B jC [P ], f (A \B) n C ?? (A \B) n C jC [ (B n A) [P ] & A n C ?? B n AC jC [P ] g:Thus, every statement A ?? B jC of general type can be \reconstructed" from functionaldependence statements and from pure conditional independence statements described bydisjoint triplets. The topic of this work are pure conditional independence structures;therefore I limit myself to pure conditional independence statements. 42.2.2 Semi-graphoidsBy a disjoint semi-graphoid over N is understood any set M� T (N) of disjoint tripletsover N (interpreted as independence statements) such that the following conditions holdfor every collection of pairwise disjoint sets A;B;C;D � N :1. triviality A ?? ; jC [M],2. symmetry A ?? B jC [M] implies B ?? A jC [M],3. decomposition A ?? BD jC [M] implies A ?? D jC [M],4. weak union A ?? BD jC [M] implies A ?? B jDC [M],5. contraction A ?? B jDC [M] and A ?? D jC [M] implies A ?? BD jC [M].Note that the terminology above was proposed by Pearl [78] who formulated the formalproperties above in the form of inference rules, gave them special names and interpretationand called them the semi-graphoid axioms. Of course, the restriction of a semi-graphoidis a semi-graphoid. An important fact is the following one.Lemma 2.1 Every conditional independence model induced by a probability measureover N is a disjoint semi-graphoid over N .Proof: This can be derived easily from Consequence 10.1 proved in the Appendix (seep. 160). Indeed, having a probability measure P over N de�ned on a measurable space(XN ;XN) one can identify every subset A � N with a �-algebra �XA � XN in the waydescribed in Remark 2.1. Then, for a disjoint triplet hA;BjCi over N , the statementA ?? B jC [P ] is equivalent to the requirement �XA ?? �XB j �XC [P ] introduced in Section15



10.6. Having in mind that �XAB = �XA_ �XB for A;B � N the rest follows from Consequence10.1.Note that the above mentioned fact is not a special feature of probabilistic framework.Also conditional independence models occuring within other uncertainty calculi mentionedin the end of Section 2.1 are (disjoint) semi-graphoids. Well, even various graphs over Ninduce semi-graphoids, as explained in Chapter 3.Remark 2.4 The limitation to disjoint triplets in the de�nition of semi-graphoid, is notsubstantial. One can introduce an abstract semi-graphoid on a joint semi-lattice (S;_) asa ternary relation � ?? � j � over elements A;B;C;D of S satisfying� A ?? B jC whenever B _ C = C,� A ?? B jC i� B ?? A jC,� A ?? B _D jC i� [A ?? B jD _ C & A ?? D jC ].Taking S = P(N) one obtains the de�nition of a non-disjoint semi-graphoid over N . Amore complicated example is the semi-lattice of all �-algebras A � X in a measurablespace (X;X ) and the relation ?? of conditional independence of �-algebras with respect toa probability measure over (X;X ) (see Consequence 10.1). This perspective leads to thegeneral notion of separoid introduced in [22] which is a mathematical structure unifyingvariety of notions of 'irrelevance' arising in probability, statistics, arti�cial intelligence andother �elds. 42.2.3 Elementary independence statementsWell, to store a semi-graphoid over N in memory of a computer one need not allocate alljT (N)j = 4jN j bits. A more economic way of their representation is feasible. Of course,one can evidently omit trivial statements which correspond to triplets hA;BjCi over Nwith A = ; or B = ;. Let us denote the class of respective 'trivial' disjoint triplets overN by T�(N).However, principal importance have elementary statements or triplets, that is disjointtriplets hA;BjCi over N where both A and B are singletons (c.f. [2, 59]). A simplifyingconvention will be used in that case: braces in singleton notation will be omitted so thathi; jjKi or i ?? j jK will be written only. The class of elementary triplets over N will bedenoted by T�(N).Lemma 2.2 Suppose that M is a semi-graphoid over N . Then, for every disjoint triplethA;BjCi over N , one has A ?? B jC [M] i� the following condition holds8 i 2 A 8 j 2 B 8C � K � ABC n fi; jg i ?? j jK [M]: (2.2)In particular, every semi-graphoid is determined by its trace within the class of elementarystatements (i.e. by the intersection with T�(N)).Proof: (see also [59]) The necessity of the condition (2.2) is easily derivable using de-composition and weak union combined with symmetry.16



For converse implication suppose (2.2) and that hA;BjCi is not a trivial triplet over N(othervise it is evident). Use induction on jABj; the case jABj = 2 is evident. SupposingjABj > 2 either A of B is not a singleton. Owing to symmetry one can consider withoutloss of generality jBj � 2, choose j 2 B and put B0 = B n fjg. By induction assumption(2.2) implies both A ?? j jB0C [M] and A ?? B0 jC [M]. Hence, by application of thecontraction property A ?? B jC [M] is derived.Sometimes, an elementary mode of representation of semi-graphoids (that is by thelist of contained elementary statements) is more suitable. The characterization of thosecollections of elementary triplets which represent semi-graphoids is given in [59].Remark 2.5 Another reduction of memory demands for semi-graphoid representationfollows from symmetry. Instead of keeping a pair of mutually symmetric statementsi ?? j jK and j ?? i jK one can choose only one of them according to a suitable criterion.In particular, to represent a semi-graphoid over N with jN j = n it su�ces to have onlyn � (n� 1) � 2n�3 bits. Note that the idea above is also reected in Section 4.2.1 where justone function corresponds to a 'symmetric' pair of elementary statements.However, further reduction of the class of considered statements is not possible. Thereason is as follows: every elementary triplet hi; jjKi over N generates a semi-graphoidover N consisting of hi; jjKi, its symmetric image hj; ijKi and trivial triplets over N (c.f.Lemma 4.5). In fact, these are minimal non-trivial semi-graphoids over N and one has todistinguish them from other semi-graphoids over N . Of course, the above mentioned factmotivated the terminology. 42.2.4 Problem of axiomatic characterizationPearl and Paz [77, 78] formulated a conjecture that semi-graphoids coincide with con-ditional independence models induced by discrete probability measures. However, thisconjecture was refuted in [100] by �nding a further formal property of these models, notderivable from semi-graphoid properties, namely[A ?? B jCD & C ?? D jA & C ?? D jB & A ?? B j ; ] ,, [C ?? D jAB & A ?? B jC & A ?? B jD & C ?? D j ; ]:Another formal property of this sort was later derived in [2]. Consequently, a naturalquestion occured. Can conditional independence models arising in discrete probabilisticsetting be characterized in terms of a �nite number of formal properties of this type? Thisquestion is known as the problem of axiomatic characterization since a result of this kindwould have been a substantial step towards a syntactic description of these models insense of mathematical logic. Indeed, as explained in Section 5 of [102], then it would havebeen possible to construct a deductive system which is an analogue of the notion \formalaxiomatic theory" from [70]. The wished formal properties then would have played the roleof syntactic inference rules of an axiomatic theory of this sort. Unfortunately, the answerto the question above is also negative. It was shown in [102] (for a more didactic proofsee [115]) that for every n 2 N there exists a formal property of (discrete) probabilisticconditional independence models which applies on a set of variables N with jN j = n butwhich cannot be revealed on a set of less cardinality. Note that a basic tool for derivationof these properties was the multiinformation function introduced in Section 2.3.4.17



On the other hand, having �xed N , a �nite number of possible conditional indepen-dence models over N suggests that they can be characterized in terms of a �nite numberof formal properties. Thus, a related task is, for a small cardinality of N , to characterizethem in that way. Well, it makes no problem to verify that in case jN j = 3 they coincidewith semi-graphoids (see Figure 5.6 for illustration). Discrete probabilistic conditionalindependence models over N with jN j = 4 were characterized in recently completed seriesof papers [64, 65, 67]. For an overview see [107] where respective formal properties areexplicitly formulated (one has 18300 di�erent conditional independence models over Nwhich can be characterized by more than 28 formal properties).Remark 2.6 On the other hand several results on relative completeness of semi-graphoidproperties were achieved. In [32] and independently in [62] models of \unconditional"stochastic independence (that is submodels consisting of unconditioned independencestatements, i.e. statements of the form A ?? B j ; ) were characterized by means of prop-erties derivable from semi-graphoid properties. Analogous result for the class of saturatedor �xed-context conditional independence statements, that is statements A ?? B jC withABC = N , was achieved independently in papers [33, 56]. As a speci�c relative com-pleteness result can be interpreted the result from [109] saying that the semi-graphoidgenerated by a couple of conditional independence statements is always a conditional in-dependence model induced by discrete probability measure. Note that the problem ofaxiomatic characterization of CI models mentioned above di�ers from the problem of ax-iomatization (in sense of mathematical logic) of a single CI structure over an in�nite setof variables N treated in [46]. 42.3 Classes of probability measuresThere is no uniform conception of the notion of probability distribution in literature. Inprobability theory authors usually understand by a distribution of a (n-dimensional real)random vector an induced probability measure on the respective sample space (Rn en-dowed with the Borel �-algebra), that is a set function on the sample (measurable) space.On the other hand, authors in arti�cial intelligence usually identify a distribution of a(�nitely-valued) random vector with a pointwise function on the respective (�nite) sam-ple space, ascribing probability to every con�guration of values (= to every element ofthe sample space Qi2N Xi, where Xi are �nite sets). In statistics, either the meaningwavers between these two basic approaches, or authors even avoid the dilemma by de-scribing speci�c distributions directly by their parameters (e.g. covariance matrix of aGaussian distribution). Therefore, no exact meaning is assigned to the phrase 'probabil-ity distribution' in this work; it is used only in general sense, mainly in vague motivationparts. Moreover, terminological distinction is made between those two above mentionedapproaches. The concept of probability measure over N from Section 2.1 rather reectsthe �rst approach, which is more general. To relate this to the second approach one hasto make an additional assumption on a probability measure P so that it can be also de-scribed by a pointwise function, called the density of P . Note that many authors simplymake an assumption of this type implicitly without mentioning it.In this section, basic facts about these special probability measures are recalled andseveral important subclasses of the class of measures having density (called 'marginally18
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Figure 2.1: The relation of basic classes of probability measures over N .continuos measures') are introduced. One of them, the class of measures with �nite multi-information is strongly related to the method described in later chapters. The information-theoretical methods are applicable to measures belonging to this class which fortunatelyinvolves typical measures used in practice. Mutual relationships among introduced classesof measures are depicted in Figure 2.1.2.3.1 Marginally continuous measuresA probability measure P over N is marginally continuous if it is absolutely continuouswith respect to the product of its one-dimensional marginals, that is P � Qi2N P fig.The following lemma contains apparently weaker equivalent de�nition.Lemma 2.3 A probability measure P on (XN ;XN) is marginally continuous i� there existsa collection of �-�nite measures �i on (Xi;Xi); i 2 N such that P �Qi2N �i.Proof: It was shown in [100], Proposition 1, that in case jN j = 2 one has P �Qi2N P figi� there are probability measures �i on (Xi;Xi) with P � Qi2N �i. One can easily showthat for every �-�nite measure �i on (Xi;Xi) a probability measure �i on (Xi;Xi) with�i � �i � �i exists. Hence, the condition above is equivalent to the requirement of theexistence of �-�nite measures �i with P � Qi2N �i. Finally, one can use induction onjN j to get the desired conclusion.Thus, marginal continuity of P is equivalent to the existence of a dominating measure �for P , that is the product � = Qi2N �i of some �-�nite measures �i on (Xi;Xi), i 2 N suchthat P � �. In particular, every discrete measure over N is marginally continuous since19



the counting measure on XN can serve a dominating measure. Having �xed a dominatingmeasure � by a density of P with respect to � will be understood (every version of) theRadon-Nikodym derivative of P with respect to �.Remark 2.7 Let us note without details (see Remark 1 in [100]) that the assumptionthat a probability measure P over N is marginally continuous also implies that, for everydisjoint A;C � N there exists a regular version of conditional probability PAjC on XAgiven XC in sense of Lo�eve [55]. Regularity of conditional probability is usually derived asa consequence of speci�c topological assumptions on (Xi;Xi), i 2 N (see the Appendix,Section 10.5). Thus, marginal continuity is a non-topological assumption implying regu-larity of conditional probabilities. The concept of marginal continuity is closely relatedto the concept of dominated experiment in Bayesian statistics - see x1.2.2 and x1.2.3 inthe book [24]. 4The next step will be an equivalent de�nition of conditional independence for margi-nally continuous measures in terms of densities. To formulate it in an elegant way let usaccept the following (notational) convention.Convention 1 Suppose that a probability measure P on (XN ;XN) together with a �xeddominating measure � is given. More speci�cally, P � � �Qi2N �i where �i is a �-�nitemeasure on (Xi;Xi) for every i 2 N .Then, for every ; 6= A � N , let us put �A = Qi2A �i, choose a version fA of Radon-Nikodym derivative dPAd�A , and �x it. The function fA will be called a marginal density ofP for A. It is a XA-measurable function on XA.In order to be able to understand it as a function on XN as well let us accept thefollowing notation. Given ; 6= A � B � N and x 2 XB, the symbol xA will denote theprojection of x onto A, that is xA = [xi]i2A whenever x = [xi]i2B.The last formal convention concerns the marginal density f; for the empty set. Itshould be a constant function on (an appended) trivial measurable space (X;;X;). Thus,in formulas below one can simply put f;(x;) � 1 for every x 2 XB, ; 6= B � N . }Remark 2.8 This is to explain the way of de�nition of marginal densities in Convention1. First, let me emphasize that the marginal density is not the Radon-Nikodym derivativeof respective marginals since �A = Qi2A �i need not coincide with the marginal �A of� = Qi2N �i unless every �i is a probability measure.Indeed, the marginal of a �-�nite measure may not be a �-�nite measure (e.g. �; incase �(XN) = 1) so that Radon-Nikodym derivative dPAd�A may not exists. Instead, onecan take the following point of view. Let us �x a density f = dPd� and introduce, for every; 6= A � N , its 'projection' f #A as a function on XA de�ned �A-a.e. as follows:f #A(y) = ZXNnA f(y; z) d�NnA(z) for y 2 XA :One can easily conclude using Fubini theorem that f #A = dPAd�A �A-a.e., so that there isno substantial di�erence between f #A and any version of the marginal density fA. Theconvention for the empty set follows this line since one hasf #; (�) = ZXN f(x) d�(x) = 1 : 420



Lemma 2.4 Let P be a marginally continuous measure over N . Let us accept Convention1. Given hA;BjCi 2 T (N) one has then A ?? B jC [P ] i� the following equality holdsfABC(xABC) � fC(xC) = fAC(xAC) � fBC(xBC) for �-a.e. x 2 XN : (2.3)Proof: Note that minor omitted details of the proof (e.g. veri�cation of equalities �-a.e.) canbe veri�ed with help of basic measure-theoretical facts gathered in Section 10.5.As a preparatory step choose and �x a density f : XN ! [0;1) such that8 ; 6= A � N 8x 2 XN f#A (xA) � ZXNnA f(xA; y) d�NnA(y) < 1 ;and moreover, for every disjoint A;C � N (with convention f#N = f , f#; � 1) one has8 x 2 XN f#C (xC) = 0 ) f#AC (xAC) = 0 : (2.4)Indeed, these relationships hold �-a.e. for every version f of dPd� and every version can beoverde�ned by 0 whenever these relationships do not hold. It makes no problem to verifythat f#A = dPAd�A for every ; 6= A � N . Then, for every disjoint A;C � N , one can introduce thefunction hAjC : XA � XC ! [0;1) as follows:hAjC (xjz) = ( f#AC(xz)f#C(z) if f#C(z) > 0;0 if f#C(z) = 0; for x 2 XA; z 2 XC :One can verify using Fubini theorem (for �A � PC), Radon-Nikodym theorem (for f#C = dPCd�C )and again Fubini theorem (for �C � �A) that the function(A; z) 7! PAjC(Ajz) � ZA hAjC (xjz) d�A(x) where A 2 XA; z 2 XC ;is (a version of) the conditional probability on XA given XC .After this preparatory stage realize that (2.3) can be written as follows:f#ABC(xABC) � f#C(xC) = f#AC(xAC) � f#BC(xBC) for �-a.e. x 2 XN : (2.5)Further, this can be rewritten in the formhABjC(xAB jxC) � f#C(xC) = hAjC(xAjxC) � hBjC(xB jxC) � f#C(xC) for �-a.e. x 2 XN : (2.6)Indeed, owing to (2.4) both (2.5) and (2.6) are trivially valid on fx 2 XN ; f#C(xC) = 0g whilethey are equivalent on the complement of this set. The next step is to observe that (2.6) isequivalent to the requirement that 8A 2 XA, 8B 2 XB, 8C 2 XC it holdsZC ZA�B hABjC(xABjxC) d�AB(xAB) dPC(xC) == ZC ZA hAjC(xAjxC) d�A(xA) � ZB hBjC(xB jxC) d�B(xB) dPC(xC) :Indeed, as mentioned in Section 10.5 the equality in (2.6) is equivalent to the requirement thattheir integrals with respect to �ABC through measurable rectangles A�B�C coincide. This can21



be rewritten using Fubini theorem, Radon-Nikodym theorem and basic properties of integral inthe form above. But as explained in the preparatory stage, it can be understood as follows:ZC PABjC(A� Bjz) dPC(z) = ZC PAjC(Ajz) � PBjC(Bjz) dPC(z) : (2.7)Having �xed A 2 XA and B 2 XB the equality (2.7) for every C 2 XC is equivalent to therequirement that the integrated functions are equal PC -a.e. Hence, one obtains the conditionthat (2.1) from p. 13 holds for every A 2 XA and B 2 XB, i.e. A ?? B jC [P ].Let us observe that in (2.3) one can write 'for �ABC-a.e. x 2 XABC ' instead. Of course,the validity of (2.3) trivially does not depend on the choice of (versions) of densities. Thepoint of Lemma 2.4 is that it even does not depend on the choice of the dominatingmeasure � since A ?? B jC [P ] does depend on it as well. Note that this fact may not beso apparent when one tries to introduce the concept of conditional independence directlyby means of densities.2.3.2 Factorizable measuresLet ; 6= D � P(N)nf;g be a non-empty class of non-empty subsets of N and D = ST2D.We say that a marginally continuous measure P over N is factorizable after D (withrespect to a dominating measure �) if the (respective) marginal density of P for D canbe expressed in the formfD (xD) = YS2D gS(xS) for �-a.e. x 2 XN ; (2.8)where gS : XS ! [0;1), S 2 D are XS-measurable functions, called potentials. In fact,factorization does not depend on the choice of a dominating measure �. One can show thatthe validity of (2.8) with respect to a general dominating product measure � = Qi2N �iwhere �i is are �-�nite, is equivalent to the validity of (2.8) with respect to Qi2N P figand with other potentials. Of course, factorization after D is equivalent to factorizationafter Dmax and potentials are not unique unless jDj = 1.Further equivalent de�nition of conditional independence for marginally continuousmeasures is formulated in terms of factorization (see also [53], x 3.1).Lemma 2.5 Let P be a marginally continuous measure over N and hA;BjCi 2 T (N).Then A ?? B jC [P ] if and only if P is factorizable afterD = fAC;BCg. More speci�cally,under Convention 1 one has A ?? B jC [P ] i� there exist a XAC -measurable functiong : XAC ! [0;1) and a XBC-measurable function h : XBC ! [0;1) such thatfABC (xABC) = g(xAC) � h(xBC) for �-a.e. x 2 XN : (2.9)Proof: One can use Lemma 2.4. Clearly, (2.3) ) (2.9) where g = fAC andh(xBC) = ( fBC(xBC)fC(xC) if fC(xC) > 0 ;0 if fC(xC) = 0 ; for x 2 XN ;because for �-a.e. x 2 XN one has fC(xC) = 0 ) fBC(xBC) = 0.22



For the proof of (2.9)) (2.3) one can �rst repeat the preparatory step of the proof ofLemma 2.4 (see p. 21), that is to choose a suitable version f of density. Then (2.9) canbe rewritten in the formf #ABC(xABC) = g (xAC) � h (xBC) for �-a.e. x 2 XN : (2.10)Now, using Fubini theorem and basic properties of integral one can derive from (2.10) byintegrating f #AC(xAC) = g (xAC) � h#C(xC);f #BC(xBC) = g#C(xC) � h(xBC);f #C(xC) = g#C(xC) � h#C(xC); for �-a.e. x 2 XN ; (2.11)where the functionsg#C(xC) = ZXA g(y; xC) d�A(y); h#C(xC) = ZXB h(z; xC) d�B(z) for xC 2 XC ;are �nite �C-a.e. (according to Fubini theorem, owing to (2.10) and the fact that f #ABCis �ABC-integrable). Thus, (2.10) and (2.11) give togetherf #ABC(xABC) � f #C(xC) = g(xAC) � h(xBC) � g#C(xC) � h#C(xC) == f #AC(xAC) � f #BC(xBC) for �-a.e. x 2 XN ;which is equivalent to (2.3).As a consequence, one can derive a certain formal property of conditional independencewhich was already mentioned in discrete case (see [2, 97] and Proposition 4.1 in [61]).Consequence 2.1 Suppose that P is a marginally continuous measure over N andA;B;C;D � N are pairwise disjoint sets. ThenC ?? D jAB [P ]; A ?? B j ; [P ]; A ?? B jC [P ]; A ?? B jD [P ] implies A ?? B jCD [P ]:Proof: It follows from Lemma 2.4 that the assumption C ?? D jAB can be rewrittedin terms of marginal densities as follows (throughout this proof I write f(xS) instead offS(xS) for any S � N):f(xABCD) � f(xAB) � f(x;) � f(xC) � f(xD) = f(xABC) � f(xABD) � f(x;) � f(xC) � f(xD)for �-a.e. x 2 XN . Now, again using Lemma 2.4 the assumptions A ?? B j ;, A ?? B jCand A ?? B jD imply thatf(xABCD) � f(xA) � f(xB) � f(xC) � f(xD) = f(xAC) � f(xBC) � f(xAD) � f(xBD) � f(x;)for �-a.e. x 2 XN . Since f(xA) = 0) f(xABCD) = 0 for �-a.e. x 2 XN (and similarly forB;C;D) one can accept the convention f�1(xA) = 0 whenever f(xA) = 0 and obtainf(xABCD) = g(xACD)z }| {f�1(xA) � f(xAC) � f(xAD) �� f(xBC) � f(xBD) � f(x;) � f�1(xB) � f�1(xC) � f�1(xD)| {z }h(xBCD) for �-a.e. x 2 XN :Hence, by Lemma 2.5 one has A ?? B jCD.23



2.3.3 Multiinformation and conditional productLet P be a marginally continuous measure over N . Multiinformation of P is the rela-tive entropy H(P j Qi2N P fig) of P with respect to the product of its one-dimensionalmarginals. It is always a value in [0;+1] (see Lemma 10.3 in Section 10.7). Commonformal convention is that the multiinformation of P is +1 in case P is not marginallycontinuous.Remark 2.9 The term 'multiinformation' was proposed by my PhD supervisor AlbertPerez in late eighties. Note that miscellaneous other terms were used earlier in literature(even by Perez himself); for example 'total correlation' [123], 'dependence tightness' [79]or 'entaxy' [57]. The main reason of Perez's later terminology is that it directly generalizeswidely accepted information-theoretical concept of 'mutual information' of two randomvariables to the case of any �nite number of random variables. Indeed, it can serve as ameasure of global stochastic dependence among a �nite collection of random variables (seex 4 in [115]). Asymptotic behaviour of 'empirical multiinformation' which can be used asa statistical estimate of multiinformation on basis of data was examined in [99]. 4To clarify the signi�cance of multiinformation for study of conditional independence Ineed the following lemma.Lemma 2.6 Let P be a marginally continuous probability measure on (XN ;XN) andhA;BjCi 2 T (N). Then there exists unique probability measure Q on (XABC ;XABC)such that QAC = PAC; QBC = PBC and A ?? B jC [Q] : (2.12)Moreover, PABC � Q � Qi2ABC P fig and the following equality holds (the symbol Hdenotes the relative entropy introduced in Section 10.7)H(PABC j Qi2ABC P fig) + H(PC j Qi2C P fig) =H(PABC jQ) + H(PAC j Qi2AC P fig) + H(PBC j Qi2BC P fig) : (2.13)Proof: Again, omitted technical details can be veri�ed by means of basic measure-theoreticalfacts from Section 10.5. First, let us verify the uniqueness of Q. Supposing both Q1 and Q2satisfy (2.12) one can observe that (Q1)C = (Q2)C and then Q1AjC � Q2AjC , Q1BjC � Q2BjC where� indicates the respective equivalence of conditional probabilities (on XA resp. XB) given Cmentioned in Section 2.1. Because of A ?? B jC [Qi], i = 1; 2 one can derive using (2.1) thatQ1ABjC � Q2ABjC for measurable rectangles which together with (Q1)C = (Q2)C impliesQ1 = Q2.For existence proof assume without loss of generality ABC = N and put � � Qi2N P fig.Like in the preparatory step of the proof of Lemma 2.4 (see p. 21) choose a density f = dPd� andrespective collection of marginal 'projection' densities f#A; A � N satisfying (2.4). For brevity,we write f(xA) instead of f#A(xA) in the rest of this proof so that (2.4) has the form8x 2 XN 8A;C � N such that A \C = ; f(xC) = 0 ) f(xAC) = 0 : (2.14)Let us de�ne a function g : XN ! [0;1) byg(x) = ( f(xAC)�f(xBC )f(xC) if f(xC) > 0;0 if f(xC) = 0; for x 2 XN = XABC ;24



and introduce a measure Q on (XN ;XN ) as follows:Q(D) = ZD g(x) d�(x) for D 2 XN = XABC :Now, under the convention f(xAC)f(xC) = 0 in case f(xC) = 0 one can write for every E 2 XAC usingFubini theorem, (2.14) and Radon-Nikodym theoremQAC(E) = ZE�XB g(x) d�(x) = ZE f(xAC)f(xC) � ZXB f(xBxC) d�B(xB) d�AC(xAC) == ZE f(xAC)f(xC) � f(xC) d�AC(xAC) = ZE f(xAC) d�AC(xAC) = PAC(E):Hence, QAC = PAC and Q is a probability measure. Replace (XA;XA) by (XB ;XB) in thepreceding consideration to obtain QBC = PBC . The way of de�nition of Q implies Q� � andg = dQd� . The form of g implies that Q is factorizable after fAC;BCg so that A ?? B jC [Q]by Lemma 2.5. To see PABC � Q observe that (2.14) implies g(x) = 0 ) f(x) = 0 for everyx 2 XN , accept the convention f(x)g(x) = 0 in case g(x) = 0, and write for every D 2 XN usingRadon-Nikodym theoremZD f(x)g(x) dQ(x) = ZD f(x)g(x) � g(x) d�(x) = ZD f(x) d�(x) = P (D) :Thus, P � Q and fg = dPdQ . To derive (2.13) realize that it follows from the de�nition of g (underthe convention above) thatf(x) � f(xC) = f(x)g(x) � f(xAC) � f(xBC) for every x 2 XN :Hence, of course8x 2 XN ln f(x) + ln f(xC) = ln f(x)g(x) + ln f(xAC) + ln f(xBC):According to (10.4) and Lemma 10.3 on p. 161 each of �ve logarithmic terms above is P -quasi-integrable and the integral is a value in [0;1] (use RXN h(xD) dP (x) = RXD h(xD) dPD(xD) forD � N). Hence, (2.13) was derived.Remark 2.10 The measure Q satisfying (2.12) can be interpreted as the conditionalproduct of PAC and PBC . Indeed, one can de�ne the conditional product for every pair ofconsonant probability measures (that is measures sharing marginals) in this way. However,in general, some obscurities can occur. First, there exists a pair of consonant measuressuch that no joint measure having them as marginals exists. Second, even in case jointmeasures of this type exist, it may happen that none of them complies with the requiredconditional independence statement. For both examples see [21].Thus, the assumption of marginal continuity implies the existence of the conditionalproduct. Note that regularity of conditional probabilities PAjC or PBjC is a more generalsu�cient condition for its existence (see Proposition 2 in [100]). The value of H(PABCjQ)in (2.13) is known in information theory as the conditional mutual information of A and B25



given C (with respect to P ). In case C = ; just the mutual information H(PABjPA�PB)is obtained, so that it can be viewed as a generalization of mutual information (but froma di�erent perspective than multiinformation). Conditional mutual information is knownas a good measure of stochastic dependence between A and B conditional on knowledgeof C; for an analysis in discrete case see x 3 in [115]. 42.3.4 Properties of multiinformation functionSupposing P is a probability measure over N the induced multiinformation functionmP : P(N)! [0;1] ascribes the multiinformation of the respective marginal P S to everynon-empty set S � N , that ismP (S) = H(P S jYi2S P fig) for every ; 6= S � N :Moreover, a natural convention mP (;) = 0 is accepted. The signi�cance of this conceptis evident from the following consequence of Lemma 2.6.Consequence 2.2 Suppose that P is a probability measure over N whose multiinfor-mation is �nite. Then the induced multiinformation function mP is a non-negative realfunction which satis�es mP (S) = 0 whenever S � N; jSj � 1; (2.15)and is supermodular, that ismP (ABC) + mP (C)�mP (AC)�mP (BC) � 0 whenever hA;BjCi 2 T (N) : (2.16)These two conditions imply mP (S) � mP (T ) whenever S � T � N . Moreover, for everyhA;BjCi 2 T (N) one hasmP (ABC) + mP (C)�mP (AC)�mP (BC) = 0 i� A ?? B jC [P ]: (2.17)Proof: The relation (2.15) is evident. Given S � N , put hA;BjCi = hS;N n S j ;i inLemma 2.6 and (2.13) givesmP (N) = mP (N) + mP (;) = H(P jQ) + mP (S) + mP (N n S) :Since all terms here are in [0;+1] and mP (N) < 1 it implies mP (S) < 1. Therefore(2.13) for general hA;BjCi can be always written in the formmP (ABC) + mP (C)�mP (AC)�mP (BC) = H(PABC jQ);where Q is the conditional product of PAC and PBC . By Lemma 10.3 derive (2.16).It su�ces to see mP (S) � mP (T ) when jT n Sj = 1 which follows directly from (2.16)with hA;BjCi = hS; T n S j ;i and (2.15). The uniqueness of the conditional product Qmentioned in Lemma 2.6 implies that A ?? B jC [P ] i� PABC = Q, that is H(PABC jQ) =0 by Lemma 10.3. Hence (2.17) follows.Thus, the class of probability measures over N having �nite multiinformation is (byde�nition) a subclass of the class of marginally continuous measures. It will be shown in26



Section 4.1 that it is a quite wide class of measures involving several classes of measuresused in practice. The relation (2.17) provides very useful equivalent de�nition of condi-tional independence for measures with �nite multiinformation, namely by means of analgebraic identity. Note that just relations (2.16) and (2.17) establish a basic method forstudy of conditional independence used in this work. Because these relations originatefrom information theory (the expresion in (2.16) is nothing but the conditional mutualinformation mentioned in Remark 2.10) I dare to call them information-theoretical tools.For example, all formal properties of conditional independence from Section 2.2.2 and theresult mentioned in the beginning of Section 2.2.4 were derived using this method. Con-sequence 2.2 also implies that the class of measures with �nite multiinformation is closedunder marginals. Note without details that it is closed under the operation of conditionalproduct as well.The following observation appears to be useful later.Lemma 2.7 Let P be a probability measure on (XN ;XN) and P � � � Qi2N �i where�i is a �-�nite measure on (Xi;Xi) for every i 2 N . Let ; 6= S � N such that �1 <H(P S j Qi2S �i) <1 and �1 < H(P fig j�i) <1 for every i 2 S. Then 0 � mP (S) <1 and mP (S) = H(P S jYi2S �i)�Xi2S H(P figj�i) : (2.18)Proof:This is just a rough sketch (for technical details see Section 10.5). Suppose without lossof generality S = N and put � =Qi2N P fig. By Lemma 2.3 one knows P � �. Since P fig � �ifor every i 2 N choose versions of dPd� and dP figd�i and observe that dPd� �Qi2N dP figd�i is a version ofdPd� , de�ned uniquely P -a.e. Hence deriveln dPd� = ln dPd� �Xi2N ln dP figd�i for P -a.e. x 2 XN :The assumption of the lemma implies that all logarithmic terms on the right-hand side areP -integrable. Hence, by integration with respect to P (2.18) is obtained.2.3.5 Positive measuresA marginally continuous measure P over N is positive if there exists a dominating measure� whose density f = dPd� is (strictly) positive, that is f(x) > 0 for �-a.e. x 2 XN . Notethat positivity of density may depend on the choice of dominating measure. However,whenever a measure � of this kind exists one has � � P . Since P � Qi2N P fig andQi2N P fig � Qi2N �i � � one can always take Qi2N P fig in place of �. In particular,one can equivalently introduce a positive measure P over N by a simple requirement thatP �Qi2N P fig � P . Typical example is a discrete positive measure P on XN = Qi2N Xiwith 1 � jXij < 1, i 2 N such that P (fxg) > 0 for every x 2 XN (or alternatively onlyfor x 2Qi2N Yi with Yi = fy 2 Xi; P fig(fyg) > 0g). These measures play an importantrole in (probabilistic approach to) arti�cial intelligence. Pearl [78] noticed that conditionalindependence models induced by these measures satisfy further special formal property(except semi-graphoid properties) and introduced the following terminology.A disjoint semi-graphoidM over N is called a (disjoint) graphoid over N if, for everycollection of pairwise disjoint sets A;B;C;D � N , one has27



6. intersection A ?? B jDC [M] and A ?? D jBC [M] implies A ?? BD jC [M].It follows from Lemma 2.1 and the observation below that every conditional independencemodel induced by a positive measure is a disjoint graphoid.Observation 2.1 Let P be a marginally continuous measure over N ; A;B;C;D � Nare pairwise disjoint, and PBCD is a positive measure over BCD. ThenA ?? B jDC [P ] & A ?? D jBC [P ] ) A ?? BD jC [P ] :Proof: (see also [53] for alternative proof under additional restrictive assumption) This is arough hint only. Let � be a dominating measure and f = dPd� a density with f(xBCD) > 0for �-a.e. x 2 XN (I again follow notational convention from the proof of Lemma 2.4, p. 21).The assumptions A ?? B jDC [P ] and A ?? D jBC [P ] imply by Lemma 2.4 (one can assumef(xE) > 0 for �-a.e. x 2 XN whenever E � BCD)f(xACD) � f(xBCD)f(xCD) = f(xABCD) = f(xABC) � f(xBCD)f(xBC) for �-a.e. x 2 XN :The terms f(xBCD) can be cancelled, so that one derives by dividingf(xACD) � f(xBC) = f(xABC) � f(xCD) for �-a.e. x 2 XN :One can take integral with respect to �B and get by Fubini theoremf(xACD) � f(xC) = f(xAC) � f(xCD) for �-a.e. x 2 XN ;that is A ?? D jC [P ] by Lemma 2.4. This, together with A ?? B jDC [P ] implies the desiredconclusion by the contraction property.Let us note that there are discrete probability measures whose induced conditionalindependence model is not a graphoid, i.e. it does not satisfy the intersection property(see Example 2.2 on p. 32). On the other hand, Observation 2.1 holds also under weakerassumptions on PBCD.2.3.6 Gaussian measuresThese measures are usually treated in multivariate statistics, often under alternative name'normal distributions'. In this work Gaussian measures over N are measures on (XN ;XN)where (Xi;Xi) = (R;B) is the set of real numbers endowed with the �-algebra of Borelsets for every i 2 N . Every vector e 2 RN and every positive semi-de�nite N �N -matrix� 2 RN�N de�nes a certain measure on (XN ;XN) denoted by N (e;�) whose expectationvector is e and whose covariance matrix is �. The components of e and � are thenregarded as parameters of the Gaussian measure.Attention is almost exclusively paid to non-degenerate Gaussian measures which areobtained in case that � is positive de�nite (equivalently regular). In that case N (e;�)can be introduced directly by its density with respect to Lebesgue measure on (XN ;XN)fe;�(x) = 1p(2�)jNj�det(�) � exp� (x�e)>���1�(x�e)2 for x 2 XN ; (2.19)where � is Ludolf's constant and ��1 the inverse of the covariance matrix �, called theconcentration matrix. Its elements are sometimes considered as alternative parameters28



of a non-degenerate Gaussian measure. Since the density fe;� in (2.19) is positive, non-degenerate Gaussian measures are positive in sense of Section 2.3.5.On the other hand, in case � is not regular, the respective degenerate Gaussian mea-sure N (e;�) (for a detailed de�nition see Section 10.9.3) is concentrated on a linearsubspace in RN = XN having Lebesgue measure 0. Thus, degenerate Gaussian measuresare not marginally continuous except some rare cases (when the subspace has the formfyg � XA; A � N for y 2 XNnA); for illustration see Example 2.2 below.Given a Gaussian measure P = N (e;�) over N , non-empty disjoint sets A;C � N ausual implicit convention (used in multivariate statistics and applicable even in degeneratecase) identi�es the conditional probability PAjC with its unique 'continuous' versionPAjC(�j z) = N (eA +�A�C ���C�C � (z � eC);�A�A��A�C ���C�C ��C�A) for every z 2 XC :The point is that, for every z 2 XC , it is again a Gaussian measure, whose covariancematrix �AjC = �A�A � �A�C � ��C�C � �C�A actually does not depend on the choice ofz. Therefore, the matrix �AjC is called a conditional covariance matrix. Recall that incase C = ; one has �AjC = �A�A by convention. Elements of misceleaneous conditionalcovariance matrices can serve as convenient parameters of Gaussian measures - e.g. [7].Important related fact is that the expectation vector of a Gaussian measure is not sig-ni�cant from the point of view of conditional independence. It follows from the followinglemma that single-handed covariance matrix contains all information about conditionalindependence structure. Therefore it is used in practice almost exclusively.Lemma 2.8 Let P = N (e;�) be a Gaussian measure over N and hA;BjCi 2 T (N) is anon-trivial triplet over N . ThenA ?? B jC [P ] i� (�ABjC)A�B = 0:Proof: The key idea is that topological assumptions (see Remark on p. 158) imply theexistence of a regular version of conditional probability on XAB given C, that is a version�PABjC such that the mapping D 7! �PABjC(D j z) is a probability measure on XAB for everyz 2 XC . Clearly, for every A 2 XA, the mapping z 7! �PABjC(A � XB j z), z 2 XC , is aversion of conditional probability on XA given C; analogously for B 2 XB. Thus, (2.1)can be rewritten in the form 8A 2 XA, 8B 2 XB,�PABjC(A� Bj z) = �PABjC(A� XBj z) � �PABjC(XA � Bj z) for PC-a.e. z 2 XC ; (2.20)Since all involved versions of conditional probability are probability measures for everyx 2 XC it is equivalent to the requirement that (2.20) hold for every A 2 YA, B 2 YB whereYA resp. YB are countable classes closed under �nite intersection such that �(YA) = XAresp. �(YB) = XB (use I.1.5 in [98]). These classes exist in case of Borel �-algebras onRA resp. RB . The set of z 2 XC for which (2.20) holds for every A 2 YA and B 2 YB hasPC measure 1 (since YA and YB are countable). For these z 2 XC then (2.20) holds forevery A 2 XA and B 2 XB by the above mentioned consideration. Hence,A ?? B jC [P ] , A ?? B j ; [ �PABjC(�j z)] for PC-a.e. z 2 XC :However, in this special case one can suppose that �PABjC(�j z) is a Gaussian measure(see Section 10.9.3) with the same covariance matrix �ABjC for every z 2 XC (while the29



expectation does depend on z). It is well-known fact that regardless the expectationvector one has A ?? B j ; with respect to a Gaussian measure i� the A�B-submatrix ofits covariance matrix vanishes (see again Section 10.9.3).The previous lemma involves the following well-known criteria for elementary condi-tional independence statements (see also Proposition 5.2 in [53] or Corollaries 6.3.3 and6.3.4 in [124]).Consequence 2.3 Let P be a Gaussian measure over N with a covariance matrix � =(�ij)i;j2N and a correlation matrix � = (%ij)i;j2N . Then for distinct i; j 2 Ni ?? j j ; [P ] , �ij = 0 , %ij = 0 ;and for distinct i; j; k 2 Ni ?? j j fkg [P ] , �kk � �ij = �ik � �kj , %ij = %ik � %kj :If � is regular and � = (�ij)i;j2N is the concentration matrix, then for distinct i; j 2 Ni ?? j jNnfijg [P ] , �ij = 0 :Proof: The �rst part is an immediate consequence of Lemma 2.8. For the last fact �rstobserve by elementary computation that a non-diagonal element of a regular 2�2-matrixvanishes i� the same element vanishes in its inverse matrix. In particular,i ?? j jNnfi; jg [P ] , (�fijgjNnfi;jg)ij = 0 , ((�fijgjNnfi;jg)�1)ij = 0 :The second observation is that ((�DjNnD)�1)D�D = (��1)D�D = �D�D for every set D � Ncontaining fi; jg (see Section 10.9.1). Hence ((�DjNnD)�1)ij = �ij for every such D.Remark 2.11 The proof of Lemma 2.8 reveals notable di�erence between Gaussian anddiscrete case. While in discrete case a conditional independence statement A ?? B jC [P ]is equivalent to the collection of requirementsA ?? B j ; [PABjC(�jz)] for every z 2 XC with PC(z) > 0;in Gaussian case it is equivalent to a single requirementA ?? B j ; [PABjC(�jz)] for at least one z 2 XC ;which already implies the same fact for all other z 2 XC (one uses conventional choiceof 'continuous' versions of PABjC in this case). Informally said, the 'same' conditionalindependence model is, in Gaussian case, speci�ed by 'less' number of requirements thanin discrete case. The reason behind this phenomenon is that the actual number of freeparameters characterizing a Gaussian measure over N is, in fact, smaller than the numberof parameters characterizing a discrete measure (if jXij � 2 for i 2 N). Therefore, discretemeasures o�er wider variety of induced conditional independence models than Gaussianmeasures. This is maybe a surprising fact for those who anticipate that a continuousframework should be wider than a discrete framework. The point is that the 'Gaussianity'is quite restrictive assumption. 430



Thus, one can expect many speci�c formal properties of conditional independencemodels arising in Gaussian framework. For example, the following property of a disjointsemi-graphoidM was recognized by Pearl [78] as a typical property of graphical models(see Chapter 3):7. composition A ?? B jC [M] and A ?? D jC [M] implies A ?? BD jC [M]for every collection of pairwise disjoint sets A;B;C;D � N . It follows easily from Lemma2.8 that it is also a typical property of Gaussian conditional independence models.Consequence 2.4 Let P be a Gaussian measure over N and A;B;C;D � N are pair-wise disjoint. ThenA ?? B jC [P ] & A ?? D jC [P ] ) A ?? BD jC [P ]:Proof: Observe that (�ABDjC)AB�AB = �ABjC and (�ABDjC)AD�AD = �ADjC for a co-variance matrix � (see Section 10.9.1). Thus, the assumptions (�ABDjC)A�B = 0 and(�ABDjC)A�D = 0 imply together (�ABDjC)A�BD = 0.However, composition is not universally valid property of conditional independencemodels as the following example shows.Example 2.1 There exists a discrete (binary) probability measure P over N with jN j = 3such that i ?? j j ; [P ] and :( i ?? j j fkg [P ] ) for any distinct i; j; k 2 N:Indeed, put Xi = f0; 1g for i 2 N and ascribe the probability 14 to every of the followingcon�gurations of values: (0; 0; 0); (0; 1; 1); (1; 0; 1); (1; 1; 0): }Further important fact is that every non-degenerate Gaussian measure has �nite mul-tiinformation. This follows from Lemma 2.7.Consequence 2.5 Let P be a non-degenerate Gaussian measure with a correlation ma-trix �. Then its multiinformation has the valuemP (N) = �12 � ln(det(�)) : (2.21)Proof: Take the Lebesgue measure on (XN ;XN) in place of � in Lemma 2.7. Substitutionof (10.9) from Section 10.9.3 into (2.18) gives�jN j2 � ln(2�)� jN j2 � 12 � ln(det(�))�Xi2N f� ln (2�)2 � 12 � 12 � ln (�ii)g == 12 Xi2N ln �ii � 12 � ln(det(�)) = �12 � ln det(�)Qi2N �ii = �12 � ln(det(�)) :On the other hand, a degenerate Gaussian measure need not be marginally continu-ous as the following example shows. It also demonstrates that the intersection propertymentioned in Section 2.3.5 is not universally valid.31



Example 2.2 There exists a Gaussian measure P over N with jN j = 3 such thati ?? j j fkg [P ] and :( i ?? j j ; [P ] ) for arbitrarily chosen distinct i; j; k 2 N:Put P = N (0;�) where � = (�ij)i;j2N with �ij = 1 for every i; j 2 N and apply Cons-esquence 2.3. It makes no problem to verify (see Section 10.9.3) that P is concentracted onthe subspace f(x; x; x) ; x 2 Rg while P fig = N (0; 1) for every i 2 N . Since Qi2N P fig isabsolutely continuous with respect to Lebesgue measure, P is not marginally continuous.Note that the same conditional independence model can be induced by a discrete(binary) measure; put Xi = f0; 1g for i 2 N and ascribe the probability 12 to con�gurations(0; 0; 0) and (1; 1; 1). }2.3.7 Basic constructionThe following lemma provides a basic method of construction of probability measureswith prescribed CI structure.Lemma 2.9 Let P;Q are probability measures over N . Then there exists a probabilitymeasure R over N such that MR = MP \ MQ. Moreover, if P and Q have �nitemultiinformation then a probability measure R over N with �nite multiinformation andMR = MP \MQ exists. The same statement holds for the class of discrete measuresover N , respectively for the class of positive discrete measures over N .Proof: Let P be a measure on a space (XN ;XN ) = (Qi2N Xi;Qi2N Xi) and Q be a measureon (YN ;YN ) = (Qi2N Yi;Qi2N Yi). Let us put (Zi;Zi) = (Xi�Yi;Xi�Yi) for i 2 N , introduce(ZN ;ZN ) = Qi2N (Zi;Zi) which can be understood as (XN � YN ;XN � YN ) and de�ne a prob-ability measure R on (ZN ;ZN ) as the product of P and Q. The goal is to show that for everyhA;BjCi 2 T (N)A ?? B jC [R] , fA ?? B jC [P ] and A ?? B jC [Q] g : (2.22)Let us take unifying perspective indicated in Remark 2.1: (ZN ;ZN ) and R are �xed and respec-tive coordinate �-algebras �XA; �YA; �ZA � ZN are ascribed to every A � N . Then P correspondsto the restriction of R to �XN , Q to the restriction of R to �YN and (2.22) takes the form (seeSection 10.6 for related concepts)�ZA ?? �ZB j �ZC [R] , �XA ?? �XB j �XC [R] and �YA ?? �YB j �YC [R] : (2.23)As XA�YA-measurable rectangles generate ZA for every A � N by the 'weaker' formulation ofthe de�nition of conditional independence for �-algebras observe that the fact �ZA ?? �ZB j �ZC [R]is equivalent to the requirement: 8Ax 2 �XA, Ay 2 �YA, Bx 2 �XB , By 2 �YBR(Ax \ Ay \ Bx \ By j �ZC)(z) = R(Ax \ Ay j �ZC)(z) �R(Bx \ By j �ZC)(z) for R-a.e. z 2 ZN : (2.24)On the other hand �XA ?? �XB j �XC [R] is equivalent to the requirement by usual de�nition ofconditional indepencence for �-algebras: 8Ax 2 �XA, Bx 2 �XBP (Ax \ Bx j �XC)(x) = P (Ax j �XC)(x) � P (Bx j �XC)(x) for R-a.e. z = (x; y) 2 ZN ; (2.25)and �YA ?? �YB j �YC [R] is equivalent to the requirement: 8Ay 2 �YA, By 2 �YBQ(Ay \ By j �YC)(y) = Q(Ay j �YC)(y) �Q(By j �YC)(y) for R-a.e. z = (x; y) 2 ZN : (2.26)32



Moreover, using the (weaker) de�nition of conditional probability (see Section 10.5, p. 158) andby the de�nition of R verify thatR(Ax\Ay\Bx\By j �ZC)(z) = P (Ax\Bx j �XC)(x)�Q(Ay\By j �YC)(y) for R-a.e. z = (x; y) 2 ZN : (2.27)Thus, to evidence (2.24))(2.25) put Ay = By = ZN ; to evidence (2.24))(2.26) put Ax = Bx =ZN . Conversely, (2.25),(2.26))(2.24) by (2.27) which means (2.23) was veri�ed.In both P and Q have �nite multiinformation then Rfig = P fig�Qfig are marginals of R on(Zi;Zi) for i 2 N and R�Qi2N P fig�Qj2N Qfjg =Qk2N P fkg�Qfkg. Thus, R is marginallycontinuous measure over N and one can apply Lemma 2.6 to R with 'doubled' N to see thatH(R j Yi2N P fig �Yj2N Qfig) = H(P j Yi2N P fig) +H(Q j Yj2N Qfjg) :Note for explanation that in the considered case R is the conditional product of P and Qand therefore the term H(PABC jQ) in (2.13) vanishes by Lemma 10.3 from Section 10.7. Inparticular, the multiinformation of R is the sum of the multiinformations P and Q and thereforeit is �nite. The statement concerning discrete and positive discrete measures easily follows fromthe given construction.Elementary constructions of probability measures are needed to utilize the methodfrom Lemma 2.9. One of them is the product of one-dimensional probability measures.Observation 2.2 There exists a discrete (binary) probability measure P over N suchthat A ?? B jC [P ] for every hA;BjCi 2 T (N):Observation 2.3 Suppose that jN j � 2 and A � N with jAj � 2. Then there exists adiscrete (binary) probability measure P over N such thatmP (S) = � ln 2 if A � S;0 otherwise:Proof: Put Xi = f0; 1g for i 2 N and ascribe the probability 21�jN j to every con�gurationof values [xi]i2N with even Pi2A xi (remaining con�gurations have zero probability).Lemma 2.10 Suppose that jN j � 3, 2 � l � jN j and L � fS � N ; jSj = lg. Then thereexists a discrete probability measure P over N such that8 hi; jjKi 2 T�(N) with jijKj = l i ?? j jK [P ] , ijK 62 L : (2.28)Proof: If L = ; then use Observation 2.2. If L 6= ; then apply Observation 2.3 to everyA 2 L and Consequence 2.2 to get a binary probability measure P[A] such that8 elementary triplet hi; jjKi with jijKj = l i ?? j jK [P[A]], ijK 6= A:Then Lemma 2.9 can be applied repeatedly to get a measure over N satisfying (2.28).This gives a lower estimate of the number of 'discrete' probabilistic CI structures.Consequence 2.6 If n = jN j � 3 then the number of distinct CI structures inducedby discrete probability measures over N exceeds the number 22bn2 c where bn2 c denotes thelower integer part of n2 . 33



Proof: Let us put l = n2 for even n, respectively l = n+12 for odd n. By Lemma 2.10for every subclass L of fS � N ; jSj = lg a respective probability measure P[L] exists. By(2.28) these measures induce distinct CI models over N . Therefore, the number of distinctinduced CI models exceeds 2s where s is the number of elements of fS � N ; jSj = lg.Find suitable lower estimates for s. If l = n2 then writes = �2ll � = 1 � 2 � : : : � 2l(1 � : : : � l) � (1 � : : : � l) = 1 � 3 � : : : � (2l � 1)1 � 2 � : : : � l � 2 � 4 � : : : � 2l1 � 2 � : : : � l � 2l = 2bn2 c:Similarly, in case l = n+12 writes = �2l � 1l � = 1 � 3 � : : : � (2l � 1)1 � 2 � : : : � l � 2 � 4 � : : : � (2l � 2)1 � 2 � : : : � (l � 1) � 2l�1 = 2bn2 c:which implies the desired conclusion 2s � 22bn2 c in both cases.2.4 ImsetsBy an imset over N is understood an integer-valued function on the power set of N , thatis any function u : P(N) ! Z, or alternatively an element of ZP(N). Basic operationwith imsets, namely summation, subtraction, multiplication by an integer are de�nedcoordinatewisely. Analogously, we write u � v for imsets u; v over N if u(S) � v(S)for every S � N . Multiset is an imset with non-negative values, that is any functionm : P(N) ! Z+. Any imset u over N can be written as a di�erence u = u+ � u� oftwo multisets over N where u+ is the positive part of u and u� is the negative part of u,de�ned as follows:u+(S) = max fu(S); 0g ; u�(S) = max f�u(S); 0g for S � N :By positive domain of u will be undestood the class of sets D+u = fS � N ; u(S) > 0 g, bynegative domain of u the class D�u = fS � N ; u(S) < 0 g.Remark 2.12 The word `multiset' is taken from combinatorial theory [1] while the word`imset' is an abbreviation for integer-valued multiset. Later in this work certain specialimsets will be used to describe probabilistic conditional independence structures (seeSection 4.2.3). 4Trivial example of an imset is the zero imset denoted by 0 which ascribes zero valueto every S � N . Another simple example is the identi�cator of a set A � N denoted by�A and de�ned as follows:�A(S) = � 1 in case S = A ;0 in case S � N; S 6= A :Special notation mA" respectively mA# will be used for multisets which serve as identi�-cators of classes of subsets respectively classes of supersets of a set A � N :mA#(S) = � 1 if A � S ;0 otherwise ; and mA"(S) = � 1 if A � S ;0 otherwise :34
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Figure 2.2: Hasse diagram of an imset over N = fa; b; cg.It is clear how to represent an imset over N in memory of a computer, namely by a vectorwith 2jN j integral components which correspond to subsets of N . However, for a smallnumber of variables, one can also visualize imsets in a more telling way, using specialpictures. The power set P(N) is a distributive lattice and can be represented in the formof Hasse diagram (see p. 6 in [8]). Nodes of this diagram correspond to elements of P(N),that is to subsets of N , and a link is made between two nodes if the symmetric di�erenceof the represented sets is a singleton. A function on P(N) can be visualized by writingassigned values into respective nodes. For example, the imset u over N = fa; b; cg de�nedby the table S ; fag fbg fcg fa; bg fa; cg fb; cg fa; b; cgu(S) +1 �3 �1 0 +3 +2 0 �2can be visualized in the form of the diagram from Figure 2.2. The third possible wayof description of an imset (used in this work) is to write it as a combination of moreelementary imsets with integral coe�cients. For example, the imset u from Figure 2.2can be written as follows:u = �2 � �N + 3 � �fa;bg + 2 � �fa;cg � 3 � �fag � �fbg + �; :In this work, certain special imsets over N will be used. E�ective dimension of theseimsets, that is the actual number of free values is not 2jN j but 2jN j � jN j � 1 only. Thereare several ways of standardization of imsets of this kind. I will distinguish three basicways of standardization (for justi�cation of terminology see Remark 5.3 in Section 5.1.2).An imset u over N is o-standardized ifXS�N u(S) = 0 and 8 i 2 N XS�N; i2S u(S) = 0 :Alternatively, the second requirement can be formulated in the form PS�Nnfjg u(S) = 0for every j 2 N . An imset u is `-standardized ifu(S) = 0 whenever S � N; jSj � 1 ;35



and u-standardized ifu(S) = 0 whenever S � N; jSj � jN j � 1 :An imset u over N is called normalized if the collection of values fu(S); S � Ng hasno common prime divisor. Except basic operations with imsets the operation of scalarproduct of a real function m : P(N) ! R and an imset u over N denoted by hm; ui andde�ned by hm; ui = XS�Nm(S) � u(S)will be used. Indeed, it is a scalar product on the Eucledian space RP(N) . Note that thefunction m can be an imset as well, it will be often a multiset.
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Chapter 3Graphical methodsGraphs whose nodes correspond to random variables are traditional tools for descriptionof CI structures. One can distinguish three classic approaches: using undirected graphs,using acyclic directed graphs and using chain graphs. This chapter is an overview of graph-ical methods of description of CI structures with the main emphasis put on theoreticalquestions mentioned in Section 1.1. Both classic and advanced approaches are included.Note that elementary graphical concepts are introduced in Section 10.3.3.1 Undirected graphsGraphical models based on undirected graphs are also known as Markov networks [78].Given an undirected graph G over N one says that a disjoint triplet hA;BjCi 2 T (N) isrepresented in G and writes A ?? B jC [G] if every route (equivalently every path) in Gbetween a node in A and a node in B contains a node in C, that is C separates betweenA and B in G. For illustration see Figure 3.1. Thus, every undirected graph G over Ninduces a formal independence model over N by means of the separation criterion (forundirected graphs): MG = f hA;BjCi 2 T (N) ; A ?? B jC [G] g :Let us call every independence model obtained in this way an UG model. These modelswere characterized in [77] in terms of a �nite number of formal properties:1. triviality A ?? ; jC [G],2. symmetry A ?? B jC [G] implies B ?? A jC [G],3. decomposition A ?? BD jC [G] implies A ?? D jC [G],4. strong union A ?? B jC [G] implies A ?? B jDC [G],5. intersection A ?? B jDC [G] and A ?? D jBC [G] implies A ?? BD jC [G],6. transitivity A ?? B jC [G] implies A ?? fdg jC [G] or fdg ?? B jC [G].This axiomatic characterization implies that every UG model is a graphoid satisfying thecomposition property.Remark 3.1 Let me note that the above mentioned separation criterion was a result ofcertain development. Theory of Markov �elds stems from statistical physics [73] whereundirected graphs were used to model geometric arrangement in space. Several types of37



x h x h xh x xa c e g hb d f��� ���@@@Figure 3.1: The set C = fe; fg separates between A = fa; dg and B = fhg.Markov conditions were later introduced [52] in order to associate these graphs and prob-abilistic CI structures. The original 'pairwise Markov property' was strengthened to the'local Markov property' and this was strengthened to the 'global Markov property'. Thelatter property corresponds to the separation criterion and appeared to be the strongestpossible Markov condition in a certain sense (see Remark 3.2). The Markov conditionsdi�er in general (e.g. [60]) but coincide in case of positive measures [52].Note that similar story was observed in case of acyclic directed graphs and chaingraphs (for an overview see Chapter 3.2 of [53]) and has been repeated recently in caseof advanced graphical models (see Section 3.5). However, in this work attention is paidonly to the result of this development, that is to graphical criteria which correspond torespective global Markov conditions. 4A probability measure P over N is Markovian with respect to an undirected graph Gover N if A ?? B jC [G] implies A ?? B jC [P ] for every hA;BjCi 2 T (N)and perfectly Markovian if the converse implication holds as well. It was shown in [33](Theorem 11) that a perfectly Markovian discrete probability measure exists for everyundirected graph over N . In other words, every UG model is a (probabilistic) CI modeland faithfulness of UG models (in sense of Section 1.1) is ensured.Remark 3.2 This is to explain certain habitual terminology used sometimes in literature.The remark holds also in case of acyclic directed graphs and chain graphs (see Sections3.2, 3.3, 3.5.4, 3.5.5). The existence of a perfectly Markovian measure which belongs to aclass of measures 	 implies the following weaker result. Whenever a disjoint triplet t isnot represented in a graph G then there exists a measure P 2 	 which is Markovian withrespect to G and t is not valid conditional independence statement with respect to P .Some authors [25, 44, 39] say then that the class of measures 	 is perfect with respect toG. Thus, Theorem 2.3 from [26] says that the class of CG measures with prescibed layoutod discrete and continuous variables is perfect with respect to every undirected graph.However, the claim about perfectness of a class 	 is also referred in literature [31, 112, 54]as the completeness (of the respective graphical criterion relative to 	) since it says thatthe criterion cannot be strengthened within 	 any more (unlike the pairwise and localMarkov conditions in case of the class of positive measures - see Remark 3.1). By strongcompleteness is then meant the existence of a perfectly Markovian measure over N withprescribed non-trivial sample space XN [69, 54]. 438
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Figure 3.2: Testing ha; f j fc; dgi according to the moralization criterion.One can say that two undirected graphs G and H over N are Markov equivalent if theclasses of Markovian measures with respect to G and H coincide. The result about theexistence of perfectly Markovian measures implies that it occurs i�MG =MH. Moreover,the observation that a ! b in G i� :(a ?? b jN n ab [G] ) implies that MG = MH i�G = H. Thus, the equivalence question (in sense of Section 1.1) has a simple solution incase of undirected graphs.Remark 3.3 A marginaly continuous probability measure over N is called factorizablewith respect to an undirected graph G over N if it factorizes after the class (see p. 22) ofits cliques. It is known that every factorizable measure is Markovian [52], the converse istrue for positive measures [43] but not for all (discrete) measures [60].One can say that two graphs are factorizably equivalent if the corresponding classes offactorizable measures coincide. However, this notion is not very sensible in the frameowrkof undirected graphs since it reduces to identity of graphs in this case (one can use thesame reasoning like in case of Markov equivalence). 4The restriction of an UG model to a set ; 6= T � N is an UG model [111]. However,the corresponding marginal graph GT di�ers from the usual induced subgraph GT . Fora; b 2 T one has a ! b in GT i� there exists a path in G between a and b consisting ofnodes of fa; bg [ (N n T ).3.2 Acyclic directed graphsThese graphical models are also known under name Bayesian networks [78]. Note thatthe majority of authors became accustomed to the phrase 'directed acyclic graphs' whichis not accurate from grammatical point of view (since the adjectives do not commute).The respective abbreviation DAG is therefore commonly used.Two basic criteria to determine whether a triplet hA;BjCi 2 T (N) is represented in anacyclic directed graph G were developed. Lauritzen et. al. [52] proposed the moralizationcriterion while the group around Pearl [30] used the d-separation criterion (d means'directional'). 39



The moralization criterion has three stages. First, one takes the set T = anG(ABC)and considers the induced subgraph GT . Second, GT is changed into its moral graph H,that is the underlying graph of the graph K (with mixed edges) over T which is obtainedfrom the graph GT by adding a line a ! b in K whenever there exists c 2 T having both aand b as parents in GT . The name 'moral graph' was motivated by the fact that the nodeshaving a common child are 'married'. The third step is to decide whether C separatesbetween A and B in H. If yes, one says that hA;BjCi is represented in G according tothe moralization criterion. For illustration see Figure 3.2 where the tested triplet is notrepresented in the original graph.To formulate d-separation criterion one needs some auxiliary concepts as well. Let! : c1; : : : ; cn, n � 1 be a route in a directed graph G. By a collider node with respect to! is understood every node ci, 1 < i < n such that ci�1 ! ci  ci+1 in !. One says that! is active with respect to a set C � N if� every collider node with respect to ! belongs to anG(C),� every other node of ! is outside C.Route which is not active with respect to C is blocked by C. A triplet hA;BjCi is rep-resented in G according to the d-separation criterion if every route (equivalently everypath) in G from A to B is blocked by C. For illustration of d-separation criterion seeFigure 3.3. It was shown in [52] that the moralization and d-separation criteria for acyclicdirected graphs are equivalent. Note that the moralization criterion is e�ective if hA;BjCiis represented in G while d-separation is suitable for the opposite case. The third possibleequivalent criterion (a compromise between those two criteria) appeared in [58].One writes A ?? B jC [G] whenever hA;BjCi 2 T (N) is represented in an acyclicdirected graph G according to one of the criteria. Thus, every acyclic directed graph Ginduces a formal independence modelMG = f hA;BjCi 2 T (N) ; A ?? B jC [G] g :Following common practice let me call every independence model obtained in this way aDAG model . These models were not characterized like UG models, just several formalproperties of DAG models were given in [78]. They imply that every DAG model is agraphoid satisfying the composition property. The problem of axiomatic characterizationof DAG models seems to be more complicated - see Remark 3.5.The de�nition of Markovian and perfectly Markovian measure with respect to an acyclicdirected graph is analogous to the case of undirected graphs. It was shown in [31] that aperfectly Markovian discrete probability measure exists for every acyclic directed graph.Hence, the existence of a perfectly Markovian measure with prescribed non-trivial discretesample space was derived [69]. Thus DAG models are also probabilistic CI models.Two acyclic directed graphs are Markov equivalent if their classes of Markovian mea-sures coincide. The problem of graphical characterization of this equivalence was probably�rst solved in [120] but the result can be found also in other publications [5, 94] and fol-lows from an analogous result for chain graphs [25] as well. Let's call by an immorality inan acyclic directed graph G every induced subgraph of G for a set T = fa; b; cg such thata ! c in G, b ! c in G and [a; b] is not an edge in G. Two acyclic directed graphs areMarkov equivalent i� they have the same underlying graph and the same immoralities.40
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Figure 3.3: The path a! b e! f is active with respect to C = fc; dg.Note that the word 'immorality' has the same justi�cation like 'moralization criterion';other authors used various alternative names like 'unshield colliders', 'v-structures' and'uncoupled head-to-head nodes'.However, the question of choice of a suitable representative of equivalence class has nonatural solution in the framework of acyclic directed graphs. There is no distinguished rep-resentative in every class of equivalent graphs. Thus, hybrid graphs like essential graphs[5] or (completed) pattern [120] were used in literature to represent uniquely equivalenceclasses of acyclic directed graphs. The problem of estimation of DAG models from data,more exactly estimation of an essential graph on basis of the induced independence model(which could be obtained as a result of statistical tests based on data) was treated in[121, 68, 16].Remark 3.4 It is a speciality of the case of acyclic directed graphs that for marginallycontinuous probability measures the respective concept of (recursively) factorizable mea-sure coincides with the concept of Markovian measure [52]. Another speci�c feature ofthis case is that an analogue of the 'local Markov property' is equivalent to the 'globalMarkov property' [52]. This fact can be also derived from the result in [119] saying thatthe least semi-graphoid containing the following collection of independence statementsai ?? fa1; : : : ; ai�1g n paG(ai) j paG(ai) for i = 1; : : : ; nwhere a1; : : : ; an, n � 1 is an ordering of nodes of G consonant with direction of arrows,is nothing but the induced model MG. The above collection of independence statementis called often an causal input list or 'strati�ed protocol'. 4Unlike the case of UG models the restriction of a DAG model need not be a DAGmodel as the following example shows.Example 3.1 There exists a DAG model over N = fa; b; c; d; eg whose restriction toT = fa; b; c; dg is not a DAG model over T . Consider the independence model induced bythe graph in Figure 3.4. It was shown in [21] (Lemma 5.1) that its restriction to T is nota DAG model. This unpleasant property of DAG models probably motivated attemptsto extend study to DAG models with hidden variables, that is restriction of DAG models- see Section 3.5.7. }41
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e c d@@@R ���	 @@@R ���	Figure 3.4: Acyclic directed graph with hidden variable e.Remark 3.5 An indirect consequence of the preceding example is that DAG models can-not be characterized in terms of properties of 'semi-graphoid' type (unlike UG models).To evidence it take the following perspective. Let us call by a relevance statement over Nany independence or dependence statement which corresponds to a disjoint triplet overN . By a full-consistent set of relevance statements is understood a set of these statementsover N such that for every hA;BjCi 2 T (N) exclusively either the corresponding indepen-dence statement or the corresponding dependence statements belongs to the set. Everyindependence model can be easily identi�ed with a set of relevance statements of thiskind: every 'missing' independence statement is automatically regarded as a dependencestatement.Consider special formal properties of full-consistent sets of relevance statements wherea �nite conjunction of relevance statements (which may be empty) implies another rel-evance statement. These formal properties are general enough since every requirementthat a �nite conjuction implies a �nite disjunction (of relevance statements) can be equiv-alently described in this way (because of full-consistency). To be more speci�c, I havein mind properties expressed in the form of 'syntactic inference rules' (e.g. semi-graphoidproperties on p. 15 or the properties characterizing UG models on p. 37). The interpre-tation for a given set of variables N is this: a rule of this sort is applicable only when thesubstitution of subsets of N for capital letters A;B;C; : : : (resp. elements of N for lowercase letters like d; the symbol ; has speci�c meaning) leads to relevance statements overN which correspond to disjoint triplets over N (for all involved statements!).Basic observation is that the restriction of any full-consistent set of relevance state-ments over N satisfying a formal property of this kind to a set ; 6= T � N is a full-constistent set of relevance statements over T satisfying the same formal property. Thishold for any (even in�nite) collection of formal properties of this type. Therefore, becauseof Example 3.1, DAG models can never be characterized by means of any collection ofthese properties.However, perhaps DAG models can be characterized by means of more general formalproperties where 'elementary clauses' are more complex and represent sets of relevancestatements. For example, one symbol A>>B jC" could represent a class of all dependencestatements A>>B jD where C � D � N n AB. According to e-mail communication byT. Verma such a characterization is possible but very complex. 43.3 Classic chain graphsA chain graph is a hybrid graph without directed cycles or equivalently a hybrid graphwhich admits a chain (see Section 10.3, p. 154). The class of chain graphs was introduced42
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Figure 3.5: Testing ha; d j fb; e; ggi according to the moralization criterion for chain graphs.by Lauritzen and Wermuth in middle eighties in the report [47] which became later abasis of a journal paper [50].Classic interpretation of chain graphs is based on the moralization criterion for chaingraphs established by Lauritzen [51] and Frydenberg [25]. The main distinction betweenthe moralization criterion for chain graphs and for acyclic directed graphs (see p. 40) isa more general de�nition of the moral graph in case of chain graphs. Supposing GT isa hybrid graph over ; 6= T � N one de�nes a graph K with mixed edges over T byadding lines a ! b in K whenever there exist c; d 2 T belonging to the same connectivitycomponent of GT (possibly c = d) such that a ! c in GT and b ! d in GT . The moralgraph H of GT is then the underlying graph of K. A triplet hA;BjCi 2 T (N) representedin a chain graph G over N according to the moralization criterion if C separates betweenA and B in the moral graph GT where T = anG(ABC). For illustration see Figure 3.5.An equivalent c-separation criterion (c stands for 'chain') which generalizes the d-separation criterion for acyclic directed graphs was introduced in [11]. This criterion waslater simpli�ed as follows [113]. By a section of a route ! : c1; : : : ; cn, n � 1 in a hybridgraph G is understood a maximal undirected subroute ci ! : : : ! cj of ! (that is eitheri = 1 or [ci�1; ci] is not a line, analogously for j). By a collider section of ! is understooda section ci; : : : ; cj, 1 < i � j < n such that ci�1 ! ci ! : : : ! cj  cj+1 in !. A route !is superactive with respect to a set C � N if� every collider section of ! contains a node of C,� every other section of ! is outside C.Route which is not superactive with respect to C is blocked by C. A triplet hA;BjCi 2T (N) is represented in G according to the c-separation criterion if every route in G fromA to B is blocked by C. The equivalence of the c-separation criterion and the moralizationcriterion was shown in [112] (Consequence 1). One writes A ?? B jC [G] if hA;BjCi isrepresented in a chain graph G according to one of these criteria. The induced formalindependence model is thenMG = f hA;BjCi 2 T (N) ; A ?? B jC [G] g :Thus, the class of CG models was introduced. Since c-separation generalizes both theseparation criterion for undirected graphs and the d-separation criterion for acyclic di-rected graphs every UG model and every DAG model is a CG model (for illustration see43



Figure 3.6 on p. 46). Every CG model is a graphoid satisfying the composition property[112]. Note that Example 3.1 can serve also as an example that the restriction of a CGmodel need not be a CG model. Therefore, one can repeat the arguments from Remark3.5 showing that CG models cannot be characterized by means of formal properties of'semi-graphoid' type.Remark 3.6 Unlike the case of undirected and acyclic directed graphs blocking of allroutes required in c-separation criterion is not equivalent to blocking of all paths. Considerthe chain graph G in the left-hand picture of Figure 3.5. The only path between A = fagand B = fdg is a ! b ! c ! d which is blocked by C = fb; e; gg. However, theroute a ! b ! c ! e  f ! g  c ! d is active with respect to C. Thus, one has:f a ?? d j fb; e; gg [G] g. Despite the fact that the class of all routes between two setscould be in�nite c-separation is �nitely implementable for another reason - see Section 5in [113].Note that the above mentioned phenomenon was the main reason why the originalversion of c-separation [11] looked akward. It was formulated for a special �nite class ofroutes called 'trails' and complicated by subsequent inevitable intricacies. 4A probability measure P over N is Markovian with respect to a chain graph G over Nif A ?? B jC [G] implies A ?? B jC [P ] for every hA;BjCi 2 T (N)and perfectly Markovian if the converse implication holds as well. The main result of [112]says that a perfectly Markovian positive discrete probability measure exists for every chaingraph. In particular, faithfulness of CG models (in sense of Section 1.1) is ensured as well.Two chain graphs over N are Markov equivalent if their classes of Markovian measurescoincide. These graphs were characterized in graphical terms by Frydenberg [25]. By acomplex in a hybrid graph G over N is understood every induced subgraph of G for a setT = fd1; : : : ; dkg, k � 3 such that d1 ! d2, di ! di+1 for i = 2; : : : ; k � 2, dk�1  dk inG and no additional edge between (distinct) nodes of fd1; : : : ; dkg exists in G. Two chaingraphs over N are Markov equivalent i� they have the same underlying graph and thesame complexes.However, unlike the case of acyclic directed graphs the advanced question of repre-sentation of Markov equivalence classes has an elegant solution. Every class of Markovequivalent chain graphs contains a naturally distinguished member! Given two chaingraphs G and H over N having the same underlying graph one says that G is larger thanH if every arrow in G is an arrow in H with the same direction. Frydenberg [25] showedthat every class of Markov equivalent chain graphs contains a graph which is larger thanevery other chain graph within the class (that is, it has the greatest number of lines).This distinguished graph is named the largest chain graph of the equivalence class. Anelegant graphical characterization of those graphs which are the largest chain graphs waspresented in [122]. The paper also describes an algorithm for transformation of everychain graph into the respective largest chain graph. An alternative algorithm is presentedin [110] where the problem of �nding the largest chain graph on basis of induced formalindependence model is solved. This could be utilized for learning CG models.44



Remark 3.7 Lauritzen [53], Section 3.2.3 de�ned the concept of (marginally continuous)factorizable measure with respect to a chain graph. Like in case of undirected graphs everyfactorizable measure is Markovian and the converse is true for positive measures [25].Well, having �xed the sample space (XN ;XN) where Xi is non-trivial for each i 2 None can say that two chain graphs over N are factorizably equivalent if the correspondingclasses of factorizable measures (on XN ) coincide. However, unlike the case of undirectedand acyclic directed graphs the hypothesis that this equivalence coincides with Markovequivalence has not been con�rmed untill now - see Question 3. 43.4 Within classic graphical modelsThis section deals with some methods of description of probabilistic structures which infact fall within the scope of classic graphical models.3.4.1 Decomposable modelsVery important class of undirected graphs is the class of triangulated graphs. An undi-rected graph G is called triangulated or chordal if every cycle a1; : : : ; an, n � 5 in G hasa 'chord', that is a line between nodes of fa1; : : : ; an�1g di�erent from the lines of thecycle. There are several equivalent de�nitions of a chordal graph; one of them says thatthe graph can be decomposed in a certain way into its cliques (see [53], Proposition 2.5)which motivated other alternative name decomposable graph (see p. 141). For this reasonUG models induced by triangulated graphs are named decomposable models [78]. Anotherequivalent de�nition (see [53], Proposition 2.17) is that all cliques of the graph can beordered into a sequence C1; : : : ; Cm, m � 1 satisfying the running intersection property8 2 � i � m 9 1 � k < i Si � Ci \ ([j<iCj) � Ck : (3.1)Note that the phrase acyclic hypergraph is sometimes used in literature for a class ofsets admitting an ordering of this type. The sets Si are then called separators since Siseparates the 'history' Hi = Sj<iCj n Si from the 'residuals' Ri = Ci n Si in the graphfor every i = 2; : : : ; m (see [53], p. 15). Actually, separators and their multiplicity (i.e.the number of indices i 2 f2; : : : ; mg for which S = Si) do not depend on the choice ofthe sequence satisfying the running intersection property (see Lemma 7.2 in Section 7.2.2or [48]). Note that the running intersection property has a close connection to marginalproblem within the framework of probabilistic expert systems [37, 40].One can show (by repeated application of Proposition 3.17 from [53]) that a marginallycontinuous probability measure P is Markovian with respect to a triangulated undirectedgraph G over N i� its marginal densities fA, A � N satisfy the following product formulafN (x) = QC2C fC(xC)QS2S fS(xS)w(S) (3.2)where C is the class of cliques, S the class of separators and w(S) denotes the multiplicityof a separator. Thus, to store a discrete measure P in memory of a computer one needsto store only its clique marginals. 45
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Figure 3.6: Relationships among classic graphical models.Further related equivalent de�nition of a triangulated graph is the existence of ajunction tree ([17], Theorem 4.6) of its cliques (and separators). Junction trees then forma mathematical basis for miscellaneous e�ective computational methods [89, 17] whichoriginate from the local computation method [49]. Thus, decomposable models are verysuitable from the point of view of implementation (see Section 1.1, p. 9).Perhaps another characterization of decomposable models is worthy of mentioning.Decomposable models are just those formal independence models which are simutaneouslyUG models and DAG models. For illustration see Figure 3.6. A characterization ofdecomposable models in terms of a �nite number of formal properties is given in [15]. Itimplies that decomposable models are closed under restriction.3.4.2 Recursive causal graphsThe concept of recursive causal graph [41] seems to precede the concept of chain graph.It can be equivalently de�ned as a chain graph which admits a chain such that all its linesbelong to the �rst block. Thus, both undirected and acyclic directed graphs are specialcases of recursive causal graphs. The way of ascribing of an independence model to arecursive graph is consonant with the way used in case of classic chain graphs.3.4.3 Lattice conditional independence modelsAndersson and Perlman [4] came with an idea to describe probabilistic CI structuresby �nite lattices (of subsets of N). Given a ring R of subsets of N one says that aprobability measure over N satis�es the lattice conditional independence model (= LCI46



model) induced by R if8E; F 2 R (E n F ) ?? (F n E) jE \ F [P ] :However, it was found later in [6] that LCI models coincide with DAG models inducedby transitive acyclic directed graphs in which a! b and b! c implies a! c. Thus, LCImodels also fall within the scope of classic graphical models. Note that these models areadvantageous from the point of view of learning. It was shown in [80] that an explicitformula for the maximum likelihood estimate exists even in case of 'non-monotone' patternof missing data.3.4.4 Bubble graphsShafer in Section 2.3 of [89] de�ned bubble graphs which are not graphs in standard sensementioned in Section 10.3. A bubble graph over N is speci�ed by an ordered decompositionB1; : : : ; Bn, n � 1 of N into non-empty subsets called bubbles and by a collection ofdirected links which point to bubbles although they originate from single nodes takenfrom the preceding bubbles. Every graph of this type describes a class of probabilitymeasures over N which satisfy certain factorization formula.One can associate a chain graph with every bubble graph as follows. Join nodes ineach bubble by lines and replace any directed link from a node a 2 N to a bubble B � Nby the collection of arrows from a to every node of B. Then one can show easily that aprobability measure over N satis�es the factorization formula corresponding to the bubblegraph i� it factorizes with respect to the ascribed chain graph in sense of Remark 3.7. Inparticular, every bubble graph can be interpreted as a classic chain graph. On the otherhand, every DAG model can be described by a bubble graph.3.5 Advanced graphical modelsVarious types of graphs have been recently proposed in literature in order to describeprobabilistic structures (possibly expressed in terms of structural equations for randomvariables). Some of these graphs can be viewed as tools for description of CI structures(although this may not be the original aim of respective authors). This section gives anoverview of these graphical approaches. Note that the majority of formal independencemodels ascribed to these graphs are semi-graphoids satisfying the composition property.3.5.1 General directed graphsA natural way of generalization is to allow directed cycles. Spirtes, Glymour and Scheines(see Chapter 12 in [94]) mentioned possible use of general directed graphs for descriptionof models allowing feedback. They proposed to use d-separation criterion (see p. 40) toascribe a formal independence model to a directed graph (even allowing multiple edges).It was shown in [95] that even in case of general directed graphs, d-separation criterion isequivalent to the moralization criterion and the criteria are complete (in sense of Remark3.2) relative to the class of non-degenerate Gaussian measures. Richardson [83] publisheda graphical characterization of Markov equivalent directed graphs. It is rather complexin comparison with the case of acyclic directed graphs (six independent conditions areinvolved). 47



3.5.2 Reciprocal graphsKoster [44] introduced very general class of reciprocal graphs. A reciprocal graph G overN is a graph with mixed edges over N (multiple edges are allowed) such that there is noarrow in G between nodes belonging to the same connectivity component of G. Thus,every classic chain graph is a reciprocal graph and every (general) directed graph is areciprocal graph as well. The moralization criterion for chain graphs (see p. 43) can beused to ascribe a formal independence model to every reciprocal graph. Note that in caseof directed graphs it reduces to the moralization criterion treated by Spirtes [95].Thus, consistency of reciprocal graphs (see p. 8) is ensured. The question of theirfaithfulness remains open but the related question of existence of a perfect class of mea-sures (see Remark 3.2) was answered positively. Koster's aim was to apply these graphs tosimultaneous equation systems (LISREL models [38]). A certain reciprocal graph can beascribed to every LISREL model so that the class of non-degenerate Gaussian measuressatisfying the LISREL model is perfect with respect to the assigned reciprocal graph (insense of Remark 3.2).3.5.3 Joint-response chain graphsCox and Wermuth [18] generalized the concept of chain graph by introducing two addi-tional types of edges. A joint-response chain graph G is a chain graph (in sense of Section10.3) in which, however, every arrow is either a solid arrow or a dashed arrow and everyline is either a solid line or a dashed line. Thus, even four types of edges are allowed in agraph of this type. Moreover, two technical conditions are required for every connectivitycomponent C of a joint-response chain graph, namely� all lines within C are of the same type (i.e. either solid or dashed),� all arrows directed to nodes of C are of the same type.The interpretation of these graphs (see [18], Section 2.3) is more likely in terms of whatis known as pairwise Markov property (see Remark 3.1). Namely, the absence of an edgebetween nodes a and b is interpreted as a CI statement a ?? b jC where the set C � N nabdepends on the type of 'absent' edge. Note that technical conditions above allow one todeduce implicitly what is the type of the 'absent' edge.The resulting interpretation of joint-response chain graphs with solid lines and arrowsonly is then in concordance with the original interpretation of chain graphs (see Section3.3) so that they generalize classic chain graphs. An analogue of global Markov propertywas established in two other special cases (see Sections 3.5.4 and 3.5.5).Remark 3.8 Following an analogy with development of classic graphical models (seeRemark 3.1) observe that in order to determine the strongest possible Markov condition(on basis of pairwise Markov condition) one needs to know what is the respective classof probability measures. This class of measures was traditionally closely connected withthe considered class of graphs. It was the class of positive measures in case of CG modelsand UG models (which are called concentration graphs by Cox and Wermuth [18]), theclass of Gaussian measures in case of covariance graphs (see Section 3.5.4) and the classof all probability measures in case of acyclic directed graphs (see Remark 3.4). SinceCox and Wermuth did not explicate the class of measures which should correspond to48



general joint-response chain graphs one cannot derive 'automatically' the respective globalMarkov condition. Well, I can only speculate that they have probably in mind the classof non-degenerate Gaussian measures. In particular, global Markov condition for generaljoint-response chain graph was not established so far (see Section 2.4.5 of [18]) and thequestion of consistency (see Section 1.1) remains to be solved. 4Thus, other theoretical questions mentioned in Section 1.1 do not have sense for joint-response chain graphs untill consistency is established for them.3.5.4 Covariance graphsHowever, consistency was ensured in a special case of undirected graphs made of dashedlines and named covariance graphs. Kauermann [39] formulated a global Markov propertyfor covariance graphs which is equivalent to the above mentioned condition of Cox andWermuth for every probability measure whose induced independence model satis�es thecomposition property. A triplet hA;BjCi 2 T (N) is represented in a covariance graph Gif N nABC separates between A and B. Thus, every covariance graph induces a graphoidsatisfying the composition property. Kauerman [39] also showed that the class of Gaussianmeasures is perfect (in sense of Remark 3.2) with respect to every covariance graph. Inparticular, his criterion is the strongest possible one for the considered class of measures.3.5.5 Alternative chain graphsAnother class of joint-response chain graphs for which the global Markov property wasestablished are chain graphs with solid lines and dashed arrows only. Lead by a speci�cway of parametrization of non-degenerate Gaussian measures Andersson, Madigan andPerlman [7] introduced 'alternative Markov property' (AMP) for chain graphs. Theiralternative chain graphs are chain graphs in sense of Section 10.3 but their interpretationis di�erent from the interpretation of classic chain graphs (see Section 3.3) so that theycorrespond to the above mentioned joint-response chain graphs (see [7], x1 for details).The corresponding augmentation criterion is analogous to the moralization criterionfor classic chain graphs but it is more complex. Testing whether a triplet hA;BjCi 2 T (N)is represented in an alternative chain graph G over N consists of 3 steps. The �rst stepis a speci�c restriction of G to an 'extended graph" over a set T � N involving ABC(= an analogue of the induced graph GT in the moralization criterion). The second stepis transformation of the extended graph into an undirected 'augmented graph'. Thisis done by adding some edges and taking the underlying graph (= an analogue of themoralization procedure). The third step is testing whether C separates between A and Bin the augmented graph.Like in case of classic chain graphs an equivalent p-separation criterion (p stands for'path') was introduced [54]. The main result of [54] is the existence of perfectly Markoviannon-degenerate Gaussian measure for every alternative chain graph. Thus, the faithfulnessof these models is ensured. Moreover, Markov equivalent alternative chain graphs werecharacterized in graphical terms as well [7]. Every class of Markov quivalence can berepresented by respective essential graph (for details see [7], x7).
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3.5.6 Annotated graphsPaz proposed in [75] a special fast implementation (modi�cation) of the moralizationcriterion for acyclic directed graphs. In the preparatory stage of that procedure theoriginal directed graph G is changed into its moral graph and every its immoralititya ! c  b in G is recorded by annotation of the edge a ! b of the moral graph bythe set C of all descendants of c in G. Thus, the original graph over N is changed intoan annotated graph over N , that is an undirected graph supplemented by a collectionof 'elements' [ fa; bg jC ] where a; b 2 N , a 6= b and ; 6= C � N n ab which representsannotated edges. Testing whether a triplet hA;BjCi 2 T (N) is represented in G thenconsists in application of a special membership algorithm for annotated graphs. Thisalgorithm consists in successive restriction of the graph, removal of (respective) annotatededges and �nal checking whether C separates between A and B in the resulting graph.All this procedure is equivalent to the moralization algorithm [75].The point is that this approach has much wider applicability. In [76] the class of regularannotated graphs was introduced together with the corresponding general membershipalgorithm. Formal independence model induced in this way by a regular annotated graphwas shown to be a graphoid. Regular annotated graph can serve as a condensed recordfor the least graphoid containing the unions of UG models (= their graphoid closure).Given a sequence of undirected graphs Gi = (Ni;Li), i = 1; : : : ; k (k � 1) such thatNi � Ni+1 and Li � Li+1 for i = 1; : : : ; k � 1 a speci�c annotation algorithm describedin [76] allows one to construct a regular annotated graph over N = Nk such that theindependence model induced by it is just the graphoid closure of all UG models inducedby Gi, i = 1; : : : ; k. Since every (classic) CG model can be obtained in this way regularannotated graphs generalize classic graphical models.3.5.7 Hidden variablesExample 3.1 shows that the restriction of a DAG model need not be a DAG model.This maybe led to an idea to describe restrictions of DAG models by means of graphicaldiagrams. These models are usually named the models with hidded variables since except'observed' variables in N one anticipates other 'unobserved' hidden variables K and aDAG model over NK.Geiger, Paz and Pearl [34] introduced the concept of embedded Bayesian network . It isa graph over (observed variables) N allowing both directed and bidirected edges (withoutmultiple edges) such that purely directed cycles (that is directed cycles made exclusivelyof arrows) are not present in the graph. A generalized d-separation criterion was used toascribe a formal independence model over N to a graph of this type. It is mentioned in[34] that one can always �nd a DAG model over a set M � N whose restriction to Nis the ascribed independence model. Moreover, according to Pearl's oral communication,Verma showed that the restriction of every DAG model can be described in this way. Notethat faithfulness of embedded Bayesian networks is an easy consequence of faithfullnessof DAG models and the above mentioned claims.However, there are other graphical methods for description of models with hiddenvariables. For example, summary graphs from [18], x8.5 or ancestral graphs mentionedbelow. 50



3.5.8 Ancestral graphsMotivated by the need to describe classes of Markov equivalent (general) directed graphsRichardson [84] proposed to use special graphical objects called partial ancestral graphs(PAGs) for this purpose. PAGs are graphs whose edges have 3 possible endings for bothend-nodes and where the endings of di�erent edges near a common end-node may beconnected by two possible 'connections'. Every mark of this type in a PAG expresscertain graphical property shared by all graphs within the Markov equivalence class, forexample that a node is not an ancestor of another node in all equivalent graphs.The idea of graphical representation of common features of classes of Markov equiv-alent graphs was later substantially simpli�ed. In a recent paper [85] Richardson andSpirtes introduced ancestral graphs. These graphs admit three types of edges, namelylines, arrows and bi-directed edges (e.g. a$ b) and satisfy some additional requirements.These requirements imply that multiple edges and loops are not present in ancestralgraphs. A formal independence model over N is ascribed to an ancestral graph over Nby means of the m-separation criterion which generalizes the d-separation criterion foracyclic directed graphs.Additional standardization of ancestral graphs is suitable. Maximal ancestral graph(MAG) is an ancestral graph G such that [a; b] is an edge in G i� :f a ?? b jC [G] gfor every C � N n ab. MAGs exhibit some elegant mathematical properties. One cande�ne graphical operation of marginalizing and conditioning of MAGs which correspondsto the respective operation with induced formal independence models (c.f. Section 8.2.1).Edges of a MAG G correspond to single real parameters in a certain parametrization ofthe class of non-degenerate Gaussian measures which are Markovian with respect to G.Moreover, there exists a perfectly Markovian Gaussian measure with respect to G. Thus,the question of faithfulness (see Section 1.1) has positive solution in this framework. Notethat MAG models involve both UG models and DAG models and coincide with the classof models induced by summary graphs - see x9.3.1 in [85].3.5.9 MC graphsKoster [45] introduced a certain class of graphs which admit the same three types of edgesas ancestral graphs. However, in these graphs, called MC graphs, multiple edges and someloops are allowed. The abbreviation MC means that graphical operations of 'marginalizingand conditioning' can be applied to these graphs (like in case of MAGs). However, unlikem-separation the respective separation criterion for MC graphs requires blocking of allroutes (like in the c-separation criterion for classic chain graphs - c.f. Remark 3.6). Asmentioned in x9.2 of [85] the separation criterion for MC graphs generalizes m-separationcriterion. Thus, the class of formal independence models induced by MC graphs involvesMAG models. On the other hand, although MC graphs include chain graphs the respectiveseparation criterion in case of chain graphs di�ers both from the c-separation criterionand from the p-separation criterion.3.6 Incompleteness of graphical approachesLet me raise the question how many probabilistic CI models can be described by graphs(cf. the question of completeness in Section 1.1, p. 8). Expressiveness of graphical methods51



varies. For example, in case jN j = 3 one has 8 UG models and 11 DAG models (= CGmodels). But in case jN j = 4 one has 64 UG models, 185 DAG models and 200 CG models,while in case jN j = 5 there exist 1024 UG models, 8782 DAG models [5] and 11519 CGmodels [122]. However, this is not enough for description of CI structures induced bydiscrete probability measures. Well, in case jN j = 3 one has 22 discrete CI models but incase jN j = 4 already 18300 CI models! [107] So, there is a tremendeous gap between thenumber of classic graphical models and the number of discrete probabilistic CI structuresin case jN j = 4 and this gap increases with jN j. In particular, classic graphical modelscannot describe all CI structures.The reader may object that a su�ciently wide class of graphs could possibly cure theproblem. Let me give an argument against it. Having �xed a class of graphs over N inwhich only �nitely many types of edges are allowed the number of these graphs is boundedby the cardinality of the power set of the set of possible edges which grows polynomiallywith n = jN j. On the contrary, as shown in Consequence 2.6 on p. 33 the number ofdiscrete probabilistic CI structures grows with n at least as rapidly as the power set ofpower of n.Thus, in my opinion, one can hardly achieve completeness of a graphical approach (seep. 8) relative to the class of discrete measures and this may result in serious methodologicalerrors (see Section 1.1 p. 10). Well, perhaps one can think about a class of advancedcomplex graphs which allow exponentially many '(hyper)edges' (e.g. annotated graphs)and which has a chance to achieve completeness. But complex graphs of this sort loosetheir easy interpretability for humans.The conclusion above is the reason for an attempt to develop a non-graphical approachto the description of probabilistic CI structures. The approach described in subsequentchapters achieves completeness in discrete framework and had minor chance to be accept-able by humans. On the other hand, the mathematical objects which are used describemore than necesary in sense that some induced formal independence models are notprobabilistic CI models. The loss of faithfulness is a natural price for the possibility ofinterpretation and relatively good solution of the equivalence question. Nevertheless, Iconsider these two gains more valuable than faithfulness.
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Chapter 4Structural imsets: fundamentalsThe moral of the proceding chapter is that the main drawback of graphical models is theirinability to describe all probabilistic conditional independence structures. This motivatedan attempt to develop an alternative method of their description which overcomes thisdrawback and keeps some assets of graphical methods. The central notion of this methodis the concept of structural imset introduced in this chapter. Note that basic ideas ofthe theory were presented earlier [108] but (later recognized) superuous details worsenedunderstanding of the message of the original series of papers. This work brings (in thenext four chapters) much simpler presentation supplemented by facts and perspectivesrevealed later.4.1 Basic class of distributionsThe class of probability measures for which this approach is applicable, that is whoseinduced conditional independence models can be described by structural imsets, is rela-tively wide. It is the class of measures over N with �nite multiinformation mentioned inSection 2.3.4. The aim of this section is to show that this class involves three basic classesof measures used in practice in arti�cial intelligence and multivariate statistics.4.1.1 Discrete measuresThese simple probability measures (see Remark 2.2, p. 13) are mainly used in probabilisticreasoning [78] which is an area of arti�cial intelligence. Positive discrete probabilitymeasures are behind the models used in analysis of contingency tables (see [53], Chapter4) which is an area of statistics. The fact that every discrete probability measure over Nhas �nite multiinformation is trivial.4.1.2 Non-degenerate Gaussian measuresThese measures (see Section 2.3.6 for their basic properties) are widely used in mathe-matical statistics, in particular in multivariate statistics [18]. Consequence 2.5 says thatevery non-degenerate Gaussian measure over N has �nite multiinformation.
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4.1.3 Non-degenerate conditional Gaussian measuresThis class of measures was proposed by Lauritzen and Wermuth [50] with the aim to unifydiscrete and continuous graphical models. Non-degenerate conditional Gaussian measureP over N , in the sequel called shortly CG-measure over N , will be speci�ed as follows.The set N is partitioned into the set � of discrete variables and the set � of continuousvariables. For every i 2 �, Xi is a �nite non-empty set and Xi = P(Xi). For everyi 2 �; Xi = R and Xi is the class of Borel sets in R. A (discrete) probability measureP� on (X�;X�) is given and a vector e(x) 2 R� and a positive de�nite � � �-matrix�(x) 2 R��� is ascribed to every x 2 X� with P�(x) > 0 if � 6= ;. Then P is simplyspeci�ed by its marginal for � and the conditional probability on X� given �:P� � P�; P�j�(� j x) � N (e(x);�(x)) for every x 2 X� with P�(x) > 0 :Of course, these requirements determine unique probability measure on (XN ;XN). Theabove de�nition collapses in case � = ; to a discrete measure over N and in case � = ;to a non-degenerate Gaussian measure over N .Remark 4.1 Note that positive CG-measures (when P�(x) > 0 for every x 2 X�) aremainly used in practice. A CG-measure of this type can be de�ned directly (see [53]x6.1.1) by its density f with respect to the product of the counting measure on X� andthe Lebesgue measure on X�f(x; y) = exp g(x)+h(x)>�y� 12 �y>��(x)�y for x 2 X�; y 2 X� ;where g(x);h(x) 2 R� and positive de�nite matrices �(x) 2 R��� are named canonicalcharacteristics of P . One can compute them directly from parameters P�(x); e(x);�(x)which are named moment characteristics of the CG-distribution as follows (see [53], p.159): �(x) = �(x)�1; h(x) = �(x)�1 � e(x);g(x) = lnP�(x)� j�j2 � ln(2�)� 12 � ln(det(�(x)))� 12 � e(x)> ��(x)�1 � e(x):These measures are positive in sense of Section 2.3.5 but they do not involve all discretemeasures. Therefore, the class of CG-measures was slightly enlarged in this work. 4To evidence that every CG-measure has �nite multiinformation (and thus it is mar-ginally continuous) I use auxiliary estimates with relative entropies modi�ed in a certainway.Supposing (X;X ) is a measurable space, P and Q are probability measures and � isa �-�nite measure on (X;X ) such that P;Q � � by Q-perturbated relative entropy of Pwith respect to � will be understood the integralH(P j� : Q) = ZX ln dPd� (x) dQ(x) � ZX dQd� (x) � ln dPd� (x) d�(x)provided that the function ln dPd� is Q-quasi-integrable. Of course, the value does notdepend on the choice of versions of Radon-Nikodym derivatives dPd� or dQd� . In case Q = Pit coincides with H(P j�) mentioned in Section 10.7. Note that a discrete version of thisconcept is known in information theory as Kerridge's inaccuracy [118] p. 322-323.54



Lemma 4.1 Let (X;X ) be a measurable space and � a �-�nite measure on (X;X ). Sup-pose that P1; : : : ; Pr; r � 1 is a �nite collection of probability measures on (X;X ) suchthat �1 < H(Pkj� : Pl) < +1 for every k; l 2 f1; : : : ; rg. Then every convex combina-tion of P1; : : : ; Pr has �nite relative entropy with respect to �, that is�1 < H( rXk=1 �k � Pkj�) < +1 whenever �1; : : : ; �r � 0; rXk=1 �k = 1:Proof: Put P =Prk=1 �k � Pk, choose and �x a version of dPkd� for every k and �x the versionof dPd� =Prl=1 �l � dPld� . The assumption says8 k; l 2 f1; : : : ; rg ZX dPld� (x) � j ln dPkd� (x) j d�(x) <1:One has to show thatZX j ln dPd� (x) j dP (x) = ZX ( ln dPd� (x) )+ dP (x) + ZX ( ln dPd� (x) )� dP (x) <1 :To estimate the �rst term above use Radon-Nikodym theorem, the observation that the functiony 7! (y � ln y)+ is convex and the inequality y+ � jyj:ZX ( ln dPd� (x) )+ dP (x) � ZX ( dPd� (x) � ln dPd� (x) )+ d�(x) �� rXk=1�k � ZX ( dPkd� (x) � ln dPkd� (x) )+ d�(x) � rXk=1�k � ZX dPkd� (x) � j ln dPkd� (x)j d�(x) <1 :To estimate the second use the fact that the function y 7! (ln y)� is convex, the inequalityy� � jyj, Radon-Nikodym theorem and the form of dPd�ZX ( ln dPd� (x) )� dP (x) � rXk=1 �k � ZX ( ln dPkd� (x) )� dP (x) � rXk=1 �k � ZX j ln dPkd� (x) j dP (x) == rXk=1�k �ZX rXl=1 �l � dPld� (x) � j ln dPkd� (x)j d�(x) = rXk;l=1�k ��l �ZX dPld� (x) � j ln dPkd� (x)j d�(x) <1 :
Lemma 4.2 Let P be a CG-measure over N = �[ � and � = Qi2N �i where �i = � fori 2 � and �i = � for i 2 �. Then�1 < H(P j�) <1 and �1 < H(P figj�i) <1 for every i 2 N :Proof: A direct formula for H(P j�) is easy to derive. Indeed, writedPd� (x; y) = P�(x) � fe(x);�(x)(y) for x 2 X� with P�(x) > 0 and y 2 X�;55



apply logarithm, integrate it with respect to P and obtain using standard properties ofintegral H(P j�) = ZXN ln P�(x) dP (x; y) + ZXN ln fe(x);�(x)(y) dP (x; y) == H(P�j��) + Xx2X�;P�(x)>0P�(x) �H(P (�jx)j��) :The fact �1 < H(P fig j�i) < 1 for i 2 � is trivial. For �xed i 2 � �rst realize thatP�[fig is again a CG-measure wherePfigj�(�jx) = N (e(x)i;�(x)i�i) for i 2 X� with P�(x) > 0:Therefore, the marginal P fig is nothing but a convex combination of non-degenerateGaussian measures. To verify �1 < H(P figj�) < 1 one can use Lemma 4.1. Indeed,suppose Pk = N (e; �) and Pl = N (f; ) where e; f 2 R; �;  > 0 are the correspondingparameters. Because expectation and variance of Pl are known one can compute easilyH(Pkj� : Pl) = ZR �12 � ln(2��)� (x� e)22� dPl(x) = �12 � ln(2��)� 12� � ZR (x� e)2 dPl(x) == �12 � ln(2��)� 12� � ZR (x� f)2 + 2 � (f � e) � x+ (e2 � f2) dPl(x) == �12 ln(2��)� 12� [ + 2 � (f � e) � f + (e2 � f2)] = �12 � ln(2��)�  + (e� f)22 � � :The result is evidently a �nite number.Consequence 4.1 Every CG-measure over N has �nite multiinformation.Proof: Owing to Lemma 4.2 the assumptions of Lemma 2.7 on p. 27 for S = N areful�lled.The fact above was veri�ed by �nding �nite lower and upper estimates for multiinfor-mation. The question whether there exists a suitable exact formula for values of multiin-formation function in terms of parameters of CG-measure remains open (see Theme 1 inChapter 8).Remark 4.2 The class of CG-meassures is not closed under marginalizing which maylead to problems when one tries to study CI within this context. However, it was shownthat this class can be embedded into a wider class of measures with �nite multiinformationwhich is already closed under marginalizing (see Consequence 2.2). 44.2 Classes of structural imsetsDe�nitions and elementary facts concerning structural imsets are gathered in this section.
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������ QQQQQQQQQQQQ������ QQQQQQ������ ������QQQQQQFigure 4.1: Elementary imsets over N = fa; b; cg.4.2.1 Elementary imsetsElementary imset over a set of variables N with jN j � 2 is an imset of a speci�c form.Given (an elementary) triplet hi; jjKi where K � N and i; j 2 N nK are distinct (i 6= j)the corresponding elementary imset uhi;jjKi over N is de�ned by the formulauhi;jjKi = �fi;jg[K + �K � �fig[K � �fjg[K :The class of elementary imsets over N will be denoted by E(N). In case jN j = 1 is theclass E(N) empty by convention. By level of an elementary imset uhi;jjKi is understoodthe number jKj. For every l = 0; : : : ; jN j � 2, the class of elementary imsets of level l willbe denoted by El(N). Supposing jN j = n � 2 it is easy to see that jEl(N)j = �n2� � �n�2l �and jE(N)j = �n2� � 2n�2. Thus, in case N = fa; b; cg one has 6 elementary imsets of 2possible levels. They are shown in Figure 4.1.The following observation is a basis of later results.Observation 4.1 Supposing n = jN j � 2 and l 2 f0; : : : ; n � 2g let us introduce amultiset ml over N by means of the formulaml(S) = max f jSj � l � 1; 0g for every S � N;and a multiset m� over N by means of the formulam�(S) = 12 � jSj � (jSj � 1) for every S � N:57
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���� QQQQQQQQ���� QQQQ���� ����QQQQFigure 4.2: Two combinatorial imsets over N = fa; b; cg.Then one can observe the following facts(a) 8 u 2 El(N) hml; ui = 1;(b) 8 u 2 E(N) n El(N) hml; ui = 0;(c) 8 u 2 E(N) hm�; ui = 1:Proof:The �rst two facts are easy to evidence, the third fact follows from the identity m� =n�2Pl=0 ml and the previous facts. Indeed, this identity can be veri�ed for S � N , jSj � 2 as follows:n�2Xl=0 ml(S) = jSj�2Xl=0 ml(S) = jSj�2Xl=0 jSj � jSj�2Xl=0 l � jSj�2Xl=0 1 = jSj � (jSj � 1)� 12(jSj � 1) � jSj = m�(S):

4.2.2 Semi-elementary and combinatorial imsetsGiven hA;BjCi 2 T (N) the corresponding semi-elementary imset uhA;BjCi is de�ned bythe formula uhA;BjCi = �ABC + �C � �AC � �BC :Evidently, zero imset is semi-elementary as uhA;BjCi = 0 for any hA;BjCi 2 T�(N). Everyelementary imset is semi-elementary as well. An example of non-zero semi-elementaryimset which is not elementary is the imset uha;bcj;i shown in the left-hand picture ofFigure 4.2. Provided one accepts the convention that zero imset is a combination of theempty set of imsets one can observe the following fact.Observation 4.2 Every semi-elementary imset is a combination of elementary imsetswith non-negative integral coe�cients.Proof:A non-zero semi-elementary imset has the form uhA;BjCi where hA;BjCi 2 T (N)nT�(N).The formulas uhA;BDjCi = uhA;BjDCi + uhA;DjCi and uhAD;BjCi = uhA;BjDCi + uhD;BjCi can beapplied repeatedly. 58



By a combinatorial imset over N will be understood every imset u which is a combi-nation of elementary imsets with non-negative integral coe�cients, that isu = Xv2E(N) kv � v where kv 2 Z+: (4.1)The class of combinatorial imsets over N will be denoted by C(N). By Observation 4.2,every semi-elementary imset is a combinatorial imset. The converse is not true: theimset uha;bjci + 2 � uha;cj;i in the right-hand picture of Figure 4.2 is not semi-elementary.Clearly, every combination of combinatorial imsets with coe�cients from Z+ is again acombinatorial imset. In particular, combinatorial imsets can be equivalently introducedas combinations of semi-elementary imsets with non-negative integral coe�cients.Of course, a particular combinatorial imset can be sometimes expressed in severaldi�erent ways. For example, the imset u from the left-hand picture of Figure 4.2 canbe written either as uha;bjci + uha;cj;i or as uha;cjbi + uha;bj;i. On the other hand, there arecharacteristics which do not depend on a particular way of combination. Supposing (4.1)one can introduce the degree of a combinatorial imset u, denoted by deg(u), as followsdeg(u) = Xv2E(N) kv :Similarly, if jN j � 2 then introduce the level-degree of u for every l = 0; : : : ; jN j � 2,denoted by deg(u; l), as the numberdeg(u; l) = Xv2El(N) kv :The following lemma implies that these numbers do not depend on the choice of coe�cientskv for v 2 E(N).Observation 4.3 Supposing u 2 C(N) and l 2 f0; : : : ; jN j � 2g with jN j � 2deg(u; l) = hml; ui; deg(u) = hm�; ui ;where the multisets ml; m� are introduced in Observation 4.1 on p. 57.Proof: Substitute (4.1) in hml; ui and hm�; ui and use Observation 4.1.4.2.3 Structural imsetsAn imset u over N will be called structural if there exists n 2 N such that the multiplen � u is a combinatorial imset, that isn � u = Xv2E(N) kv � v for some n 2 N ; kv 2 Z+ : (4.2)In other words, an imset is structural if it is a combination of elementary imsets, re-spectively semi-elementary imsets, with non-negative rational coe�cients. The class ofstructural imsets over N will be denoted by S(N). By de�nition, every combinatorialimset is structural. In case jN j � 4 the converse is true [101]. However, the questionwhether this is true in general remains open (see Question 7 on p. 142).59



Observation 4.4 Every structural imset u over N is o-standardized, hmA"; ui � 0 andhmA#; ui � 0 (see pp. 34-35). The only imset w 2 S(N) with �w 2 S(N) is the zeroimset w = 0.Proof: All three properties hold for zero and elementary imsets and can be extended tocombinatorial imsets and then to structural imsets. Given w 2 ZP(N) with hmA#; wi = 0 forevery A � N the condition w(S) = 0 for S � N can be veri�ed by induction on jSj.Given a structural imset u let us introduce the lower class of u, denoted by Lu, as thedescending class induced by the negative domain of u, that isLu = fT � N ; 9S � N such that T � S and u(S) < 0 g � (D�u )# :Similarly, one can introduce the upper class of u, denoted by Uu, as the descending classinduced by the positive domain of uUu = fT � N ; 9S � N such that T � S and u(S) > 0 g � (D+u )# :Terminology is motivated by the next fact and later results (Consequence 4.3 on p. 66).Observation 4.5 Whenever u is a structural imset one has Lu � Uu. Moreover[S2Lu S = [S2Uu S : (4.3)Proof: Supposing T 2 Lu �nd T � S � N with u(S) < 0. The fact hmS"; ui � 0 fromObservation 4.4 implies the existence of S � K � N with u(K) > 0. The fact that u is o-standardized says hmfig"; ui = 0 for every i 2 N which implies (4.3) then.Given a structural imset u over N , by the range of u, denoted by Ru, will be understoodthe set union from (4.3). The following lemma is a basis of a later result.Lemma 4.3 Supposing u is a non-zero combinatorial imset over N let us consider a �xedparticular combination u = Xv2E(N) kv � v where kv 2 Z+; u 6= 0 :Then there exists v 2 E(N) such that kv > 0 and Lv � Lu.Proof: Since u 6= 0 necessarily Lu [ Uu 6= ;. Because u is structural, by Observation 4.5Lu � Uu, and therefore Uu 6= ;. Take maximal K 2 Uu and again using Lu � Uu observethat u(K) > 0 and 8L � K u(L) = 0. IntroduceSu = P(N) n Lu = fT � N ; 8T � S � N u(S) � 0g :Clearly, Su is an ascending class and K 2 Su; let us consider a multiset s = PS2Su �S. Itfollows from the de�nition of Su that hs; ui � u(K) > 0. Thus, one can write0 < hs; ui = Xv2E(N) kv � hs; vi � Xv2E(N); hs;vi>0 kv � hs; vi;which implies the existence v 2 E(N) with kv > 0 and hs; vi > 0. Well, since Su isascending, an elementary imset v = uhi;jjKi satis�es hs; vi > 0 i� fi; jg [ K 2 Su andfig [ K; fjg [ K 62 Su (see Section 4.2.1). However, this implies Lv \ Su = ;, whichmeans Lv � Lu. 60



4.3 Product formula induced by a structural imsetThis formula provides a direct way of associating a structural imset with a probabilitymeasure. It can be viewed as a generalization of the concept of factorization into marginaldensities. To give a sensible de�nition I need the following auxiliary concept whose sensebecomes evident later (see Section 4.5). Suppose that P is a probability measure on(XN ;XN) which has �nite multiinformation. By a reference system of measures for P willbe understood any collection f�i; i 2 Ng of �-�nite measures on (Xi;Xi), i 2 N such thatP fig � �i and �1 < H(P figj�i) < +1 for every i 2 N :Having �xed a reference system f�i; i 2 Ng one can put � = Qi2N �i and observe P � �,that is � is a dominating measure for P . Thus, one can repeat what is done in Convention1 (p. 20), that is to choose marginal density fS (= a version of dPSd�S ) for every S � N .Given a structural imset u over N one says that P satis�es the product formula inducedby u if YS�N fS(xS)u+(S) = YS�N fS(xS)u�(S) for �-a.e. x 2 XN : (4.4)Of course, the validity of this formula does not depend on the choice (of versions) ofmarginal densities. The inuence of the choice of a reference system of measures willappear to be seeming as well (see Section 4.5). On the other hand, exibility in its choiceis advantageous since miscellaneous special cases can be described in more details.4.3.1 Examples of reference systems of measuresLet me illustrate this concept by four basic examples. The �rst one shows that one canalways �nd a reference system for a probability measure with �nite multiinformation. Theother examples correspond to important special cases mentioned already in Section 4.1.Universal reference systemGiven a probability measure P over N with H(P j Qi2N P fig) < 1 one can simplyput �i = P fig for every i 2 N . It is evidently a reference system of measures sinceH(P figj�i) = 0 for every i 2 N . Let us call it the universal reference system because itcan be established for any measure with �nite multiinformation.Discrete caseSupposing P is a discrete measure on (XN ;XN) with 1 � jXij <1, i 2 N one can considerthe counting measure � on Xi in place of �i for every i 2 N . This is evidently a referencesystem for P leading to the following system of marginal densities:fS(xS) = P S(fxSg) for every S � N; x 2 XN :Remark 4.3 An alternative choice of a reference system in discrete case is possible. Onecan take uniformly distributed probability measure �̂i = �jXij on Xi for every i 2 N . Thisleads to alternative marginal densitiesf̂S(xS) = P S(fxSg)jXSj for every S � N; x 2 XN ;61



with convention jX;j = 1. 4Gaussian caseSupposing P = N (e;�) with � = (�ij)i;j2N is a non-degenerate Gaussian measure overN one consider the Lebesgue measure � on R is place of �i for every i 2 N . It is areference system for P because H(P figj�) = �12 � 12 � ln(2��ii) for every i 2 N by (10.9)in Section 10.9.3. Owing to the fact that the marginal of a Gaussian measure is againGaussian and (2.19) one can choose marginal densities fS for ; 6= S � N in the formfS(y) = 1p(2�)jSj�det(�S�S) � exp� 12 �(y�eS)>�(�S�S)�1�(y�eS) for y 2 RS :CG-measuresLet P be a non-degenerate CG-measure over N partitioned into the set � of discretevariables and the set � of continuous variables. By a standard reference system for P willbe understood the system f�i; i 2 Ng where �i = � is the counting measure on �niteXi for i 2 � and �i = � is the Lebesgue measure on Xi = R for i 2 �. By Lemma 4.2it is indeed a reference system of measures for P . In purely discrete or Gaussian case itcoicides with two above mentioned reference systems which I recalled explicitly in orderto emphasize the importance of these two classic cases.One can choose the following versions of marginal densities fS for ; 6= S � N (ofcourse, the formula is more complex than in purely discrete or purely Gaussian case)fS(x; y) = Xz2X�nSP�(x;z)>0 P�(x; z) � fe(x;z)S\�;�(x;z)S\��S\�(y) for x 2 XS\�; y 2 XS\�;where a detailed formula for fe(�);�(�)(�) is in (2.19).4.3.2 Topological assumptionsThe reader can object that the product formula (4.4) is not elegant enough since itis dimmed by non-uniqueness of marginal densities and the equality is understood in'almost everywhere' sense. However, under certain topological assumptions usually validin practice and additional natural convention it turns into a fair equality 'everywhere'.A reference system f�i; i 2 Ng for a probability measure P on (XN ;XN) with �nitemultiinformation will be called continuous if the following three conditions are ful�lled.(a) Xi is a separable metric space and Xi is the class of Borel sets in Xi for every i 2 N .(b) Every open ball in Xi has positive measure �i for every i 2 N , that is8 i 2 N 8 x 2 Xi 8 " > 0 �i(U(x; ")) > 0:(c) For every ; 6= S � N there exists a version fS of dPSd�S (where �S = Qi2S �i) which iscontinuous with respect to the product topology on XS = Qi2S Xi.62



The following observation is easy to evidence (see the Appendix, Sections 10.4, 10.5and 10.9 for relevant facts).Observation 4.6 The standard reference system of measures for a non-degenerate CG-measure over N is continuous.In case of a continuous reference system Convention 1 can be explicated as follows.Convention 2 Suppose that P is a probability measure on (XN ;XN) with �nite multi-information and f�i; i 2 Ng is a continuous reference system for P . Then (a) implies thatXS is a separable metric space and XS is Borel �-algebra on XS for every ; 6= S � N . Put�S = Qi2S �i, choose a version fS of Radon-Nikodym derivative dPSd�S which is continuouswith respect to respective topology on XS and �x it. Note that it is possible owing to (c).Let us call it the continuous marginal density of P for S. Note that it follows from (b)that it is determined uniquely (use arguments from the proof of the next lemma).Other notational habits from Convention 1 remain valid. In particular, every fS canbe viewed as a continuous function on XN endowed with the product topology. 4Lemma 4.4 Let P be a probability measure over N with �nite multiinformation andf�i; i 2 Ng a continuous reference system of measures for P . Let's accept Convention 2.Then (4.4) is equivalent to the requirementYS�N fS(xS)u+(S) = YS�N fS(xS)u�(S) for every x 2 XN : (4.5)Proof: By (a) assume that (Xi; %i) is a separable metric space for every i 2 N . Observethat XN endowed with the distance%(x; y) = maxi2N %i(xi; yi) for x; y 2 XNis a separable metric space inducing product topology which generates XS (see e.g. [98]Theorem I.2.3). This de�nition implies that open balls in XN are Cartesian products ofopen balls in Xi and therefore one derives from (b)8 x 2 XN 8 " > 0 �N(U%(x; ")) = �N(Yi2N U%i(xi; ")) > 0 :Now, both the left-hand side and the right-hand side of (4.4) are continuous functionson XN by (c) (see Convention 2) and (4.4) says that their di�erence g (which is also acontinuous function on XN) vanishes �N -a.e. Hence, RXN jg(y)j d�N(y) = 0:Suppose for contradiction that g(x) 6= 0 for some x 2 XN . Then there exists " > 0such that 8 y 2 U(x; ") one has jg(y)j � jg(x)j2 and thereforeZXN jg(y)j d�N(y) � ZU(x;") jg(y)j d�N(y) � jg(x)j2 � �N(U(x; ")) > 0which contradicts the fact above. Therefore g(x) = 0 for every x 2 XN .Thus, by Observation 4.6 one can interpret the product formula induced by a structuralimset as a real identity of uniquely determined marginal densities in three basic casesused in practice: for discrete measures, for non-degenerate Gaussian measures and fornon-degenerate CG-measures. Of course, this need not hold for arbitrary measure with�nite multiinformation and respective universal reference system of measures.63



4.4 Markov conditionThe second basic way of associating a structural imset with a probability measure isan analogue of Markov condition used in graphical models. That means, one requiresthat some conditional independence statements determined by an imset through a certaincriterion are valid conditional independence statements with respect to the measure.4.4.1 Semi-graphoid induced by a structural imsetOne says that a disjoint triplet hA;BjCi 2 T (N) is represented in a structural imset uover N and writes A ?? B jC [u] if there exists k 2 N such that k � u � uhA;BjCi is astructural imset over N as well. An equivalent requirement is that there exists l 2 N suchthat l �u�uhA;BjCi is a combinatorial imset over N . The class of represented triplets thende�nes the (conditional independence) model induced by uMu = f hA;BjCi 2 T (N); A ?? B jC [u] g :Trivial example is the model induced by zero imset.Observation 4.7 Mu = T�(N) for u = 0.Proof: Inclusion T�(N) � Mu is trivial. Suppose for contradiction hA;BjCi 2 T (N) n T�(N)which means that �uhA;BjCi is a structural imset. This contradicts Observation 4.4.Further example is the model induced by an elementary imset.Lemma 4.5 Supposing v = uhi;jjKi 2 E(N) one hasMv = f hi; jjKi ; hj; ijKi g [ T�(N) :Proof: The facts hi; jjKi ; hj; ijKi 2 Mv and T�(N) � Mv are evident. Suppose thathA;BjCi 2 Mv n T�(N) and k � v = uhA;BjCi + w for k 2 N and a structural imset w. Toevidence ABC � ijK use Observation 4.4 to derivek � hmABC"; vi = hmABC"; k � vi = hmABC"; uhA;BjCii+ hmABC"; wi > 0 : (4.6)The fact hmABC"; uhi;jjKii > 0 then implies ABC � ijK. Analogously, to evidence C � Kuse also Observation 4.4 with mC# in (4.6) instead of mABC". The fact that hA;BjCi isa disjoint triplet and K � C � ABC � ijK then implies that hA;BjCi coincides eitherwith hi; jjKi or with hj; ijKi.A basic fact is this.Lemma 4.6 Every structural imset over N induces a disjoint semi-graphoid over N .Proof: Semi-graphoid properties (see Section 2.2.2, p. 15) easily follow from the de�nitionabove and the fact that the sum of structural imsets is a structural imset. Indeed, fortriviality property realize �hA;;jCi = 0, for symmetry �hA;BjCi = �hB;AjCi and for remainingproperties �hA;BDjCi = �hA;BjDCi + �hA;DjCi.For the proof of the equivalence result in Section 4.5 I need a technical lemma. In itsproof the following simple observation concerning upper classes (see p. 60) is used.64



Observation 4.8 Supposing u = w + v where w; v are structural imsets one has Uu =Uw [ Uv.Proof: Inclusion Uu � Uw [ Uv is trivial. To show Uw � Uu take S 2 Umaxw . By Observation4.5 w(S) > 0 and w(T ) = 0 whenever S � T � N . Hence, by Observation 4.40 < hmS"; wi + hmS"; vi = hmS"; ui = XT;S�T u(T )which implies that S 2 Uu. The inclusion Uv � Uu is analogous.Lemma 4.7 Suppose that u is a structural imset over N . Then there exists a sequenceUu = D0; : : : ;Dr = Lu; r � 0 of descending classes of subsets of N and a sequenceha1; b1jC1i; : : : ; har; brjCri of elementary triplets over N (which is empty in case r = 0)such that for every i = 1; : : : ; r(a) ai ?? bi jCi [u],(b) aiCi; biCi 2 Di and Di�1 = Di [ fS; S � aibiCig.Proof: Observe that for every combinatorial imset and every n 2 N one has Un�u = Uu,Ln�u = Lu and A ?? B jC [n �u] i� A ?? B jC [u] for each hA;BjCi 2 T (N). Therefore, itsu�ces to assume that u is a combinatorial imset and prove the proposition by inductionon deg(u).In case deg(u) = 0 necessarily u = 0 and one can put r = 0 and D0 = Uu = Lu = ;.In case deg(u) � 1 one has u 6= 0 by Observation 4.3 and can apply Lemma 4.3 to �ndv = uha;bjCi 2 E(N) with Lv � Lu such that w = u � v is a combinatorial imset. Ofcourse faC; bCg � Lu; a ?? b jC [u] and one can observe that Lw � Lu [ fS;S � abCg.Moreover, by Observations 4.3 and 4.1deg(w) = hm�; wi = hm�; ui � hm�; vi = deg(u)� 1 :In particular, one can apply the induction hypothesis to w an conclude that there existsa sequence Uw = F0; : : : ;Fr�1 = Lw; r � 1 � 0 of descending classes and a sequencehai; bijCii; i = 1; : : : ; r � 1 of elementary triplets with ai ?? bi jCi [w] andaiCi; biCi 2 Fi; Fi�1 = Fi [ fS;S � aibiCig:Let us put Di = Fi [ Uv [ Lu for i = 0; : : : ; r � 1 and for i = r de�ne Dr = Lu andhar; brjCri = ha; bjCi. By Observations 4.8 and 4.5D0 = F0[Uv[Lu = (Uw[Uv)[Lu = Uu.It makes no problem to evidence that D0; : : : ;Dr satis�es the required conditions. Indeed,ai ?? bi jCi [w] implies ai ?? bi jCi [u] for i � r and since Lw � Lu [ fS; S � abCg byu = w+ v one has Dr�1 = Lw [Uv [Lu = Lu [fS;S � abCg = Dr [fS;S � arbrCrg.The signi�cance of the preceding lemma (summarized in the consequence below) isthat one can always 'reach' the upper class of a structural imset from its lower class withhelp of its induced conditional independence statements. Note that 'reverse order' informulation of Lemma 4.7 (going from the upper class to the lover class) is used becauseit is more suitable from the point of view of the proof(s).Consequence 4.2 Let u be a structural imset over N . Then every descending systemE � T (N) containing Lu and satisfying8 hA;BjCi 2 T (N) A ?? B jC [u] and AC;BC 2 E implies ABC 2 E ; (4.7)necessarily contains Uu.Proof: Apply Lemma 4.7 and prove Dr � E by reverse induction on i = r; : : : ; 0.65



4.4.2 Markovian measuresSuppose that u is a structural imset over N and P is a probability measure over N . Onesays that P is Markovian with respect to u ifA ?? B jC [u] implies A ?? B jC [P ] whenever hA;BjCi 2 T (N) :Thus, statistical meaning of an 'imsetal' model is completely analogous to statisticalmeaning of a graphical model. Every structural imset u over N represents a class ofprobability measures over N (within the respective framework of measures, e.g. discretemeasures, Gaussian measures etc.), namely the class of measures which are Markovianwith respect to u. In fact, 'imsetal' models generalize graphical models: given a classicgraph there exists a structural imset having the same class of Markovian distributions(for DAG models see Lemma 7.1).One says that P is perfectly Markovian with respect to a structural imset u over Nif u induces exactly the conditional independence model induced by P , that is for everyhA;BjCi 2 T (N) one hasA ?? B jC [u] if and only if A ?? B jC [P ] :One of the results of this work (Theorem 5.2) is that every probability measure with�nite multiinformation is perfectly Markovian with respect to a structural imset. On theother hand, there are 'superuous' structural imsets whose induced semi-graphoid is nota model induced by any probability measure with �nite multiinformation.Example 4.1 There exists a structural imset u over N = fa; b; c; dg such that no mar-ginally continuous measure over N is perfectly Markovian with respect to u. Putu = uhc;djfa;bgi + uha;bj;i + uha;bjfcgi + uha;bjfdgi :Evidently c ?? d j fa; bg [u], a ?? b j ; [u], a ?? b j fcg [u] and a ?? b j fdg [u]. To showthat a>>b j fc; dg [u] consider the multiset my in Figure 4.3 and observe that hmy; vi � 0for every v 2 E(N). Hence, hmy; wi � 0 for every structural imset w over N . Becausehmy; k � u� uha;bjfc;dgii = �1 for every k 2 N the imset k � u� uha;bjfc;dgi is not structural.However, by Consequence 2.1 there is no marginally continuous probability measure overN which is perfectly Markovian with respect to u. }Another important consequence of Lemma 4.7 is that marginals of a Markovian mea-sure with respect to a structural imset u for sets in Lu determine uniquely its marginalsfor sets in Uu. This motivated the terminology lower and upper class of u introducedin Section 4.2.3. Note that one often has Uu = P(N) in which case whole Markovianmeasure is determined by its marginals on the lower class.Consequence 4.3 Suppose that both P and Q are probability measures on (XN ;XN)which are Markovian with respect to a structural imset u. Then[P S = QS for every S 2 Lu ] ) [P S = QS for every S 2 Uu ] :Proof: One can repeat the arguments used in the beginning of the proof of Lemma 2.6 (p. 24)to verify the following 'uniqueness principle'. For every hA;BjCi 2 T (N)A ?? B jC [P ]; A ?? B jC [Q]; PAC = QBC ; PBC = QBC ) PABC = QABC :Then, owing to the fact that S � T; P T = QT implies P S = QS , one can apply Lemma 4.7 andshow by reverse induction on i = r; : : : ; 0 that [P S = QS for every S 2 Di ]:66
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������ ��� AAAQQQQQQ����� PPPPPPPPP��������� PPPPPPPPP��������� ����� PPPPPPPPP����� QQQQQQQQQQPPPPPPPPPPPPPPPPPP����� PPPPPPPPP����� ��������� ��������� �����QQQQQQAAA ��� ������Figure 4.3: The multiset my from Example 4.1.4.5 Equivalence resultThe third way of associating a structural imset with a probability measure is an algebraicidentity in which the measure is represented by its multiinformation function.One says that a probability measure P over N with �nite multiinformation complieswith a structural imset u over N if hmP ; ui = 0 where mP denotes the multiinformationfunction de�ned in Section 2.3.4.Remark 4.4 The concept above can be introduced alternatively in the following way.Suppose that P is a probability measure over N which has a dominating measure (see p.19) � = Qi2N �i such that �1 < H(P S j Qi2S �i) < +1 for each S � N . Note thatby Lemma 2.7 P has �nite multiinformation then. Thus, one can introduce the entropyfunction of P relative to � as follows:hP;�(S) = �H(P S jYi2S �i) for ; 6= S � Nand hP;�(;) = 0 by convention. Then P complies with a structural imset u over N i�hhP;�; ui = 0. Indeed, (2.18) implies together with the fact that u is o-standardizedXS�N mP (S) � u(S) = �XS�N hP;�(S) � u(S) +Xj2N hP;�(fjg) � XS�N;j2S u(S)| {z }0 ;that is hmP ; ui = �hhP;�; ui. Note that in case of a discrete probability measure one canalways take the counting measure � in place of �. The corresponding entropy functionis then non-negative and has very pleasant properties which enable one to characterizefunctional dependence statements (p. 15) with respect to P [61] (in addition to pure con-ditional independence statements). Namely, hP;�(A) � hP;�(AC) for A;C � N while theequality occurs i� A ?? A jC [P ] (c.f. Remark 2.3). However, this pleasant phenomenon67



seems to be more or less limited to discrete case. It is not clear which dominating mea-sures in general produce entropy functions with behaviour of this type towards functionaldependence (except measures concentrated on a countable set). For example, in Gaussiancase the entropy function relative to Lebesgue measure need not be non-negative or evenmonotone. This is the main reason why I prefer multiinformation function to entropyfunction. The second one is that entropy function does depend on the choice of a suitabledominating measure unlike multiinformation function. 4The main result of this chapter says that all three ways of associating structural imsetswith probability measures are equivalent. In words, a probability measure complies witha structural imset i� it is Markovian with respect to it or i� the product formula inducedby it holds. In the proof below the following simple observation is used.Observation 4.9 Suppose the situation from Convention 1 (p. 20). Then8S � T � N fS(xS) = 0 ) fT (xT ) = 0 for �-a.e. x 2 XN : (4.8)Proof: Combine the arguments used in Remark 2.8 with the formula (2.4) in the proof ofLemma 2.4.Theorem 4.1 Let u be a structural imset over N , P a probability measure on (XN ;XN)with �nite multiinformation. Suppose that f�i; i 2 Ng is a reference system of measuresfor P (p. 61); let us accept Convention 1 on p. 20. Then the following four conditionsare equivalent.(i) QS�N fS(xS)u+(S) = QS�N fS(xS)u�(S) for �-a.e. x 2 XN ,(ii) QS�N fS(xS)u(S) = 1 for P -a.e. x 2 XN ,(iii) hmP ; ui = 0,(iv) A ?? B jC [u] implies A ?? B jC [P ] for every hA;BjCi 2 T (N).Proof: Implication (i) ) (ii) is trivial since P � � and fS(xS) > 0 for P -a.e. x 2 XNand every S � N . To show (ii)) (iii) apply logarithm to the assumed equality �rst andget XS�N u(S) � ln fS(xS) = ln (YS�N fS(xS)u(S)) = 0 for P -a.e. x 2 XN :Then by integrating with respect to P (notation is from Convention 1)XS�N u(S) �H(P S j�S) = ZXN XS�N u(S) � ln fS(xS) dP (x) = 0 :As explained in Remark 4.4 this is equivalent to hmP ; ui = 0.To see (iii) ) (iv) consider a structural imset w = k � u � uhA;BjCi with k 2 N and write0 = hmP ; k � ui = hmP ; uhA;BjCii+ hmP ; wi:68



By Consequence 2.2, the inequality (2.16), both terms on the right-hand side are non-negative and therefore they vanish. Thus, by (2.17) one has A ?? B jC [P ].Supposing (iv) one already knows that fS(xS) � 0 for every x 2 XN , S � N . Thus, thecondition (i) can be proved separately on the set Y = fy 2 XN ; QS�N fS(yS)u�(S) = 0gand on the set Z = fz 2 XN ; QS�N fS(zS)u�(S) > 0g. Because of Lu � Uu (Observation4.5) it follows from (4.8) in Observation 4.9 thatYS�N fS(yS)u+(S) = 0 for �-a.e. y 2 Y ;and both sides of the expression in (i) vanish �-a.e. on Y.Suppose now z 2 Z and put Ez = fS � N ; fS(zS) > 0g. Observe that Lu � Ez forevery z 2 Z and that Ez is a descending class for �-a.e. z 2 Z by (4.8). Having �xedhA;BjCi 2 T (N) the assumption A ?? B jC [u] implies by (iv) A ?? B jC [P ] and henceby Lemma 2.4 derive thatfAC(xAC) � fBC(xBC) > 0 ) fABC(xABC) > 0 for �-a.e. x 2 XN :In particular, for �-a.e. z 2 Z the fact AC;BC 2 Ez implies ABC 2 Ez. Altogether, for�-a.e. z 2 Z the assumptions of Consequence 4.2 with E = Ez are ful�lled and thereforeUu � Ez, that is8 S � N u(S) > 0 ) fS(zS) > 0 for �-a.e. z 2 Z : (4.9)Since u is a structural imset one has n � u = Pv2E(N) kv � v for n 2 N and kv 2 Z+ (seeSection 4.2.3). For every v = uhi;jjKi 2 E(N) with kv > 0 one has i ?? j jK [u] andtherefore by (iv) and (2.3) on p. 21 derivesYS�N fS(xS)v+(S) = YS�N fS(xS)v�(S) for �-a.e. x 2 XN :These equalities can be multiplied each other so that one getsYS�N fS(zS)Pv2E(N) kv �v+(S) = YS�N fS(zS)Pv2E(N) kv �v�(S) for �-a.e. z 2 Z : (4.10)Let us introduce the multiset w = Pv2E(N) kv � v+� n � u+ = Pv2E(N) kv � v�� n � u�. Forevery S � N the fact w(S) > 0 implies v(S) > 0 for some v 2 E(N) with kv > 0. Hence,S 2 Uv � Un�u = Uu by Observation 4.8. By application of (4.9) to some T � S and (4.8)one derives fS(zS) > 0 for �-a.e. z 2 Z. This consideration impliesYS�N fS(zS)w(S) > 0 for �-a.e. z 2 Z :Thus, one can divide (4.10) by this non-zero expression for �-a.e. z 2 Z and conclude thatYS�N fS(zS)n�u+(S) = YS�N fS(zS)n�u�(S) for �-a.e. z 2 Z :Take the n-th root of it and obtain what is desired.69



Let me note that one can always take the universal reference system (p. 61) in Theo-rem 4.1 which implies that the conditions (iii) and (iv) which are not dependent on thechoice of a reference system are always equivalent (for a probability measure with �nitemultiinformation).Further comment is that another equivalent de�nition of conditional independencecan be derived from Theorem 4.1. Suppose that P is a probability measure over N with�nite multiinformation, hA;BjCi 2 T (N) and accept Convention 1. It su�ces to putu = uhA;BjCi and use (ii) in Theorem 4.1 to see that A ?? B jC [P ] i�fABC(xABC) = fAC(xAC) � fBC(xBC)fC(xC) for P -a.e. x 2 XN : (4.11)Note that fS(xS) > 0 for P -a.e. x 2 XN .
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Chapter 5Description of probabilistic modelsTwo basic approaches to description of probabilistic CI structures are dealt with in thischapter. The �rst one which uses structural imsets was already mentioned in Section4.4.1. The second one which uses supermodular functions is closely related to the �rstone. It can also use imsets over N to describe CI models over N but the respectiveclass of imsets and their interpretation are completely di�erent. However, despite formaldi�erence, the approaches are equivalent. In fact, there exists a certain duality relationbetween these two methods: one approach is complementary to the other (see Section5.4). The main result of the chapter says that every CI model induced by a probabilitymeasure with �nite multiinformation can be described both by a structural imset and bya supermodular function.5.1 Supermodular set functionsA real set function m : P(N)! R is called a supermodular function over N ifm(U [ V ) + m(U \ V ) � m(U) + m(V ) for every U; V � N: (5.1)The class of all supermodular functions on P(N) will be denoted by K(N). The de�nitioncan be formulated in several equivalent ways.Observation 5.1 A set function m : P(N)! R is supermodular i� any of the followingthree conditions holds:(i) hm; ui � 0 for every structural imset u over N ,(ii) hm; ui � 0 for every semi-elementary imset u over N ,(iii) hm; ui � 0 for every elementary imset u 2 E(N).Proof: Evidently (i) ) (ii) ) (iii). The implication (iii) ) (i) follows from the de�nition ofstructural imset (see Section 4.2.3 p. 59) and linearity of scalar product. The condition (5.1)is equivalent to the requirement hm;uhA;BjCii � 0 for every hA;BjCi 2 T (N) which is nothingbut (ii).Further evident observation is as follows.71



Observation 5.2 The class of supermodular functions K(N) is a cone:8m1; m2 2 K(N) 8�; � � 0 � �m1 + � �m2 2 K(N) : (5.2)Remark 5.1 This is to warn the reader that a di�erent terminology is used in gametheory, where supermodular set functions are named either 'convex set functions' [86]or even 'convex games' [91]. I followed that terminology in some of my former reports[101, 108]. However, another common term 'supermodular' is used here in order to avoidconfusion with usual meaning of the adjective 'convex' in mathematics. As mentioned in[13] supermodular functions are also named '2-monotone Choquet capacities'. 45.1.1 Semi-graphoid produced by a supermodular functionOne says that a disjoint triplet hA;BjCi 2 T (N) is represented in a supermodular functionm over N and writes A ?? B jC [m] if hm; uhA;BjCii = 0. The class of represented tripletsthen de�nes the model produced by mMm = f hA;BjCi 2 T (N) ; A ?? B jC [m] g :Two supermodular functions over N are model equivalent if they represent the same classof disjoint triplets over N .Remark 5.2 This is to explain terminology. I usually say that a model is induced bya mathematical object over N (see Section 2.2.1), for example by a probability measureover N or by a graph over N (see Chapter 3). However, in this chapter and in subsequentchapters I need to distinguish two di�erent ways of inducing formal independence modelsby imsets. Both ways appear to be equivalent as concerns the class of obtained models(see Consequence 5.4). The problem is that some imsets (e.g. zero imset or uha;bj;i in caseN = fa; bg) may 'induce' di�erent models depending on the way of 'inducing'. To preventmisunderstanding I decided to emphasize the di�erence both in terminology (inducedversus produced) and in notation (Mu versus Mm). Regretably, I have to confess thatthe adjective 'induced' was used in a former report [116] also for supermodular functionsover N . 4Basic fact is this.Lemma 5.1 A supermodular function over N produces a disjoint semi-graphoid over N .Proof: This follows easily from respective formulas for semi-elementary imsets and linear-ity of scalar pruduct. Let m be a supermodular function over N . For triviality propertyrealize hm; uhA;;jCii = hm; 0i = 0; for symmetry hm; uhA;BjCii = hm; uhB;AjCii. The formulahm; uhA;BDjCii = hm; uhA;BjDCii+ hm; uhA;DjCii (5.3)implies directly contraction. To verify decomposition and weak union use Observation 5.1which says that both terms on the right-hand side of (5.3) are non-negative.Typical example of a supermodular set function is the multiinformation function in-troduced in Section 2.3.4. In fact, Consequence 2.2 on p. 26 says the following.72



Observation 5.3 Given a probability measure P over N with �nite multiinformationthe multiinformation function mP is an `-standardized supermodular function.One can conclude even more.Consequence 5.1 Given a probability measure P over N with �nite multiinformationthere exists an `-standardized supermodular function m such that MP =Mm.Proof: Let us put m = mP . The relation (2.17) from Consequence 2.2 saysA ?? B jC [P ] , A ?? B jC [mP ] for every hA;BjCi 2 T (N)which implies the desired fact.Note that the value hmP ; uhA;BjCii for a probability measure P and a disjoint triplethA;BjCi is nothing but the relative entropy of PABC with respect to the conditionalproduct of PAC and PBC (see the proof of Consequence 2.2 on p. 26). This numbercan be interpreted (in discrete case) as a numerical evaluation of the degree of stochas-tic conditional dependence between A and B given C with respect to P [115]. Thus,given a supermodular function m over N and hA;BjCi 2 T (N) the non-negative valuehm; uhA;BjCii could be interpreted as a generalized degree of dependence between A and Bgiven C with respect to m. Having in mind this point of view there is no reason to distin-guish between two supermodular functions for which scalar products with semi-elementaryimsets coincide. This motivated the next de�nition.5.1.2 Strong equivalence of supermodular functionsOne says that two supermodular functions m1 and m2 over N are strongly equivalent ifhm1; uhA;BjCii = hm2; uhA;BjCii for every hA;BjCi 2 T (N) : (5.4)Obviously, m1 and m2 are then model equivalent. Strong equivalence can be equivalentlydescribed with help of a special class of functions, namely the class of functions inducingthe maximal independence model T (N). A function l : P(N)! R is called modular ifl(U [ V ) + l(U \ V ) = l(U) + l(V ) for every U; V � N: (5.5)The class of modular functions over N will be denoted by L(N). Evidently L(N) � K(N).Observation 5.4 The only `-standardized modular function is the zero function.Proof: Indeed, supposing that l : T (N)! R is `-standardized modular function one can showby induction on jSj that l(S) = 0 for every S � N . This is evident in case jSj � 1. If jSj � 2then take uhi;jjKi 2 E(N) such that S = ijK. The fact hl; uhi;jjKii = 0 saysl(S) = l(iK) + l(jK)� l(K)and the right-hand side of this equality vanishes by the induction hypothesis.
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Lemma 5.2 A supermodular function m produces T (N) i� m 2 L(N). Two super-modular functions m1, m2 over N are strongly equivalent i� m1 � m2 2 L(N). Everysupermodular function is strongly equivalent to an `-standardized supermodular function.The class L(N) is a linear subspace of dimension jN j + 1. The functions m;" and mfig"for i 2 N (see p. 34) form its linear base.Proof: Clearly, m : P(N)! R is modular i� both m and �m are supermodular. Hence,by Observation 5.1(ii) one has m 2 L(N) i� hm; ui = 0 for every semi-elementary imsetu which means Mm = T (N). On the other hand because of linearity of scalar producttwo supermodular functions m1 and m2 are strongly equivalent i� hm1 �m2; ui = 0 forevery semi-elementary imset u over N .Let m be a supermodular function over N . The functionem � m�m(;) �m;" �Xi2N fm(fig)�m(;)g �mfig" (5.6)is evidently `-standardized and supermodular as m;" 2 L(N) and mfig" 2 L(N) for i 2 N .Of course, L(N) is a linear subspace. Observe that m;" and mfig" for i 2 N arelinearly independent. To show that they generate L(N) take m 2 L(N) and introduce emby means of the formula (5.6). By Observation 5.4 em = 0.Remark 5.3 Thus, to have a clear view on 'quantitative' dependence structures pro-duced by supermodular functions one should choose one representative from every classof strong equivalence in a systematic way. The choice should follow relevant mathemati-cal principles: to have geometric insight one should do the choice 'linearly'. This can bemade as follows. Take a linear subspace S(N) � RP(N) such that S(N)\L(N) = f0g andS(N) � L(N) = RP(N) . Then every m 2 K(N) can be uniquely decomposed: m = s + lwhere s 2 S(N), l 2 L(N). The fact �L(N) � K(N) and Observation 5.2 impliess 2 K(N). Moreover, s is strongly equivalent to m by Lemma 5.2 and the functions 2 K(N) \ S(N) conicides for strongly equivalent functions m 2 K(N).However, there is exibility in the choice of S(N). Fixing on a space S(N) satisfyingthe above requirements means that one restricts attention to this linear subspace andrepresents the class of supermodular functions K(N) by respective class of standardizedsupermodular functions K(N) \ S(N). In this work only three ways of standardizationare mentioned (they are justi�ed by some theoretical reasons). Preferred standardizationusing the linear subspaceS`(N) = fm 2 RP(N) ; m(S) = 0 whenever jSj � 1 gis in concordance with the property (2.15) of multiinformation functions (see p. 26).Functions m 2 K(N) \ S`(N) are non-decreasing: m(S) � m(T ) whenever S � T (seeConsequence 2.2). In particular, they are non-negative.However, from purely mathematical point of view another standardization which usesthe subspace Su(N) = fm 2 RP(N) ; m(S) = 0 whenever jSj � jN j � 1 gis equally entitled. This standardization can be viewed as 'reection' the of formerone since composition with the mapping S 7�! N n S, S � N on P(N) transforms74



K(N) \ S`(N) onto K(N) \ Su(N). Thus, this standardization leads to non-increasingstandardized supermodular function, which are non-negative as well.The third natural option is to take the orthogonal complement of L(N)So(N) = fm 2 RP(N) ; XS�Nm(S) = 0 and XS�N;i2Sm(S) = 0 for i 2 N g :Note that every independence model produced by a supermodular function is even pro-duced by a supermodular imset (see Consequence 5.4 in Section 5.3). Thus, standardiza-tions of imsets mentioned in Section 2.4 are just the standardization of supermodular func-tions. The letters `; u; o distinguish the types of standardization: `-standardization meansthat the 'lower ' part of the respective diagram of an imset is 'vanished', u-standardizationmeans that the 'upper ' part is 'vanished' and o-standardization means that the respectivelinear space is the orthogonal complement of L(N). 45.2 Skeletal supermodular functionsA supermodular function m over N will be called skeletal ifMm � T (N) but there is nosupermodular function r over N such that Mm � Mr � T (N). Thus, a supermodularfunction is skeletal i� it produces 'submaximal' independence model. The de�nitionimplies that a supermodular function which is model equivalent to a skeletal functionis also skeletal. In particular, strong equivalence has the same property. Of course, modelequivalence decomposes the collection of skeletal functions into �nitely many equivalenceclasses. The aim of this section is to characterize these equivalence classes. To have aclear geometric view on the problem it is suitable to simplify the situation with help of`-standardization mentioned in Remark 5.3.Introduce the class of `-standardized supermodular functions K`(N) = K(N)\S`(N).Basic observation is that K(N) is a direct sum of K`(N) and L(N), in notation K(N) =K`(N)� L(N).Observation 5.5 K`(N)\L(N) = f0g and every m 2 K(N) has unique decompositionm = em + l where em 2 K`(N) and l 2 L(N).Proof: Put l = m(;) � m;" +Pi2Nfm(fig) �m(;) g � mfig". By Lemma 5.2 l 2 L(N). As(�l) 2 L(N) � K(N) by Observation 5.2 em � m + (�l) 2 K(N). The facts l(;) = m(;) andl(fig) = m(fig) for i 2 N imply that em is `-standardized. The uniqueness of the decompositionfollows from Observation 5.4 since L(N) \ K`(N) = L(N) \ S`(N).The following lemma summarizes substantial facts concerning K`(N) (for related con-cepts see Section 10.8.2).Lemma 5.3 The set K`(N) is a pointed rational polyhedral cone in RP(N) . In particular,it has �nitely many extreme rays and every extreme ray of K`(N) contains exactly onenon-zero normalized imset (see p. 36). The set K`(N) is a conical closure of this collectionof normalized imsets.Proof: To evidence that K`(N) is a rational polyhedral cone observe that it is the dualcone F� = fm 2 RP(N) ; hm; ui � 0 for u 2 Fg to a �nite set F � QP(N) , namely toF = E(N) [ f�;;��;g [ [i2Nf�fig;��figg:75



The fact that it is pointed, that is K`(N) \ (�K`(N)) = L(N) \ S`(N) = f0g followsfrom Observation 5.4. All remaining statements of Lemma 5.3 follow from well-knownproperties of pointed rational polyhedral cones gathered in Section 10.8.2. Observe thatevery (extreme) ray of K`(N) which contains a non-zero element of QP(N) must contain anon-zero element of ZP(N), that is a non-zero imset. But only one non-zero imset withinthe ray is normalized.5.2.1 SkeletonLet us denote by K�̀(N) the collection of non-zero normalized imsets belonging to extremalrays of K`(N) and call this set the `-skeleton over N . It is empty in case jN j = 1. The�rst important observation concerning K�̀(N) is the following one.Lemma 5.4 An imset u over N is structural i� it is o-standardized and hm; ui � 0 forevery m 2 K�̀(N).Proof: The necessity of the conditions follows from Observations 4.4 and 5.1(i). Forsu�ciency suppose that u 2 ZP(N) is o-standardized and hm; ui � 0 for any m 2 K�̀(N).The fact that u is o-standardized means that hm;"; ui = 0 and hmfig"; ui = 0 for i 2 N .Hence, by Lemma 5.2 derive that hl; ui = 0 for every l 2 L(N). The fact K`(N) =con(K�̀(N)) (see Lemma 5.3) implies that hm; ui � 0 for every m 2 K`(N). Hence, byObservation 5.5 K(N) = K`(N) � L(N) implies hm; ui � 0 for every m 2 K(N), i.e. ubelongs to the dual cone K(N)�. However, K(N) was introduced as the dual cone E(N)�in RP(N) - see Observation 5.1(iii). This says u 2 E(N)��, but E(N)�� is nothing but theconical closure con(E(N)) - see Section 10.8.2. Hence u 2 con(E(N))\ZP(N) and by Factfrom Section 10.8.2 u is a combination of elementary imsets with non-negative rationalcoe�cients. Therefore, it is a structural imset - see Section 4.2.3.The following consequence of Lemma 5.4 will be utilized later.Consequence 5.2 Let u be a structural imset over N and hA;BjCi 2 T (N). ThenA ?? B jC [u] i� 8 r 2 K�̀(N) hr; uhA;BjCii > 0 implies hr; ui > 0.Proof: Since both u and v � uhA;BjCi are o-standardized, wk � k �u� v is o-standardizedfor every k 2 N . By Lemma 5.4 wk is structural i� hr; k � u� vi � 0 for every r 2 K�̀(N).Thus, by de�nition of Mu on p. 64 A ?? B jC [u] i�9 k 2 N 8 r 2 K�̀(N) k � hr; ui � hr; vi : (5.7)This clearly implies that8 r 2 K�̀(N) hr; vi > 0 ) hr; ui > 0 : (5.8)Conversely, supposing (5.8) observe that 8 r 2 K�̀(N) there exists kr 2 N such thatk � hr; ui � hr; vi for any k 2 N , k � kr. Indeed, owing to Observation 5.1 kr = 1 in casehr; vi = 0 and kr is the least integer greater than hr;vihr;ui in case hr; vi > 0. As K�̀(N) �niteone can put k = max fkr; r 2 K�̀(N)g to evidence (5.7).An important auxiliary result is the following 'separation' lemma.76



Lemma 5.5 For every m 2 K�̀(N) there exists a structural imset u 2 S(N) such thathm; ui = 0 and hr; ui > 0 for any other r 2 K�̀(N) n fmg. Moreover, for every pairm; r 2 K�̀(N), m 6= r there exists an elementary imset v 2 E(N) such that hm; vi = 0and hr; vi > 0. Consequently, Mm nMr 6= ; 6=Mr nMm for distinct m; r 2 K�̀(N).Proof: By Lemma 5.3 K`(N) is a pointed rational polyhedral cone. It can be viewed as acone in RP� (N) where P�(N) = fT � N; jT j � 2g. Observe that this change of standpointdoes not inuence the concept of extreme ray and `-skeleton. One can apply Lemma fromSection 10.8.2 to the extreme ray generated by m. The respective q 2 QP� (N) can bemultiplied by a natural number to get u 2 ZP�(N). This integer-valued function on P�(N)can be extended to an o-standardized imset over N by means of the formulasu(fig) = � XS;fig�S u(S) for i 2 N; u(;) = � XS;S 6=;u(S):As every element of K�̀(N) is `-standardized the obtained imset u satis�es the requiredconditions: it is a structural imset by Lemma 5.4. The existence of v 2 E(N) is a clearconsequence of the existence of u since n � u = Pv2E(N) kv � v for some kv 2 Z+, n 2 N .Indeed, linearity of scalar product and the fact hr; ui > 0 implies that kv > 0 and hr; vi > 0for some v 2 E(N). Moreover, hm; vi = 0 by Observation 5.1.However, the main lemma of this section is the following proposition.Lemma 5.6 A function m 2 K`(N) is skeletal i� it is non-zero function belonging to anextreme ray of K`(N).Proof: For necessity suppose that m is skeletal. Then m 6= 0 because Mm 6= T (N). ByLemma 5.3 write m = Xr2K�̀(N) �r � r for some �r � 0 : (5.9)Since m 6= 0 there exists r 2 K�̀(N) such that �r > 0. Linearity of scalar product withhelp of Observation 5.1 says that hm; ui = 0 implies hr; ui = 0 for every semi-elementaryimset u over N . Thus Mm � Mr. The fact r 2 K�̀(N) implies Mr 6= T (N) by Lemma5.2 and Observation 5.4. The assumption that m is skeletal forcesMm =Mr. By Lemma5.5 at most one r 2 K�̀(N) with Mr =Mm exists. Thus, (5.9) says m = �r � r for somer 2 K�̀(N) and �r > 0.For necessity suppose that m 6= 0 belongs to an extreme ray R of K`(N). The factm 6= 0 implies by Lemma 5.2 with help of Observation 5.5 Mm 6= T (N). Supposethat r is a supermodular function with Mm � Mr. The aim is to show that eitherMr = Mm or Mr = T (N). By Lemma 5.2 r is strongly equivalent an `-standardizedsupermodular function. Therefore assume without loss of generality r 2 K`(N). Theassumption Mm � Mr says hm; ui = 0 ) hr; ui = 0 for every semi-elementary imsetu over N . Thus, by Observation 5.1 hr; ui > 0 implies hm; ui > 0. This means thatthere exists ku 2 N with ku � hm; ui � hr; ui. Since the class of semi-elementary imsetsis �nite there exists k 2 N such that k � hm; ui � hr; ui for every semi-elementary imsetu over N . By linearity of scalar product and Observation 5.1 conclude that k �m � r issupermodular. Since both m and r are `-standardized k �m�r 2 K`(N). The assumptionthat R is extreme ray of K`(N) and decomposition k �m = (k �m � r) + r implies that77



r 2 R. Thus, r = � �m for � � 0. If � = 0 then r = 0 says Mr = T (N), if � > 0 thennecessarily Mr =Mm.Hence the desired characterization of model equivalence classes of skeletal imsets isobtained.Consequence 5.3 Every class of model equivalence of skeletal supermodular functionsover N is characterized by unique element of `-skeleton K�̀(N) belonging to the class.Given m 2 K�̀(N) the respective equivalence class consists of functionsem = � �m + l where � > 0; l 2 L(N) :In particular, every skeletal function is model equivalent to a skeletal imset and K�̀(N)characterizes all skeletal functions.Proof: Given a skeletal function r 2 K(N) by Observation 5.5 and Lemma 5.2 �nd uniquestrongly equivalent skeletal function ~r 2 K`(N) and apply Lemma 5.6 to �nd m 2 K�̀(N)and � > 0 with ~r = � �m. The fact that m is the unique model equivalent element of the`-skeleton follows from Lemma 5.5.5.2.2 Signi�cance of skeletal imsetsOne of the main results of this chapter is the following theorem which explains the sig-ni�cance of the concept of `-skeleton.Theorem 5.1 There exists the least �nite set of normalized `-standardized imsets N (N)such that for every imset u over Nu is structural , u is o-standardized and hm; ui � 0 for every m 2 N (N): (5.10)Moreover, N (N) is nothing but K�̀(N).Proof: Lemma 5.4 says that K�̀(N) is a �nite set of normalized `-standardized imsetssatisfying (5.10). Let N (N) be any �nite class of this type; the aim is to show thatK�̀(N) � N (N). Suppose for contradiction that m 2 K�̀(N) n N (N). By Lemma 5.5there exists a structural imset u over N such that hm; ui = 0 and hr; ui > 0 for any otherr 2 K�̀(N). Basic observation is that hs; ui > 0 for every s 2 N (N); s 6= 0.Indeed, (5.10) implies with help of Observation 5.1 that s is supermodular and there-fore s 2 K`(N). By Lemma 5.3 write s = Pr2K�̀(N) �r � r for �r � 0: Observe that ��r > 0for some �r 2 K�̀(N) n fmg since otherwise s = �m �m for �m > 0 (as s 6= 0) and the factthat both s and m are normalized imsets implies s = m which contradicts m 62 N (N).Hence, by Observation 5.1hs; ui = Xr2K�̀(N)�r � hr; ui � ��r � h�r; ui > 0 :Further step is to take an o-standardized imset w over N such that hm;wi < 0 and putvk = k � u + w for every k 2 N . The inequality hm; vki = hm;wi < 0 implies by Lemma5.4 that vk is not a structural imset over N . On the other hand, for every 0 6= s 2 N (N)one has hs; ui > 0 and therefore there exists ks 2 N with hs; vksi = ks � hs; ui+ hs; wi � 0.78
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of the `-skeleton). Given a skeletal imset m over N put�(i) = m(N)�m(N n fig) for i 2 N ; x = �m(N) +Xi2N �(i) ;introduce emu = m + x �m;" �Xi2N �(i) �mfig" (5.12)and normalize emu to get the respective element of K�u(N). Figure 5.2 shows u-skeletonfor N = fa; b; cg. Finally, given a skeletal imset m over N put�(i) = 2 �XS�Nm(S)� 4 �XS;i2Sm(S) for i 2 N ;and y = 2 �XS�N jSj �m(S)� (jN j+ 1) �XS�Nm(S):Then the formula emo = 2jN j �m + y �m;" +Xi2N �(i) �mfig" (5.13)de�nes an o-standardized imset which after normalization yields the respective elementof the o-skeleton K�o(N). Figure 5.3 consists of Hasse diagrams of o-skeletal imsets overN = fa; b; cg.Note that the proof of result of Section 5.2 for alternative standardization are analo-gous. The only noteworthy modi�cation is needed in the proof of Lemma 5.5 in case ofo-standardization. The cone K�o(N) is viewed as a cone in RP(N) and after application ofLemma from Section 10.8.2 the respective q 2 QP(N) is multiplied to get u 2 ZP(N). Thenthe formula (5.13) with u in place of m de�nes the desired o-standardized imset over N .Remaining arguments are analogous. 45.3 Description of models by structural imsetsSemi-graphoid induced by a structural imset was introduced already in Section 4.4.1 on p.64. The aim of this section is to relate those semi-graphoids to semi-graphoids producedby supremodular functions introduced in Section 5.1.1. The �rst observation is this.Observation 5.6 Let m be a supermodular function over N and u a structural imsetover N . Then hm; ui = 0 i�Mu �Mm.Proof: Supposing hm;ui = 0 and hA;BjCi 2 Mu there exists k 2 N such that k �u�uhA;BjCi 2S(N). Write 0 = k � hm;ui = hm; k � ui = hm; k � u� uhA;BjCii+ hm;uhA;BjCii:By Observation 5.1 both terms on the right-hand side of this equality are non-negative andmust vanish. Thus, hm;uhA;BjCii = 0 which means hA;BjCi 2 Mm. Conversely, supposing81



�� ��fa; b; cg+2�� ��fa; bg�1 �� ��fa; cg�1 �� ��fb; cg�1�� ��fag0 �� ��fbg0 �� ��fcg0�� ��;+1

������ QQQQQQQQQQQQ������ QQQQQQ������ ������QQQQQQ

�� ��fa; b; cg+1�� ��fa; bg0 �� ��fa; cg0 �� ��fb; cg0�� ��fag�1 �� ��fbg�1 �� ��fcg�1�� ��;+2

������ QQQQQQQQQQQQ������ QQQQQQ������ ������QQQQQQ
�� ��fa; b; cg+1�� ��fa; bg+1 �� ��fa; cg�1 �� ��fb; cg�1�� ��fag�1 �� ��fbg�1 �� ��fcg+1�� ��;+1

������ QQQQQQQQQQQQ������ QQQQQQ������ ������QQQQQQ

�� ��fa; b; cg+1�� ��fa; bg�1 �� ��fa; cg+1 �� ��fb; cg�1�� ��fag�1 �� ��fbg+1 �� ��fcg�1�� ��;+1

������ QQQQQQQQQQQQ������ QQQQQQ������ ������QQQQQQ

�� ��fa; b; cg+1�� ��fa; bg�1 �� ��fa; cg�1 �� ��fb; cg+1�� ��fag+1 �� ��fbg�1 �� ��fcg�1�� ��;+1
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(ii) M =Mu for a combinatorial imset u over N ,(iii) M =Mu for a structural imset u over N ,(iv) M =Mm for a supermodular `-standardized imset m over N .Proof: For (i))(ii) put u = PhA;BjCi2M uhA;BjCi. As a combination of semi-elementaryimsets is u a combinatorial imset. For every hA;BjCi 2 M observe that u � uhA;BjCiis a combinatorial imset and therefore A ?? B jC [u]. Thus M � Mu. For converseimplication observe hm; ui = 0 and use Observation 5.6. The implication (iii))(iv) is aneasy consequence of Lemma 5.7, (ii))(iii) and (iv))(i) are evident.Now, the main result of this chapter can be easily derived.Theorem 5.2 Let P be probability measure over N with �nite multiinformation. Thenthere exists a structural imset u over N such that P is perfectly Markovian with respectto u, that isMP =Mu.Proof: By Consequence 5.1 on p. 73 there exists a supermodular function m over N suchthat MP =Mm. By Consequence 5.4 Mm =Mu for a structural imset u over N .Remark 5.7 Going back to the motivation account from Section 1.1 Theorem 5.2 meansthat structural imsets solve satisfactorily theoretical question of completeness. The answeris a�rmative, every CI structure induced by a probability measure with �nite multiinfor-mation can be described by a structural imset. On the other hand, natural price for thisachievement is that structural imsets describe some 'superuous' semi-graphoids. Thatmeans, there are semi-graphoids induced by structural imsets which are not induced bydiscrete probability measures as Example 4.1 on p. 66 shows (the left-hand picture of Fig-ure 6.1 depicts the respective structural imset). In particular, another theoretical questionof faithfulness from Section 1.1 has negative answer.However, mathematical objects which 'answer' a�rmatively both faithfulness andcompleteness question are not advisable because they cannot solve satisfactorily prac-tical question of implementation (see Section 1.1, p. 9). These objects must be di�cultto handle by a computer as the lattice of probabilistic CI models is quite complicated.For example, in case of 4 variables there exists meet-irreducible models which are notcoatoms (= submaximal models) [107] which makes implementation complicated. Theasset of structural imsets is that the lattice of models induced by them is fairly elegantand gives a chance of e�cient computer implementation. 45.4 Galois connectionThe relation of both methods of description of CI models mentioned in this chapter canbe lucidly explained with help of the view of theory of 'formal concept analysis'. Thisapproach, developed in [28], is a speci�c application of theory of complete lattices on(conceptual) data analysis and knowledge processing. Because of its philosophical rootsformal concept analysis is very near to human conceptual thinking. The most importantmathematical notion behind this approach is a well-known notion of Galois connection.This view helps one to interpret the relation of structural imsets and supermodular imsets(functions) as a duality relation. I hope that presentation with help of Galois connectionwill make theory of structural CI models easy understandable for readers.83



5.4.1 Formal concept analysisLet me recall basic ideas of Chapter 1 of [28]. Formal context consists of the followingitems:� the set of objects �,� the set of attributes �,� binary incidence relation = ���� between objects and attributes.If (x; y) 2 = for x 2�, y 2 � then write x= y and say that the object x has the attributey. In general, Galois connection is de�ned for a pair of posets ([8], Section 6 of ChapterIV). However, in treated special case, Galois connection can be introduced as a pair ofmappings between power sets of � and � (which are posets with respect to inclusion):X �� �! X. = fy 2 � ; x= y for every x 2 Xg ;Y � � �! Y / = fx 2� ; x= y for every y 2 Y g :Thus X. is the set of attributes common to objects in X while Y / is the set of objectswhich have all attributes in Y . Clearly, X1 � X2 implies X.1 � X.2 and Y1 � Y2 impliesY /1 � Y /2 . The consequence is that the mapping X 7! X./ is a closure operation onsubsets of � and the mapping Y 7! Y /. is a closure operation on subsets of �.By a formal concept of the context (�;�;=) is understood a pair (X; Y ) with X ��,Y � �, X. = Y and Y / = X. The set X is called the extent and the set Y the intent of theconcept. Observe that the concept is uniquely determined either by its extent, that is thelist of objects forming the concept or by its intent which is the list of attributes (= prop-erties) which characterize the concept. It reects two di�erent philophical-methodologicalways of de�ning concepts: constructive and descriptive de�nitions.One says that the concept (X1; Y1) is a subconcept of the concept (X2; Y2) and writes(X1; Y1) � (X2; Y2) if X1 � X2. Basic properties of Galois connection and the de�nitionof notion formal concept implies that X1 � X2 i� Y1 � Y2. Thus, the class of allconcepts of a given context (�;�;=) is a poset ordered by the relation �. In fact, it is acomplete lattice (see Theorem 3 in Chapter 1 of [28]) where supermum and in�mum (oftwo concepts) are de�ned as follows:(X1; Y1) _ (X2; Y2) = ( (X1 [X2)./ ; Y1 \ Y2 );(X1; Y1) ^ (X2; Y2) = (X1 \X2 ; (Y1 [ Y2)/. ):The lattice is called the concept lattice.Remark 5.8 Note that it follows from the properties of Galois connection that the abovementioned concept lattice is order-isomorphic to the poset fX � �;X = X./g orderedby inclusion �. Thus, the lattice can be described only in terms of objects with help ofthe closure operation X 7! X./ on subsets of �. However, for analogous reason the sameconcept lattice is order-isomorphic to the poset fY � �;Y = Y /.g ordered by reversedinclusion �. This means that the lattice can be described dually in terms of attributesand the respective closure operation Y 7! Y /. as well: this closure operation inducesordinary inclusion ordering � on fY � �;Y = Y /.g (see Section 10.2). Thus, the same84
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Figure 5.4: Galois connection - informal illustration.mathematical structure can be described from two di�erent points of view, in terms ofobjects or in terms of attributes. This again corresponds to two di�erent methodologicalmethods how to describe relations between concepts. The message of Section 5.4 is thatthe relation between description of CI models in terms of structural imsets and in termsof supermodular functions is just the relation of this kind. On the other hand, the role ofobjects and attributes in a formal context is evidently exchangeable. See Figure 5.4 forillustration. 45.4.2 Lattice of structural modelsLet us introduce the class U(N) of structural independence modelsU(N) = fM � T (N) ; M =Mu for a structural imset u over Ng : (5.14)Consequence 5.4 implies that it coincides with the class of formal independence modelsproduced by supermodular functionsU(N) = fM � T (N) ; M =Mm for a supermodular function m over Ng : (5.15)The class U(N) is naturally ordered by inclusion �. The main result of this sectionsays that U(N) is a �nite concept lattice. Indeed, the respective formal context can beconstructed as follows:� = E(N); � = K�̀(N) and u=m i� hm; ui = 0 for u 2 E(N); m 2 K�̀(N): (5.16)Figure 5.5 gives an example of this formal context in case N = fa; b; cg. The followingtheorem summarizes the results.Theorem 5.3 The poset (U(N);�) is a �nite concept lattice which is, moreover, bothatomistic and coatomistic. The null of U(N) is T�(N), the model induced by zero struc-tural imset. The atoms of U(N) are just the models induced by elementary imsets Mv,v 2 E(N). The coatoms of U(N) are just the models produced by skeletal supermodularfunctions Mm, m 2 K�̀(N). The unit of U(N) is T (N), the model produced by anymodular set function l 2 L(N). 85
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Figure 5.5: Formal context (5.16) in case N = fa; b; cg.Proof: The �rst observation is that U(N) is a complete lattice. Indeed, it su�ces to showthat every subset of U(N) has in�mum (see Section 10.2). Let us use (5.15) for this pur-pose. Given supermodular functions m1; : : : ; mn; n � 1 the function m = Pni=1mi de�nesa supermodular function such thatMm = Tni=1Mmi . This follows from Observation 5.1.In�mum of the empty subset of U(N) is T (N) (see Lemma 5.2).The second observation is that fMv; v 2 E(N)g is supremum-dense in U(N):8M 2 U(N) M = sup fMu : u 2 Qg where Q = fuhi;jjKi 2 E(N); hi; jjKi 2 Mg : (5.17)Indeed, evidently Mv � M for every v 2 Q (c.f. Lemma 4.5). On the other hand,supposing K 2 U(N) satis�es Mv � K for every v 2 Q every elementary independencestatement from M belongs to K. Then by Lemma 2.2 conclude M � K which implies(5.17).The third observation is that fMm;m 2 K�̀(N)g is in�mum-dense in U(N):8M 2 U(N) M = inf fMm;m 2 Rg where R = fr 2 K�̀(N);M�Mrg : (5.18)Indeed, by (5.14) one can apply Lemma 5.7 to M and observe that M = Tm2RMm.This clearly implies (5.18). To show that (U(N);�) is even a concept lattice one canuse Theorem 3 in Chapter 1 of [28]. The theorem says that to show that U(N) is order-isomorphic to the concept lattice of a formal context (�;�;=) it su�ces to show thatthere exist mappings  : �! U(N) and � : �! U(N) such that(a) (�) is supremum-dense in U(N),(b) �(�) is in�mum-dense in U(N),(c) u=m, (u) � �(m) for every u 2�, m 2 �.Let us introduce the formal context by means of (5.16) and de�ne  and � as follows: ascribes Mv to every v 2 E(N) (see p. 64) and � ascribes Mm to every m 2 K�̀(N)(see p. 72). The condition (a) follows from (5.17), the condition (b) from (5.18) and thecondition (c) follows directly from Observation 5.6. Thus, U(N) is a concept lattice.86



The next observation is that T�(N) is the null of U(N). By Observation 4.7 T�(N) 2U(N), by Lemma 4.6 it is a semi-graphoid and therefore T�(N) �M.To show that every Mv, v 2 E(N) is an atom of U(N) observe by (5.14)Mv 2 U(N)and assume M 2 U(N), M � Mv. If v = uhi;jjKi then by Lemma 4.5 obtain Mv =fhi; jjKi; hj; ijKig [ T�(N). As M is a semi-graphoid T�(N) � M. If M 6= T�(N) theneither hi; jjKi or hj; ijKi belongs to M which implies by symmetry property Mv � M.The above mentioned fact implies with help of (5.17) that U(N) is an atomistic lattice.The fact that T (N) is the unit of U(N) is evident: T (N) 2 U(N) by Lemma 5.2. Toshow that every Ms, s 2 K�̀(N) is a coatom of U(N) observe Ms 2 U(N) by (5.15) andassume M 2 U(N), Ms � M. By (5.14) and Lemma 5.7 write M = Tr2RMr whereR = fr 2 K�̀(N);M�Mrg. If R n fsg 6= ; then Ms � M �Mr for some r 2 K�̀(N),r 6= s which contradicts the factMsnMr 6= ; implied by Lemma 5.5. Therefore R � fsg:if R = ; then M = T (N), if R = fsg then M = Ms. The above fact implies togetherwith (5.18) that U(N) is a coatomistic lattice.To evidence that fMv; v 2 E(N)g are all atoms of U(N) realize that every atom is join-irreducible and use the well-known fact that every supremum-dense set must contain alljoin-irreducible elements (see Section 2.4.2 in Chapter 1 of [28]). Indeed, fMv; v 2 E(N)gis supremum-dense in U(N) by (5.17). Analogously, the fact that fMm;m 2 K�̀(N)g areall coatoms of U(N) follows from (5.18) and the fact that every in�mum-dense subsetmust contain all meet-irreducible elements, in particular coatoms. .Remark 5.9 However, the formal context (5.16) is not the only option. For example, onecan alternatively take combinatorial imsets in place of � and combinations of `-skeletalimsets with non-negative integer coe�cients in place of � (but the incidence relation isde�ned in the same way like in (5.16) ). The second option is to put � = S(N) and� = K`(N)\ZP(N) (see Figure 7.11 for illustration). The third option is � = con(E(N))and � = K`(N). Moreover, one can consider alternative standardization instead of `-standardization (see Remark 5.3). Speci�c combined option is � = E(N) and � = K(N).On the other hand, the formal context (5.16) is distinguished in a certain sense. The-orem 5.3 implies that every object of (5.16) de�nes a join-irreducible concept and everyattribute of (5.16) de�nes a meet-irreducible concept. Thus, the context (5.16) is re-duced in sense of De�nition 24, Chapter 1 in [28]. Formal context of this type is uniquefor a given �nite concept lattice up to respective isomorphism of formal contexts (seeProposition 12 in Chapter 1 of [28]). 4Another point of view on the lattice (U(N);�) is the following. It order-isomorphicto the class of structural imsets S(N) factorized with respect to corresponding facialequivalence (see Chapter 6). This understanding is suitable from computational point ofview since the operation of supremum in the lattice corresponds to summing of structuralimsets; see Consequence 6.1 in Section 6.2.1. A dual point of view is also possible: elementsof K`(N) \ ZP(N) factorized with respect to the corresponding equivalence can be takeninto consideration. The following observation says that in�mum is realizable by means ofsumming supermodular functions (imsets).Observation 5.7 Let R be a �nite set of supermodular functions over N . Theninf fMm;m 2 Rg = \m2RMm =Mr where r = Xm2Rm: (5.19)87



Proof: To show Mr � Mm for m 2 R take hA;BjCi 2 Mr, write 0 = hr; uhA;BjCii =Pm2Rhm;uhA;BjCii and use Observation 5.1(ii). The same equality can be used to show that,for every supermodular function s over N , the requirement Ms � Mm for m 2 R impliesMs �Mr.Remark 5.10 The lattice U(N) is also order-isomorphic to a face lattice (see Section0.3 in [28]) namely the lattice of faces of a certain polyhedral cone. For example, onecan take the cone con(E(N)) � RP(N) . Another option is the cone K�̀(N) endowed withreverse inclusion �, respectively the cones K�̀(N), K�o(N). In fact, original terminologyfrom [108] was motivated by this point of view (see Remark 6.2 on p. 93). 4Example 5.1 The lattice U(N) has only 1 element in case jN j = 1, namely T (N) =T�(N) and only 2 elements in case jN j = 2, namely T�(N) and T (N). However, it has22 elements in case N = fa; b; cg: the respective Hasse diagram is shown in Figure 5.6.Every node of the diagram contains a schematic description of the respective independencemodel with help of elementary independence statements. Note that Figure 5.6 also showsthe lattice of semi-graphoids over fa; b; cg as they coincide with structural independencemodels in this case. In fact, every structural model over fa; b; cg is even a CI model. Thenumber of structural models over 4 variables is 22108 [106]. }Observation 5.8 Let u be a structural imset over N with jN j = 3. Then there exists adiscrete probability measure P over N such that Mu =MP .Proof: This is an easy consequence of the fact that (U(N);�) is coatomistic (see Theorem5.3) and Lemma 2.9 from Section 2.3.7. Six respective constructions of perfectly Markovianmeasures for the unit and coatoms of U(N) (see Figure 5.6) were already given: see Observation2.2, Observation 2.3, Example 2.1 and Example 2.2.Remark 5.11 This is to explain the relation of this theory to polymatroidal descriptionof CI model used in [66]. Polymatroid is de�ned as a non-decreasing submodular functionh : P(N) ! R such that h(;) = 0. Some polymatroids can be obtained as multiplesof entropy functions of discrete measures relative to the counting measure mentioned inRemark 4.4 - see [61]. The formal independence model induced by a polymatroid h consistsof hA;BjCi 2 T (N) such that hh; uhA;BjCii = 0. Since �h is a supermodular function,there is no di�erence between the model induced by a polymatroid h and the modelproduced by the supermodular function �h. Thus, models induced by polymatroids arejust the structural independence models. There is an one-to-one correspondence betweencertain polymatroids and u-standardized supermodular function - see x5.2 in [116]. 4
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Chapter 6Markov equivalenceThis chapter deals with implication and equivalence problem for structural imsets. First,the question how to understand the concept of Markov equivalence (and implication) isdiscussed and two types of equivalence are compared. The rest of the chapter is devotedto the stronger type of equivalence, called the facial equivalence and to the respectiveimplication between structural imsets. Two characterization of facial implication, whichare analogous to graphical characterization of Markov equivalence mentioned in Chapter3, are given and related implementation tasks are discussed.6.1 Two concepts of equivalenceBasically, there are two di�erent ways of de�ning the concept of Markov equivalence forgraphs which appear to be equivalent in case of classic graphical models, e.g. UG models,DAG models and CG models - see Sections 3.1 - 3.3. The �rst option is distribution equiv-alence which is the requirement that the classes of Markovian measures over N within acertain distribution framework coincide. By a distribution framework is understood a class	 of probability measures over N . Thus, distribution equivalence is always understoodrelative to a distribution framework.The second option is model equivalence which is the requirement that the inducedformal independence models coincide. This type of equivalence is not related to a dis-tribution framework. Clearly, because of the de�nition of Markovian measure, modelequivalence implies distribution equivalence. The converse is true in case of faithfulness(see Section 1.1 p. 8). That is, if a perfectly Markovian measure within the considereddistribution framework 	 exists for every graph (from the respective class of graphs)then distribution equivalence relative to 	 implies model equivalence. This is the case ofclassic chain graphs relative to the class of discrete measures (see Section 3.3) and thecase of alternative chain graphs relative to the class of non-degenerate Gaussian measures(see Section 3.5.5). Nevertheless, distribution and model equivalence coincide even underweaker assumption that the considered class of measures is perfect for every graph (seeRemark 3.2 on p. 38). On the other hand, if the distribution framework is somehow lim-ited then it may happen that model and distribution equivalence di�er. For example, ithappens in case that the class 	 of measures with prescribed one-dimensional marginalsPi on �xed measurable spaces (Xi;Xi), i 2 N is considered and Pk is a degenerated mea-sure for every k 2 M , M � N which means that Pk(A) 2 f0; 1g for every A 2 Xk. Theni ?? j jK [P ] for every P 2 	 and hi; jjKi 2 E(N) with i 2 M (use Lemma 10.1) and90



one can show that all undirected graphs over N which have the same induced subgraphfor N nM are distribution equivalent.Remark 6.1 Note that one may consider even the third type of equivalence of graphs,namely the parametrization equivalence. This approach is based on the following interpre-tation of some types of graphs, e.g. ancestral graphs [85] and joint-response chain graphs[18]. Every edge of a graph of this type represents a real parameter, a speci�c distributionframework 	 (usually the class of non-degenerate Gaussian measures over N) is consid-ered and every collection of edge-parameters determines uniquely a probability measurefrom 	 factorized in a particular way. Every graph of this type is then identi�ed withthe class of parametrized distributions which often coincides with the class of Markoviandistributions within 	 (e.g. in case of maximal ancestral graphs [85]). Two graphs can becalled parametrization equivalent if their classes of parametrized distributions coincide. Ofcourse, parametrization equivalence substantially depends on the considered distributionframework and may not coincide with distribution (Markov) equivalence - for example incase of general ancestral graphs [85].The mentioned point of view motivates a general question whether (some) structuralimsets may lead to a speci�c way of parametrization of the corresponding class of Marko-vian distribution (see Direction 4 in Chapter 8). 4However, in usual situations distribution and model equivalence coincide which meansthat the concept of Markov equivalence of graphs is unambiguously de�ned. Then the taskto characterize Markov equivalence in graphical terms is correctly set. Several solutionsof this general equivalence question (see Section 1.1, p. 8) were exempli�ed in Chapter3. The aim of this chapter is to examine the same equivalence question for structuralimsets. The problem is that in case of structural imsets one has to distinguish two abovementioned types of Markov equivalence and choose one of them as a basis of further study.6.1.1 Facial and Markov equivalenceTwo structural imsets u; v over N are facially equivalent if they induce the same CI model,i.e. Mu =Mv. Then one writes u
 v. Let 	 be a class of probability measures over Nand 	(u) denotes the class of Markovian measures with respect to u relative to 	:	(u) = fP 2 	 ; A ?? B jC [P ] whenever hA;BjCi 2 Mu g : (6.1)Two structural imsets u and v over N are Markov equivalent relative to 	 if 	(u) = 	(v).The following observation is evident.Observation 6.1 Facially equivalent structural imsets are Markov equivalent relativeto any class 	 of probability measures over N .Clearly, Markov equivalence relative to 	 implies Markov equivalence relative to anysubclass e	 � 	. Natural question is whether the converse of Observation 6.1 holds fora reasonable class 	. The answer is negative even for the class of marginally continuousmeasures which involves the widest class of measures for which the method of structuralimsets is safely applicable, namely the class of measures with �nite multiinformation (seeSection 4.1). This is illustrated by the following example.91
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������� ���� AAAAQQQQQQQ������ PPPPPPPPPPP����������� PPPPPPPPPPP����������� ������ PPPPPPPPPPP������ QQQQQQQQQQQQPPPPPPPPPPPPPPPPPPPPPP������ PPPPPPPPPPP������ ����������� ����������� ������QQQQQQQAAAA ���� �������Figure 6.1: Two Markov equivalent structural imsets which are not facially equivalent.Example 6.1 There exist two structural imsets over N = fa; b; c; dg which are Markovequivalent relative to the class of marginally continuous probability measures over N butwhich are not facially equivalent. Consider the imsets (see Figure 6.1)u = uhc;djfa;bgi + uha;bj;i + uha;bjfcgi + uha;bjfdgi and v = u + uha;bjfc;dgi :Clearly, Mu � Mv but ha; bjfc; dgi 2 Mv n Mu as shown in Example 4.1. On theother hand, by Consequence 2.1 every marginally continuous measure P over N which isMarkovian with respect to u satis�es a ?? b j fc; dg [P ]. Hence, one can show that P isMarkovian with respect to u i� it is Markovian with respect to v. }In fact, the above mentioned phenomenon is a consequence of the fact that structuralimsets do not satisfy the faithfulness requirement from Section 1.1 - see Remark 5.7 on p.83. However, in case jN j � 3 every structural imset has a discrete perfectly Markovianmeasure over N - see Observation 5.8. In particular, if jN j � 3 then facial equivalencecoincides both with Markov equivalence relative to the class of discrete measures andwith Markov equivalence relative to the class of measures with �nite multiinformation(use Observation 6.1).In the rest of this chapter attention is restricted to facial equivalence and relatedfacial implication. One reason is that facial implication is not adulterated by consideringa speci�c class of distributions 	. Therefore, one has a better chance that the respectivedeductive mechanism can be implemented on a computer. Moreover, in my opinion,facial equivalence represents pure theoretical basis of Markov equivalence. Indeed, it willbe shown later (see Lemma 6.3) that for a reasonable distribution framework 	 everyMarkov equivalence class relative to 	 decomposes into facial equivalence classes and justone of these classes consists of '	-representable' structural imsets, that is imsets havingperfectly Markovian measures in 	. Thus, to describe CI structures arising within 	 onecan limit oneself to structural imsets of this type and facial equivalence on the consideredsubclass of stuctural imsets coincides with Markov equivalence relative to 	.
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6.2 Facial implicationLet u; v are structural imsets over N . One says that u facially implies v and writes u * vifMv �Mu. Observe that u is facially equivalent to v i� u * v and v * u.Remark 6.2 This is to explain the motivation of above terminology. The adjective 'fa-cial' was used already in [108] to name the respective deductive mechanism for structuralimsets. This was motivated by an analogy with the theory of convex polytopes wherethe concept of face has a central role [12]. Indeed, one can consider the collection of allfaces of the cone con(E(N)) and introduce the following implication of structural imsets:u implies v if every face of con(E(N)) which contains u contains also v. The original de�-nition of facial implication of structural imsets used in [108] was nothing but modi�cationof this requirement. It appeared to be equivalent to the condition Mv � Mu: one canshow this using the results from [108], although it is not explicitly stated there. 46.2.1 Direct characterization of facial implicationLemma 6.1 Let u; v are structural imsets over N . Then u * v i�9 l 2 N l � u� v is a structural imset ; (6.2)which is under assumption that v is a combinatorial imset equivalent to the requirement9 k 2 N k � u� v is a combinatorial imset : (6.3)Proof: Suppose u * v and write n � v = Pw2E(N) kw � w where n 2 N ; kw 2 Z+. Ifkw > 0 and w = uhi;jjKi then hi; jjKi 2 Mv � Mu. Thus, there exists lw 2 N such thatlw � u� w 2 S(N). Put l = Pw2E(N);kw>0 kw � lw and observe thatl � u� v = (l � u� n � v) + (n� 1) � v = Xw2E(N);kw>0 kw � (lw � u� w) + (n� 1) � v 2 S(N)since S(N) is closed under summing. Thus, (6.2) was veri�ed. Conversely, suppose (6.2)and consider hA;BjCi 2 Mv. Find k 2 N such that k � v � uhA;BjCi 2 S(N). As S(N) isclosed under summing conclude(k � l) � u� uhA;BjCi = k � (l � u� v) + (k � v � uhA;BjCi) 2 S(N) ;which implies hA;BjCi 2 Mu.Evidently (6.3) implies (6.2). On contrary, suppose (6.2) and that v is a combinatorialimset. Take n 2 N such that n � (l �u� v) is combinatorial and put k = n � l. As v 2 C(N)and C(N) is closed under summing k �u� v = n � (l �u� v) + (n� 1) � v is a combinatorialimset.Remark 6.3 Basic di�erence between (6.2) and (6.3) is that testing whether an o-standardized imset is combinatorial is decidable in �nitely many steps and the number ofthese steps is known! Indeed, if an o-standardized imset w = k � u � v is combinatorial,then the degree deg (w) can be directly computed by Observation 4.3. It is the number ofelementary imsets which have to be summed to obtain w. The only combinatorial imset of93
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������� ���� AAAAQQQQQQQ������ PPPPPPPPPPP����������� PPPPPPPPPPP����������� ������ PPPPPPPPPPP������ QQQQQQQQQQQQPPPPPPPPPPPPPPPPPPPPPP������ PPPPPPPPPPP������ ����������� ����������� ������QQQQQQQAAAA ���� �������Figure 6.2: Structural imsets u and 2 � u� v from Example 6.2.degree 0 is the zero imset and an imset w with deg (w) = n 2 N is combinatorial i� thereexists an elementary imset uhi;jjKi such that w�uhi;jjKi is a combinatorial imset of degreen� 1. Since the class of elementary imsets is known testing can be done recursively.Note that one can modify the proof of Lemma 6.1 to show that (6.3) is equivalent tou * v even in case that v is a structural imset such that9 k; n 2 N n � v and (n � k � 1) � v are combinatorial imsets : (6.4)The condition (6.4) is formally weaker than the requirement that v is a combinatorialimset. However, their di�erence may appear to be illusory. So far, I do not know anexample of a structural imset which is not a combinatorial imset - see Question 7. 4A natural question is how big the number l 2 N from (6.2) could be. The followingexample shows that it may happen that l > 1.Example 6.2 There exists a combinatorial imset u over N = fa; b; c; dg and a semi-elementary imset v such that 2 � u � v is a structural imset (and therefore u * v) butu� v is not a structural imset. Putu = uha;bj;i + uha;cj;i + uhc;djbi + uhb;djci + uha;djbci + uhb;cjadi ; v = uha;bcdj;i (6.5)and observe that2 � u� v = 2 � u� uha;bcdj;i = uha;bj;i + uha;cj;i + uha;dj;i +uhc;djbi + uhb;djci + uhb;cjdi + (6.6)uhb;cjadi + uhb;djaci + uhc;djabiis a combinatorial imset (see Figure 6.2 for illustration) and therefore u * v. To see thatu�v is not a structural imset (see the left-hand picture of Figure 6.3 for illustration) con-sider the multiset m� shown in the right-hand picture of Figure 6.3. It is a supermodularmultiset by Observation 5.1(iii). As hm�; u� vi = �1 the imset u� v is not a structuralimset by Observation 5.1(i).On the other hand, one has u * w for an elementary imset w = uha;dj;i. Indeed, onehas u� w = uha;bcj;i + uhb;cjdi + uhb;djaci + uhc;djabiwhich means that the constant l from (6.2) can be lower in this case. }94
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������� ���� AAAAQQQQQQQ������ PPPPPPPPPPP����������� PPPPPPPPPPP����������� ������ PPPPPPPPPPP������ QQQQQQQQQQQQPPPPPPPPPPPPPPPPPPPPPP������ PPPPPPPPPPP������ ����������� ����������� ������QQQQQQQAAAA ���� �������Figure 6.3: The imsets u� v and the supermodular multiset m� from Example 6.2.Remark 6.4 Example 6.2 shows that veri�cation whether a semi-elementary imset isfacially implied by a structural imset requires multiplication of the structural imset by 2at least. Note that later Consequence 6.4 in Section 6.3.2 can be modi�ed by replacingthe class of elementary imsets by the class of semi-elementary imsets to get an upperestimate of the constant in (6.2) in this case. One can show using the results of [101] thatin case jN j = 4max f hr; wi ; r 2 K�̀(N) ; w is a semi-elementary imset over N g = 2which implies then that 2 is the minimal integer l� satisfying8 u 2 S(N) v semi-elementary imset over N u * v i� l� � u� v 2 S(N) :Note that one has l� = 1 in case jN j � 3 for the same reason. 4The following consequence of Lemma 6.1 was already announced in Section 5.4.2.Consequence 6.1 Let Q be a �nite set of structural imsets over N . Thensup fMu; u 2 Qg =Mv for v = Xu2Qu (6.7)where the supremum is understood in the lattice (U(N);�).Proof: To show Mu � Mv for u 2 Q take hA;BjCi 2 Mu, �nd k 2 N such thatk � u� uhA;BjCi 2 S(N) and writek � v � uhA;BjCi = k � Xw2Qnfugw + (k � u� uhA;BjCi) 2 S(N) :To show, for every structural imset w over N , that the assumptionMu �Mw for u 2 Qimplies Mv � Mw use Lemma 6.1. Indeed, the assumption means that lu 2 N withlu � w � u 2 S(N) exists for every u 2 Q. Put l = Pu2Q lu and observe l � w � v =Pu2Q(lu � w � u) 2 S(N). 95



Remark 6.5 The de�nition of facial implication can be extended as follows. A (�nite) setof structural imsets Q facially implies a structural imset w (write Q * w) if Mw � Mfor every structural independence model M such that Su2QMu � M. However, byConsequence 6.1 this condition is equivalent to the requirementMw � supu2QMu �Mvwhere v = Pu2Q u. Thus, the extension of facial implication of this type is not neededbecause it is covered by the current de�nition of facial implication. 46.2.2 Skeletal characterization of facial implicationLemma 6.2 Let u; v are structural imsets over N . Then u * v i�8m 2 K�̀(N) hm; vi > 0 ) hm; ui > 0; (6.8)which is equivalent to the conditionhm; vi > 0 ) hm; ui > 0 for every supermodular function m over N: (6.9)Moreover, the condition (6.8) is also equivalent to the requirementl� � u� v 2 S(N) whenever l� 2 N such that l� � hr; vi for every r 2 K�̀(N): (6.10)Proof: Evidently (6.9)) (6.8). Conversely, if (6.8) then observe by Lemma 5.3 and Ob-servation 5.1(i) that hm; vi > 0 implies hm; ui > 0 for every `-standardized supermodularfunction m 2 K`(N). However, every supermodular function is strongly equivalent to afunction of this type by Lemma 5.2 which means that (6.9) holds.By Lemma 6.1 u * v i� the condition (6.2) holds. However, by Lemma 5.4 it isequivalent to the condition9 l 2 N 8m 2 K�̀(N) l � hm; ui � hm; vi ; (6.11)which implies (6.8). The next step is to show that (6.8) implies8m 2 K�̀(N) l� � hm; ui � hm; vi for l� 2 N from (6.10) : (6.12)Indeed, if m 2 K�̀(N) such that hm; vi � 0 then l� � hm; ui � 0 � hm; vi by Observation5.1(iii). If m 2 K�̀(N) such that hm; vi > 0 then (6.8) implies hm; ui > 0. However, asboth m and u are imsets hm; ui 2 Z and therefore hm; ui � 1 and the assumption aboutl� implies l� � hm; ui � l� � hm; vi. The condition (6.12) then implies l� � u� v 2 S(N) byLemma 5.4. Thus, (6.8))(6.10). Since K�̀(N) is �nite l� 2 N satisfying the requirementfrom (6.10) exists which means that (6.10) implies u * v by Lemma 6.1.The role of the way of standardization of supermodular functions is not substantial inthe above result. One can easily derive an analogous result with the u-skeleton respectivelywith the o-skeleton in place of the `-skeleton by a similar procedure (see Remark 5.6).It follows from Lemma 6.1 that one has u * uhA;BjCi for a structural imset u overN and hA;BjCi 2 T (N) i� hA;BjCi 2 Mu. Therefore Lemma 6.2 can be viewed asan alternative criterion of testing whether a disjoint triplet over N is represented in astructural imset over N . Note that Lemma 6.1 is suitable in the situation one wantsto con�rm the hypothesis that u * v while Lemma 6.2, namely the conditions (6.8)and (6.9), is suitable in the situation one wants to disprove u * v. This is illustratedby Example 6.3 below. Well, the relation of these two criteria of facial implication isanalogous to the relation of moralization and d-separation criteria in case of DAG models(see Section 3.2). 96
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 v i�8m 2 K�̀(N) hm; ui > 0 i� hm; vi > 0 ; (6.13)which is equivalent to the condition that hm; ui > 0 , hm; vi > 0 for every supermodularfunction m over N .Note that the skeletal criteria of testing facial implication and equivalence are e�ectivein particular in case jN j � 4 since jK�̀(N)j is small in this case - see Remark 5.4. They arestill implementable in case jN j = 5; a computer program which realizes facial implicationof elementary imsets over �ve-element set can be found athttp://www.utia.cas.cz/user data/studeny/�vevar.htm :As the `-skeleton is not at disposal in case jN j � 6 the only available criterion in thatcase is the criterion from Lemma 6.1.6.2.3 Adaptation to a distribution frameworkLet us consider a class 	 of probability measures over N (a distribution framework) whichsatis�es the following two conditions:for every P 2 	 there exists a structural imset u over N such that Mu =MP ; (6.14)97



for every pair P;Q 2 	 there exists R 2 	 such that MR =MP \MQ: (6.15)There are at least three examples of distribution frameworks satisfying these two natu-ral conditions: the class of measures with �nite multiinformation, the class of discretemeasures and the class of positive discrete measures (see Theorem 5.2 and Lemma 2.9).The goal of this section is to show that after suitable restriction of the class of structuralimsets facial equivalence and Markov equivalence relative to 	 coincide.A structural imset u over N is representable in 	, shortly 	-representable, if thereexists P 2 	 which is perfectly Markovian with respect to u, i.e. Mu =MP . Evidently,every structural imset which is facially equivalent to a 	-representable structural imsetis 	-representable as well. The class of 	-representable structural imsets over N will bedenoted by S	(N).Lemma 6.3 Let 	 be a class of probability measures over N satisfying (6.14) and (6.15)and u 2 S(N). Then the class of structural imsets Markov equivalent to u relative to	 is the union of a �nite collection f of facial equivalence classes ordered by relation*. Moreover, the poset (f;*) has the greatest element which is the only class of facialequivalence } 2 f consisting of 	-representable imsets.Proof: The �rst claim of the lemma follows easily from Observation 6.1. Let us putM = TP2	(u)MP where 	(u) is de�ned by (6.1) and� = fP 2 	 ; A ?? B jC [P ] whenever hA;BjCi 2 Mg :The inclusion 	(u) � � follows directly from the de�nition of M. The fact Mu � Mimplies � � 	(u) and therefore � = 	(u). As T (N) is �nite the set fMP ;P 2 	(u)gis also �nite and one can show by repetitive application of the assumption (6.15) thatR 2 	(u) such thatMR =M exists. By (6.14) a structural imset v withMv =MR =Mexists, which means � = 	(v). Thus, u and v are Markov equivalent relative to 	. AsR 2 	 is perfectly Markovian with respect to v the imset v is 	-representable.Suppose that w 2 S(N) such that 	(w) = 	(u) and observe thatMw � \P2	(w)MP = \P2	(u)MP =M =Mv :Thus v * w and the class } of imsets facially equivalent to v is the greatest element of(f;*). If w is 	-representable then Q 2 	 withMw =MQ exists and Q 2 	(w) = 	(u)which impliesM�MQ =Mw �M. Hence, Mw =M =Mv which says w
 v.Remark 6.6 Note that (f;*) is even a join semi-lattice. Indeed, v * ~w * w and	(w) = 	(v) implies 	( ~w) = 	(v) for v; ~w;w 2 S(N). Hence, 	(u + w) = 	(v) forstructural imsets u; w with 	(u) = 	(w) = 	(v) where v 2 S(N) belongs to the greatestelement } of f mentioned in Lemma 6.3. By Consequence 6.1Mu+w =Mu _Mw whichmeans that u + w represents the join of u and w in (f;*). On the other hand, (f;*)need not be closed under the operation of meet in the lattice of structural imsets.It may happen that f consists of one class of facial equivalence only. This meansthat the class of imsets Markov equivalent to u coincides with the class of imsets faciallyequivalent to u. For example, this phenomenon is quite common in case jN j = 4 for theclass of discrete measures over N : one has 18300 Markov equivalence classes and 22108facial equivalence classes then [106, 107]. 498



The following fact immediately follows from Lemma 6.3.Consequence 6.3 Let 	 be a class of probability measures over N satisfying (6.14) and(6.15). Consider the collection of 	-representable structural imsets S	(N) over N . Facialand Markov equivalence relative to 	 coincide for imsets from S	(N).In the considered case the class S	(N) satis�es both the requirements of faithfulnessand the requirement of completeness relative to the class of CI structures arising within	 which were mentioned in Section 1.1. Thus, a theoretical solution of those problems isat disposal but a practical question how to recognize imsets from S	(N) remains to besolved then.Remark 6.7 The idea of implementation of respective deductive mechanism on a com-puter is as follows. Except usual algebraic operations with structural imsets one needs toimplement an additional operation which ascribes the respective 	-representable struc-tural imset v 2 S	(N) to every structural imset u 2 S(N). Suppose that u1; : : : ; un; n � 1are structural imsets which represent input pieces of information about CI structure in-duced by an unknown distribution P which is known to belong to a given distributionframework 	 (a subclass of the class of measures with �nite multiinformation which sat-is�es (6.15) ). The sum u = Pni=1 ui then represents aggregated information about CIstructure of P . But within the considered distribution framework 	 over more can be de-duced: one should �nd the respective v 2 S	(N) which represents necessary conclusionsof input pieces of information about CI structure of any P 2 	.Nevertheless, possible inherent complexity of the problem of description of the lattice ofCI structures arising within 	 cannot be avoided. Indeed, implementation of the operationascribing respective v 2 S	(N) to every u 2 S(N) may appear to be complicated (seeRemark 5.7 for analogous consideration). Hopefully, the presented approach helps todecompose the original problem properly. 46.3 Testing facial implicationThis section deals with implementation tasks connected with direct characterization offacial implication.6.3.1 Testing structural imsetsThe �rst natural question is how to recognize a structural imset. One possible methodis given by Theorem 5.1 but, as explained in Remark 5.4, that method is not feasiblein case jN j � 6. Thus, only the direct de�nition of structural imset is available ingeneral. Therefore one needs to know whether the corresponding procedure is decidable.As explained in Remark 6.3 testing of combinatorial imsets is quite clear. One needs toknow whether the natural number by which a structural imset must be multiplied to geta combinatorial imset is somehow limited.Lemma 6.4 There exists n 2 N such that8 imset u over N u 2 S(N) i� n � u 2 C(N) : (6.16)99



Proof: One can apply Theorem 16.4 from [90] with says that every pointed rationalpolyhedral cone C � Rn , n � 1 has a (unique) minimal integral Hilbert basis generatingC that is (minimal) �nite set B � Zn such that8 x 2 C \ Zn x = Xy2B ky � y for some ky 2 Z+and con(B) = C (which implies B � C). One can apply this result to the rationalpolyhedral cone con(E(N)) � RP(N) which is pointed by Observation 4.1 as hm�; ti > 0for every non-zero t 2 con(E(N)). Moreover, by Fact from Section 10.8.2 an imset u overN belongs to con(E(N)) i� it is structural. Thus, a �nite set of structural imsets H(N)exists such that 8 u 2 S(N) u = Xv2H(N) kv � v for some kv 2 Z+ : (6.17)One can �nd n(v) 2 N for every v 2 H(N) such that n(v) � v is a combinatorial imset andput n = Qv2H(N) n(v). Clearly, n � v 2 C(N) for every v 2 H(N) and (6.17) implies thatn � u 2 C(N) for every u 2 S(N).Natural question is what is the minimal n 2 N satisfying (6.16). I do not know theanswer in case jN j � 5 (see Theme 12 on p. 143). But if jN j � 4 then n = 1: let meformulate as a separate observation the main result of [101].Observation 6.2 If jN j � 4 then the class of structural imsets over N coincides withthe class of combinatorial imsets over N .Remark 6.8 The least n 2 N satisfying (6.16) may appear to be too high. Alternativeapproach to direct testing structural imsets could be based on the concept of minimalintegral Hilbert basis H(N) mentioned in the proof of Lemma 6.4 (see Theme 11). Itfollows from the proof of Theorem 16.4 of [90] that H(N) has the formH(N) = fv 2 S(N); v 6= 0 & :[v = v1 + v2 where v1; v2 2 S(N); v1 6= 0 6= v2] g:The fact that every elementary imset generates an extreme ray of con(E(N)) allows toderive E(N) � H(N). Of course, H(N) = E(N) if jN j � 4 by Observation 6.2. Theidea is to characterize H(N) in general. Then every imset u over N can be e�ectivelytested whether it can be written as a combination of imsets from H(N) with non-negativeintegral coe�cients. Indeed, one can modify the procedure described in Remark 6.3. 46.3.2 GradeAnother natural question arising in connection with Lemma 6.1 is whether there existsl 2 N such that 8 u 2 S(N) v 2 E(N) u * v i� l � u� v 2 S(N): (6.18)The answer is yes. Evidently, if l 2 N satis�es (6.18) then every l0 2 N , l0 � l satis�esit as well. Therefore one is interested in minimal l 2 N satisfying (6.18) which appears100



to depend on N . Actually, it depends on jN j only because of inherent one-to-one cor-respondence between E(N) and E(M), respectively between S(N) and S(M) for sets ofvariables N and M of the same cardinality. The following number is a good candidatefor the minimal l 2 N satisfying (6.18).Supposing jN j � 2 let us call the grade, denoted by gra(N), the natural numbergra(N) = max f hr; wi; r 2 K�̀(N) w 2 E(N) g : (6.19)Evidently, gra(N) depends on jN j only. Lemma 6.2, the condition (6.10), implies this:Consequence 6.4 If jN j � 2 then l = gra(N) satis�es (6.18).Consequence 6.4 leads to an e�ective criterion of testing facial implication of elemen-tary imsets in case jN j � 4 which utilizes the fact that structural and combinatorialimsets coincide in this case.Consequence 6.5 Suppose that 2 � jN j � 4, u is a structural imset over N and v anelementary imset over N . Then u * v i� u� v is a combinatorial imset.Proof: The �rst observation is that if jN j � 4 then hm; vi 2 f0; 1g for every m 2 K�̀(N)and v 2 E(N) - see [101]. Thus, gra(N) = 1 and by Consequence 6.4 one has u * v i�u� v 2 S(N) which is equivalent to u� v 2 C(N) by Observation 6.2.However as shown in [116] gra(N) = 7 in case jN j = 5. In fact, an example fromSection 4.3 of [116] shows that the minimal natural number l for which (6.18) holds isjust 7 in case jN j = 5. The question what is the minimal l 2 N satisfying (6.18) (c.f. p.143) is partially answered by the following lemma.Lemma 6.5 Suppose that jN j � 2. Then the minimal l� 2 N satisfying8 u 2 C(N) 8 v 2 E(N) u * v i� l� � u� v 2 S(N) (6.20)is the upper integer part ofgra�(N) = maxm2K�̀(N) max fhm;wi ; w 2 E(N)gmin fhm;wi ; w 2 E(N) hm;wi 6= 0g : (6.21)Proof: To show that every l� 2 N with l� � gra�(N) satis�es (6.20) the procedure fromthe proof of Lemma 6.2 can be used. The only modi�cation is that in case m 2 K�̀(N)with hm; ui > 0 the fact u 2 C(N) implies hm; ui � min fhm;wi ; w 2 E(N) hm;wi 6= 0gwhich allows to writel� � hm; ui � gra�(N) � minw2E(N);hm;wi6=0hm;wi � maxw2E(N)hm;wi � hm; vi:To show that for every l 2 N with l < gra�(N) there exists a combinatorial imset u andan elementary imset v such that u * v and l �u�v 62 S(N) choose and �x m 2 K�̀(N) forwhich the maximum in (6.21) is achieved. Then choose ~w = uhi;jjKi 2 E(N) minimizingnon-zero value hm;wi, w 2 E(N) and v 2 E(N) maximizing hm;wi for w 2 E(N). ByConsequence 5.4 a ~u 2 C(N) with Mm = M~u exists. Put u = ~u + ~w. By Lemma 6.1Mm = M~u � Mu. As hi; jjKi 2 Mu n Mm the fact that m is a skeletal imset (see101



Section 5.2) implies Mu = T (N) � Mv which means u * v. On the other hand, byObservation 5.6 hm; ~ui = 0 and thereforel < gra�(N) = hm; vihm; ~wi = hm; vihm; ui implies hm; l � u� vi < 0;which means l � u� v 62 S(N) by Lemma 5.4.Remark 6.9 Note that the type of the skeleton is not material in the above result. Infact, the `-skeleton can be replaced either by the u-skeleton or by the o-skeleton and therespective constant gra�(N) has the same value. Indeed, it follows from Consequence 5.3that for every skeletal supermodular function em there exists � > 0 such that hem; ui =� � hm; ui for every u 2 E(N) where m 2 K�̀(N) is the unique model equivalent element ofthe `-skeleton. Thus, the ratios maximalized in (6.21) are invariants of classes of modelequivalence of skeletal imsets. Note that if jN j � 5 then8 m 2 K�̀(N) min fhm; ui; u 2 E(N) hm; ui 6= 0g = 1 ; (6.22)which implies that gra(N) = gra�(N) in this case. Thus, if the hypothesis (6.22) holds ingeneral (see Question 8) then gra(N) is the least l 2 N satisfying (6.18) by Consequence6.4 and Lemma 6.5. Note that an analogue of (6.22) holds for jN j � 5 and the u-skeleton(because of the operation of reection mentioned on p. 131 or in Section 5.1.3 of [116])but not for the o-skeleton. This is maybe the main di�erence between o-standardizationand `-standardization. 46.4 Invariants of facial equivalenceThis section deals with some of those attributes of structural imsets which are eitherinvariable with respect to facial equivalence or characterize classes of facial equivalence.Let u be a structural imset over N . By e�ective domain of u denoted by D�u isunderstood the class of sets T � N such that S 0 � T � S for some S 0; S � N withu(S 0); u(S) > 0, that is D�u = (D+u )# \ (D+u )". Recall that Uu = (D+u )# is nothing but theupper class of u from Section 4.2.3. The region of u, denoted by Ru, is the class of subsetsof N obtained as follows:Ru = [hi;jjKi2Mu\T�(N)fK; iK; jK; ijKg = [hA;BjCi2MunT�(N)fC;AC;BC;ABCg : (6.23)Note that the equality of the unions in (6.23) over the class of elementary triplets andover the class of all non-trivial triplets can be easily derived from the fact that Mu is asemi-graphoid (Lemma 4.6) by means of Lemma 2.2 on p. 16.Lemma 6.6 Given a structural imset u over N one has Ru � D�u. If u; v 2 S(N) suchthat u 
 v then Uu = Uv, D�u = D�v and Ru = Rv. Moreover, S 62 Ru for S � N i�w(S) = 0 for every w 2 S(N) which is facially equivalent to u.102
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 w in place of u. Conversely, suppose S 2 Ru, take elementarytriplet hi; jjKi 2 Mu with S 2 fK; iK; jK; ijKg and observe that w = u + k � uhi;jjKi isfacially equivalent to u for every k 2 N by Lemma 6.1. One can �nd k 2 N such thatw(S) 6= 0.However, the e�ective domain and the region of a structural imset may di�er as thefollowing example shows.Example 6.4 There exist two structural imsets u; v over N = fa; b; c; dg with the samee�ective domain but di�erent regions. Consider the imset u = uhb;cjai+uha;djci shown in theleft-hand picture of Figure 6.5 and the imset v = uhc;djai + uha;bjci shown in the right-handpicture of Figure 6.5. The set fa; dg belongs to the e�ective domain D�u = D�v and to theregion Rv but it does not belong to the region Ru.On the other hand, regions and e�ective domains of structural imsets over N coincidein case jN j � 3 (c.f. Section 7.5.1 and Figure 7.8). }103



Remark 6.10 The signi�cance of the concept of e�ective domain is that it allows to re-strict the considered class of elementary imsets when one tests whether an o-standardizedimset is combinatorial - see Remark 6.3. Indeed, if u = Pv2E(N) kv � v with kv 2 Z+then for every v = uhi;jjKi with kv > 0 one has hi; jjKi 2 Mu and therefore by Lemma6.6 K; iK; jK; ijK 2 Ru � D�u. Thus, a reduced class of elementary imsets v = uhi;jjKisatisfying K; iK; jK; ijK 2 D�u can be considered. Observe that the e�ective domain D�ucan be identi�ed directly on basis of u. This is the main di�erence from the region Ruwhich gives even stronger restriction of the class of considered elementary imsets but theregion cannot be immediately recognized only on basis of u. It is a characteristics of therespective class of facially equivalent structural imsets and can be identi�ed on basis ofthe imset only partially as mentioned in Lemma 6.6.However, by Observation 4.3 one can compute the corresponding level-degrees of u forl = 0; : : : ; jN j � 2 which may result in further restriction of the class of considered imsets- in particular if some of the level-degrees vanish. 4E�ective domains are attributes of structural imsets which allow to distinguish imme-diately imsets which are not facially equivalent. A natural question whether there existsa complete collection of invariant properties of similar type in sense that for every pair ofstructural imsets u and v over N at least one property of this type exists in which theydi�er. Consequence 6.2 gives a positive answer to this question. Indeed, every skeletalimset m 2 K�̀(N) is associated with an invariant attribute of a structural imset u overN , namely the fact whether the scalar product hm; ui vanishes or not. The collection ofthese attributes is complete in the above mentioned sense.However, as explained in Remark 5.4 this criterion does not seem feasible in casejN j � 6. Therefore, one is interested in invariants analogous to the e�ective domain orin relatively simple characteristics of facial equivalence like the region - see Direction 3 inChapter 8. For example, if jN j � 3 then a completely distinguishing class of attributesis the e�ective domain together with the minimal lower classes (see Section 7.4.2) or thepattern (see Section 7.5.1).
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Chapter 7The problem of representative choiceThis chapter deals with the problem of choice of suitable representative within a classof facially equivalent structural imsets. It is an advanced subtask of general equivalencequestion mentioned in Section 1.1 studied in the framework of structural imsets - ananalogous question has already been treated in graphical frameworks - see Chapter 3 (theconcept of essential graph and the concept of the largest chain graph). A few principlesof representative choice are introduced and discussed in this chapter. Special attention isdevoted to the representation of graphical models by structural imsets. The last sectiondescribes some other ideas whose aim is unique description of structural models.7.1 Baricentral imsetsAn imset u over N is called baricentral if it has the formu = Xw2E(N); u*ww or equivalently u = 12 � Xha;bjCi2Mu\T�(N) uha;bjCi: (7.1)Evidently, every elementary imset is baricentral and every baricentral imset u is a combi-natorial imset with the degree jfw 2 E(N); u * wgj. Moreover, the de�nition implies thatevery class of facial equivalence of structural imsets contains exactly one baricentral imset.Nevertheless, semi-elementary imset need not be baricentral. Given a semi-elementary im-set uhA;BjCi for hA;BjCi 2 T (N) the respective facially equivalent baricentral imset evenneed not be its multiple of despite the fact that the formulasdeg(uhA;BjCi) = jAj � jBj jfw 2 E(N) ; uhA;BjCi * wgj = jAj � jBj � 2jAj�1 � 2jBj�1 (7.2)suggest that it may be the case.Example 7.1 There exists a semi-elementary imset v over N = fa; b; c; dg such that nomultiple k � v, k 2 N is a baricentral imset. Put v = uha;bcdj;i - see the left-hand pictureof Figure 7.1. Then u * w 2 E(N) i� w = uha;ejCi where e 2 fb; c; dg, C � fb; c; dg n feg(c.f. Lemma 2.2). The respective baricentral imset u is shown in the right-hand picture ofFigure 7.1. Observe that 12 = deg(u) = 4 � deg(v) but u 6= 4 � v since the level-degrees ofu and v are not proportional: deg(v; l) = 1 for l = 0; 1; 2 while deg(u; 0) = deg(u; 2) = 3and deg(u; 1) = 6. On the other hand, u = 3 � v + uha;bjci + uha;cjdi + uha;djbi. }105
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The following gives an indirect comparison of memory demands when a structuralmodel over N is represented either in the form of a baricentral imset or 'directly'. ByLemma 2.2 every semi-graphoidM over N is determined byM\T�(N). Thus, owing tosymmetry property (see p. 15) it can be represented as a function on E(N) taking valuein a two-element set. As jE(N)j = �n2� � 2n�2 the number of these functions isn = 2n�(n�1)�2n�3 :One has �2 = 2, �3 = 28 > 26 = 3, �4 = 711 > 224 = 4 and �5 = 1126 > 280 = 5. Onthe other hand �n � 2(n�2)�(2n�n�1) < 2(n2)�2n�2 = n for n � 6 so that 'asymptotically' thenumber of considered integral functions on fS � N ; jSj � 2g is lower than the numberof binary functions on E(N)! Only (n� 2) bits su�ces to represent elements of  L(S) forS � N in case n � 6 which means that memory demands are slightly lower in case ofrepresentation by baricentral imsets. 4On the other hand, the actual number of baricentral imsets (i.e. structural models) forn = 2; 3; 4 are much lower than the estimates from Remark 7.1 - see Example 5.1. Thelattice of baricentral imsets over fa; b; cg (ordered by *) is shown in Figure 7.2.Baricentral imsets provide quite good solution of the problem of representative choicefrom computational point of view. However, the question of getting respective baricentralimset from any given structural imset remains to be solved satisfactorily. For example,formulas ascribing respective baricentral imsets to graphical models are needed (see Theme3 in Chapter 8). Relative disadvantage of baricentral imsets is that they do not seem too�er easy interpretation in comparison with 'standard' imsets for DAG models mentionedbelow.7.2 Standard imsetsSome classic graphical models can be represented by certain 'standard' structural imsetswhich seem to exhibit important characteristics of the models. These standard repre-sentatives of graphical models may di�er from baricentral representatives and seem tobe more suitable from the point of view of interpretation. They are introduced in thissection together with relevant basic facts. Note that the motive of later Sections 7.3 and7.4 is to �nd out whether these exceptional representatives reect some deeper principlesso that the concept of standard imset could be extended even beyond the framework ofgraphical models.7.2.1 Translation of DAG modelsLet G be an acyclic directed graph over N . By a standard imset for G will be understoodthe imset uG over N given byuG = �N � �; +Xc2N �paG(c) � �c[ paG(c): (7.3)Lemma 7.1 Let G be an acyclic directed graph over N . Then the imset u = uG is acombinatorial imset and Mu = MG. Moreover, deg(uG) = 12 � jN j � (jN j � 1) � jA(G)jwhere jA(G)j is the number of arrows in G.107



�� ��fa; b; cg+3�� ��fa; bg�1 �� ��fa; cg�1 �� ��fb; cg�1�� ��fag�1 �� ��fbg�1 �� ��fcg�1�� ��;+3
���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%

�� ��fa; b; cg0�� ��fa; bg+1 �� ��fa; cg+1 �� ��fb; cg+1�� ��fag�2 �� ��fbg�2 �� ��fcg�2�� ��;+3
���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+2�� ��fa; bg0 �� ��fa; cg0 �� ��fb; cg�2�� ��fag�2 �� ��fbg0 �� ��fcg0�� ��;+2

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+2�� ��fa; bg0 �� ��fa; cg�2 �� ��fb; cg0�� ��fag0 �� ��fbg�2 �� ��fcg0�� ��;+2

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+2�� ��fa; bg�2 �� ��fa; cg0 �� ��fb; cg0�� ��fag0 �� ��fbg0 �� ��fcg�2�� ��;+2

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+3�� ��fa; bg�2 �� ��fa; cg�2 �� ��fb; cg�2�� ��fag+1 �� ��fbg+1 �� ��fcg+1�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%�� ��fa; b; cg0�� ��fa; bg+1 �� ��fa; cg+1 �� ��fb; cg0�� ��fag�2 �� ��fbg�1 �� ��fcg�1�� ��;+2
���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg0�� ��fa; bg+1 �� ��fa; cg0 �� ��fb; cg+1�� ��fag�1 �� ��fbg�2 �� ��fcg�1�� ��;+2

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg0�� ��fa; bg0 �� ��fa; cg+1 �� ��fb; cg+1�� ��fag�1 �� ��fbg�1 �� ��fcg�2�� ��;+2

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+1�� ��fa; bg+1 �� ��fa; cg�1 �� ��fb; cg�1�� ��fag�1 �� ��fbg�1 �� ��fcg+1�� ��;+1

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+1�� ��fa; bg�1 �� ��fa; cg+1 �� ��fb; cg�1�� ��fag�1 �� ��fbg+1 �� ��fcg�1�� ��;+1

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+1�� ��fa; bg�1 �� ��fa; cg�1 �� ��fb; cg+1�� ��fag+1 �� ��fbg�1 �� ��fcg�1�� ��;+1

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+2�� ��fa; bg�1 �� ��fa; cg�1 �� ��fb; cg�2�� ��fag0 �� ��fbg+1 �� ��fcg+1�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+2�� ��fa; bg�1 �� ��fa; cg�2 �� ��fb; cg�1�� ��fag+1 �� ��fbg0 �� ��fcg+1�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+2�� ��fa; bg�2 �� ��fa; cg�1 �� ��fb; cg�1�� ��fag+1 �� ��fbg+1 �� ��fcg0�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%�� ��fa; b; cg0�� ��fa; bg+1 �� ��fa; cg0 �� ��fb; cg0�� ��fag�1 �� ��fbg�1 �� ��fcg0�� ��;+1
���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg0�� ��fa; bg0 �� ��fa; cg+1 �� ��fb; cg0�� ��fag�1 �� ��fbg0 �� ��fcg�1�� ��;+1

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg0�� ��fa; bg0 �� ��fa; cg0 �� ��fb; cg+1�� ��fag0 �� ��fbg�1 �� ��fcg�1�� ��;+1

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+1�� ��fa; bg0 �� ��fa; cg�1 �� ��fb; cg�1�� ��fag0 �� ��fbg0 �� ��fcg+1�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+1�� ��fa; bg�1 �� ��fa; cg0 �� ��fb; cg�1�� ��fag0 �� ��fbg+1 �� ��fcg0�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+1�� ��fa; bg�1 �� ��fa; cg�1 �� ��fb; cg0�� ��fag+1 �� ��fbg0 �� ��fcg0�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%�� ��fa; b; cg0�� ��fa; bg0 �� ��fa; cg0 �� ��fb; cg0�� ��fag0 �� ��fbg0 �� ��fcg0�� ��;0
���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%

Figure7.2:BaricentralimsetsoverN=fa;b;cg(rotated).
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Proof: Consider a �xed ordering a1; : : : ; an, n � 1 of nodes of G consonant with directionof arrows and the corresponding causal input list (see Remark 3.4)h aj; a1 : : : aj�1 n paG(aj) j paG(aj) i for j = 1; : : : ; n : (7.4)Introduce uj as the semi-elementary imset corresponding to the j-th triplet from (7.4) forj = 1; : : : ; n and writeu = nXj=1 uj = nXj=1 �fa1;:::;ajg � �fa1;:::;aj�1g � �ajpa(aj) + �pa(aj ) = uGsince almost all terms �fa1;:::;ajg are cancelled. Thus, uG is a combinatorial imset and thesubstitution of deg(uj) = j � 1� jpaG(aj)j into deg(u) = Pnj=1 deg(uj) gives the desiredformula for deg(uG). Note that the formula above implies that Pnj=1 uj actually does notdepend on the choice of causal input list.Since Mu is a semi-graphoid containing (7.4) the result from [119] saying that MGis the least semi-graphoid containing (7.4) implies MG � Mu. For converse inclusionuse the result from [31] implying that a discrete probability measure P over N withMG =MP exists and Theorem 5.2 saying that v 2 S(N) with MP =Mv exists. Sincethe list (7.4) belongs toMG one has v * uj for j = 1; : : : ; n and therefore by Lemma 6.1v *Pnj=1 uj = u which means Mu �Mv =MG.Remark 7.2 In fact, it was shown in the proof of Lemma 7.1 that uG 2 S	(N) where 	is the class of discrete measures over N (c.f. Section 6.2.3). 4Standard imsets appear to a suitable tool for testing Markov equivalence of acyclicdirected graphs.Consequence 7.1 Let G;H be acyclic directed graphs over N . Then MG = MH ifand only if uG = uH .Proof: By Lemma 7.1 uG = uH ) MG = MH. The converse implication is shown in[42] as Consequence 3.1 concluding Remark 2 there.Remark 7.3 Every semi-elementary imset over N is a standard imset for an acyclicdirected graph over N . Indeed, given hA;BjCi 2 T (N) consider a total ordering of nodesof N in which the nodes of C precede the nodes of A which precede the nodes of B andthese precede the nodes of N n ABC. Take an undirected graph over N in which everypair of distinct nodes is a line except pairs [a; b] where a 2 A, b 2 B. Consider a directedgraph G which has this undirected graph as the underlying graph and has the directionof arrows consonant with the total ordering above. Then it makes no problem to see bythe procedure in the proof of Lemma 7.1 that uG = uhA;BjCi. 4
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7.2.2 Translation of decomposable modelsDecomposable models, that is independence models induced by triangulated undirectedgraphs form an important class of graphical models - see Section 3.4.1. Let H be atriangulated undirected graph over N and C is the class of all its cliques. By standardimset for H will be understood the imset uH over N given byuH = �N + X;6=B�C(�1)jBj � �TB : (7.5)It is shown below that uH is a combinatorial imset (Consequence 7.2), the next lemmahelps to compute uH e�ciently.Lemma 7.2 Let H be a triangulated undirected graph over N and % : C1; : : : ; Cm, m � 1is a sequence of (all) its cliques satisfying the running intersection property (see (3.1) onp. 45). Then uH = �N � mXi=1 �Ci + mXi=2 �Si (7.6)where Si = Ci \ (Sj<iCj) for i = 2; : : : ; m are respective separators. In particular, theright-hand side of (7.6) does not depend on the choice of % and can also be written asfollows: uH = �N �XC2C �C +XS2S w(S) � �S (7.7)where C is the class of cliques of H, S is the class of separators and w(S) denotes themultiplicity of a separator S 2 S.Proof: The idea is to verify (7.6) by induction on m = jCj. It is evident in case m � 2.If m � 3 then put C 0 = C nfCmg, T = S C 0 and H 0 = HT . Observe that C1; : : : ; Cm�1 is asequence of all cliques of H 0 satisfying the running intersection property. Write by (7.5)uH = �N � �T + uH0 + XCm2B�C(�1)jBj � �TB: (7.8)Running intersection property says Sm = Cm \ (Sj<mCj) � Ck for some k < m. Thisallows to writeXCm2B�C(�1)jBj � �TB = XCm2A�CnfCkgf(�1)jAj � �TA � (�1)jAj � �TA\Ckg = ��Cm + �Cm\Ckwhere the last equality holds because every term in braces vanishes whenever jAj � 2:the inclusion TA � Cm \ (Sj<mCj) � Ck says TA \ Ck = TA. Hence, by (7.8) andthe induction hypotheses applied to H 0 (over T ) getuH = �N � �T + (�T � m�1Xi=1 �Ci + m�1Xi=2 �Si)� �Cm + �Sm ;which gives (7.6). 110



Remark 7.4 Note that (7.7) implies that the product formula induced by uH (see Section4.3) is nothing but well-known formula (3.2) characterizing Markovian measures withrespect to triangulated graphs mentioned in Section 3.4.1. Thus, this classic result canbe viewed as a special case of Theorem 4.1 on structural imsets. 4Decomposable models can be viewed as DAG models (see Figure 3.6). The readermay ask whether 'standard' translation of DAG models and decomposable models leadsto the same imset. Positive answer is given by the following lemma.Lemma 7.3 Let H be a triangulated graph over N and C1; : : : ; Cm, m � 1 is a sequenceof its cliques satisfying the running intersection property. Put Ri = Ci n Sj<iCj fori = 1; : : : ; m and consider a total ordering of nodes of N in which nodes of Ri precedenodes of Ri+1 for i = 1; : : : ; m � 1. Let G is an acyclic directed graph over N havingH as the underlying graph such that the direction of arrows in G is consonant with theconstructed total ordering of nodes. Then MG =MH and uH = uG.Proof: The �rst observation is this:8 c 2 N 8 a; b 2 paG(c) a 6= b ) [a; b] is an edge in G: (7.9)Indeed, c 2 Rl for uniquely determined l � m. If a 2 paG(c) then a 2 Sj�lRj = Sj�lCjand fa; cg belongs to a clique of H. Let Ci be the �rst clique in the sequence C1; : : : ; Cmcontaining fa; cg. Necessarily i � l as otherwise a; c 2 Ci\(Sj�lCj) � Ci\(Sj<iCj) = Siand by the running intersection property a; c 2 Si � Ck for k < i which contradicts thede�nition of Ci. However, as c 62 Cj for j < i necessarily i = l. Hence, paG(c) � Cl whichimplies (7.9).Now, both G and H can be viewed as (classic) chain graphs over N with the sameunderlying graph (see Section 3.3). To show MG = MH by well-known graphical char-acterization [25] (see p. 44) it su�ces to show that they have the same complexes. ButH has no complexes and G as well because of (7.9).The equality uG = uH can be derived using (7.6) in Lemma 7.2. Indeed, if di�; : : : ; diyis the chosen ordering within Ri, i = 1; : : : ; m then (7.3) givesuG = �N � �; + mXi=1 diyXd=di� f�pa(d) � �d[ pa(d)g = �N � �; + mXi=1 f �Si � �Ci g(where S1 = ;) as paG(di�) = Si and diy [ paG(diy) = Ci for i = 1; : : : ; m and all remainingterms within the inside sum are cancelled.Consequence 7.2 Let H be a triangulated undirected graph over N . Then u = uH is acombinatorial imset, MH =Mu and u coincides with the standard imset for any acyclicdirected graph G for which MG =MH .Proof: This follows directly from Lemma 7.3, Lemma 7.1 and Consequence 7.1.Remark 7.5 Because of Remark 7.2 the preceding consequence implies that uH 2 S	(N)where 	 is the class of discrete measures over N . 4111
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���� QQQQQQQQ���� QQQQ���� ����QQQQFigure 7.3: Two distinct equivalent imsets of the least degree.7.3 Imsets of the least degreeOne of possible approaches to the choice of representative from a class of facially equivalentstructural imsets } is to choose a combinatorial imset of the least degree (see Section 4.2.2p. 59 for this concept). Note that } contains combinatorial imsets by Consequence 5.4.The de�nition of degree implies that only �nitely many combinatorial imsets over a �xedset N with prescribed degree exists. In particular, the set of combinatorial imsets ofthe least degree in } is �nite. By an imset of the least degree will be understood acombinatorial imset u which has the least degree within the class of combinatorial imsetsv withMu =Mv. Nevertheless, the class } may contain more than one imset of the leastdegree.Example 7.2 There exists a class of facially equivalent structural imsets over N =fa; b; cg which has two di�erent imsets of the least degree. Consider the class } ofw 2 S(N) with Mw = T (N). Then both u = uhb;cjai + uha;bj;i + uha;cj;i and v =uha;bjci + uha;cjbi + uhb;cj;i (they are shown in Figure 7.3) have the least degree 3 within theclass of combinatorial imsets from }. Observe that Lu = fa; b; cg# while Lv = fab; ac; bcg#.Note that the fact that u and v are all imsets of this kind can be veri�ed using the pro-cedure described later in Section 7.3.2. }Lemma 7.4 Standard imset for an acyclic directed graph G over N is an imset of theleast degree.Proof: Let v 2 C(N) with v 
 u where u = uG. To verifydeg(v) � deg(u) = j f(a; b) 2 N �N ; a 6= b ; [a; b] is not an edge in G g j(see Lemma 7.1) write v = Pw2E(N) kw �w for kw 2 Z+ and show that for every a; b 2 N ,a 6= b such that [a; b] is not an edge in G there exists w = uha;bjKi 2 E(N) with kw > 0 forsome K � N nab. Indeed, otherwise hm; vi = 0 for m = mab" as hm;wi > 0 for w 2 E(N)i� w = uha;bjKi for some K � N n ab. Hence, by Observation 5.6 Mv � Mm. But themoralization criterion (see Section 3.2) says ha; b j paG(a)paG(b)i 2 MGnMm =MunMmwhich implies a contradictory conclusion Mv 6=Mu.The previous lemma implies by Remark 7.3 this fact.112



Consequence 7.3 Every semi-elementary imset is an imset of the least degree.The method of �nding of all imsets of the least degree within a given equivalence classmentioned in Example 7.2 is based on the fact that every imset of this type determinesa certain minimal generator of the respective induced independence model. The methoduses a computer program and its theoretical justi�cation is given in the rest of this section.7.3.1 Strong facial implicationLet u; v be combinatorial imsets over N . Let us say that u strongly facially implies v andwrite u ; v if u � v is a combinatorial imset. Clearly, u ; v implies u * v by Lemma6.1. The relation ; is a partial ordering on C(N) (for antisymmetry use Observation4.4). Its advantage in comparison with * is that it can be easily tested (see Remark 6.3).Observation 7.2 Every imset u of the least degree is minimal with respect to; withinthe class fv 2 C(N) ; v 
 u g.Proof: If u 6= v are combinatorial imsets and u; v then deg(u)� deg(v) = deg(u� v) > 0 asthe only combinatorial imset of degree 0 is the zero imset.However, the question whether the converse implication holds remains open (see Ques-tion 4 on p. 129).7.3.2 Minimal generatorsThe point is that imsets satisfying the condition from Observation 7.2 correspond tospeci�c minimal generators with respect to a closure operation on subsets of X = T (N)(see Section 10.2 p. 153 for related de�nitions). Indeed, the class U(N) is a closure systemof subsets of X = T (N) by Observation 5.7 and one can introduce the respective closureoperation clU(N) on subsets of T (N). Thus, by the structural closure of G � T (N) isunderstood the least structural model containing G de�ned byclU(N)(G) = \G�M2U(N)M for G � T (N):A set G � T (N) is called a structural generator of M 2 U(N) if M = clU(N)(G); ifmoreover G consists of elementary triplets G � T�(N) then it is called an elementarygenerator of M. A structural (elementary) generator of M is called minimal if no itsproper subset is a structural generator of M. As every structural model M over N is asemi-graphoid by Lemma 2.2 M\ T�(N) is an elementary generator of M. This impliesthe following observation.Observation 7.3 Every structural modelM over N has minimal elementary generator.Remark 7.6 Note that the concept of (minimal) generator can be understood with re-spect to arbitrary closure operation on subsets of T (N), for example with respect tosemi-graphoid closure operation or any closure operation introduced by means of syntac-tic inference rules of semi-graphoid type. The concept of complexity of a model (withrespect to a closure operation) which can be introduced as the least cardinality of agenerator appears to be an interesting characteristic of the model [114]. 4113



The following lemma provides a method of �nding all imsets of the least degree.Lemma 7.5 Let M be a structural model over set N endowed with a total ordering �and �} = fv 2 C(N);Mv =Mg. Then every minimal element u of �} with respect to ;has the form u = Xw2E(N) kw � w where kw 2 f0; 1g (7.10)and G = fhi; jjKi 2 T�(N) ; kuhi;jjKi = 1 i � jg is a minimal elementary generator of M.Proof: Write u = Pw2E(N) kw � w where kw 2 Z+. If kw � 2 for some w 2 E(N)then u � w 2 C(N) is facially equivalent to u and u ; u � w. Therefore necessarily(7.10) holds and G is in one-to-one correspondence with elements of E(N) having non-zero coe�cients there. To show that G is a structural generator ofM considerM0 2 U(N)with G � M0. As it is a semi-graphoid Mw � M0 for w = uhi;jjKi, hi; jjKi 2 G and byConsequence 6.1 Mu � M0. Thus Mu � clU(N)(G) and the converse inclusion followsfrom Mu 2 U(N) and G � Mu. To show that no proper subset F � G is a generatorintroduce v = Phi;jjKi2F uhi;jjKi 2 C(N). Observe that clU(N)(F) =Mv (by an analogousprocedure). If clU(N)(F) = Mu then u 
 v and u ; v 6= u which contradicts theassumption.In case jN j � 4 all minimal elementary generators of a structural model M over Ncan be found by a computer program written by my colleague P. Bo�cek [9]. Thus, owingto Observation 7.2 given M 2 U(N) the list of imsets of the least degree inducing Mcan be obtained by reducing the list of imsets u satisfying (7.10). Reduction is sometimesnecessary as the following example shows.Example 7.3 There exists a structural model M over fa; b; c; dg and an elementarygenerator G � M \ T�(N) such that v = Phi;jjKi2G uhi;jjKi is not an imset of the leastdegree. Let us consider the independence model from Example 3.1 on p. 41 (restrictionof a DAG model). Then both imsetsu = uha;dj;i + uha;cjdi + uhb;djai; v = uha;cj;i + uhb;dj;i + uha;djbi + uha;djciare de�ned by means of minimal elementary generators ofM but 4 = deg(v) > deg(u) = 3(the imsets are shown in Figure 7.4). Note that v = u+ uha;dj;i and u+ v is a baricentralimset. Moreover, u is the unique imset of the least degree among facially equivalent imsetswhile v is an imset with the least lower class (see Section 7.4.2) among facially equivalentimsets. }The following consequence easily follows from Lemma 7.5, the de�nition of baricentralimset and Consequence 7.3.Consequence 7.4 If u is a baricentral imset over N and v is an imset of the least degreewith u * v then u�v is a combinatorial imset. In particular, for every hA;BjCi 2 T (N),hA;BjCi 2 Mu i� u� uhA;BjCi is a combinatorial imset.
114
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������� ���� AAAAQQQQQQQ������ PPPPPPPPPPP����������� PPPPPPPPPPP����������� ������ PPPPPPPPPPP������ QQQQQQQQQQQQPPPPPPPPPPPPPPPPPPPPPP������ PPPPPPPPPPP������ ����������� ����������� ������QQQQQQQAAAA ���� �������Figure 7.4: Imset of the least degree respectively with the least lower class.7.4 WidthRecall that the lower class Lu of a structural imset u is contained in the upper class Uu(see Section 4.2.3, p. 60) but they di�er for non-zero u. Moreover, by Consequence 4.3marginals of Markovian measures for sets in Lu determine the marginals for sets in Uu.The upper class is an invariant of facial equivalence (see Section 6.4) but the lower classis not as demonstrated by Example 7.2. In the considered example, the imset shownin the left-hand picture of Figure 7.3 tells more about which marginals determine thewhole Markovian measure in comparison with the imset shown in the right-hand pictureof Figure 7.3. Thus, facially equivalent imsets need not be equiinformative from this pointof view. This consideration motivates an informal concept of width of a structural imsetu which is the class Uu n Lu .7.4.1 Determining and unimarginal classesLet us take more general view on some results of Section 4.4. Suppose that M is astructural model over N . The upper class U � Uu of subsets of N and the class ofprobability measures over N which are Markovian with respect to u do not depend onthe choice of u 2 S(N) with Mu =M; they are determined by M only.A descending class D � U of subsets of N will be called determining for M if theonly descending class E with D � E � U such that AC;BC 2 E ) ABC 2 E for everyhA;BjCi 2 M is the class E = U . A descending class D � U will be called unimarginalforM if every pair of Markovian measures over N (with respect to u 2 S(N) satisfyingM =Mu) whose marginals for sets from D coincide has the same marginals for sets fromU . Evidently, whenever D � U is determining resp. unimarginal then every descendingclass D0 with D � D0 � U is determining resp. unimarginal as well. Therefore, oneis interested in minimal determining classes for M, that is determining classes D � Ufor M such that no proper descending subclass D0 � D is a determining class for M.In particular, I am interested in the question for which M the least determining class(resp. the least unimarginal class) for M exists which is the (unique) determining (resp.unimarginal) class D � U , i.e. one has D � D0 for every descending determining (resp.unimarginal) class D0 � U . DAG models appear to be examples of structural models of115



this type (see Section 7.4.3).Observation 7.4 Every determining system is unimarginal.Proof: If D � U is determining and P;Q Markovian measures then put E = fS 2 U ;P S = QSgand observe that D � E and AC;BC 2 E ) ABC 2 E for every hA;BjCi 2 M (use the'uniqueness principle' mentioned in the proof of Consequence 4.3).Recall that Consequence 4.2 says that the lower class Lu is a determining class forMu whenever u 2 S(N). Thus, one can summarize implications as follows:lower class ) determining class ) unimarginal class: (7.11)Note that a determining class need not be a lower class (see Example 7.4) and the questionwhether every unimarginal class is determining remains open - see Question 10 on p.146. However, it is known that these concepts essentially coincide for DAG models (seeConsequence 7.5 in Section 7.4.3).Remark 7.7 The concept of unimarginal class can be alternatively introduced as a con-cept relative to a distribution framework 	. Then every unimarginal class relative to 	is unimarginal relative to any subframework 	0 � 	. But unimarginal classes may di�erfor di�erent frameworks. Given a distribution framework 	 and a structural model Mone can ask what are minimal unimarginal classes for M relative to 	 (see Theme 20 inChapter 8). 47.4.2 Imsets with the least lower classA structural imset u 2 S(N) is called an imset with the least lower class if Lu � Lvfor every v 2 S(N) with u 
 v. Some classes of facial equivalence contain imsets ofthis type, for example the imset u from Example 7.2 on p. 112. On the other hand, assubsequent example shows there are classes of facial equivalence which do not have theseimsets but several imsets with minimal lower class, i.e. imsets u 2 S(N) such that nofacially equivalent v 2 S(N) with Lv � Lu exists.Example 7.4 There exists a structural modelM over N = fa; b; c; dg such that� the collection } = fu 2 S(N);Mu = Mg has three imsets with distinct minimallower classes,� 16 distinct minimal determining classes for M exist and none of them is a lowerclass for any u 2 }.Introduce M� T (N) and a class of elementary imsets K as followsM = f hA;BjCi 2 T (N); jCj � 1 g; K = f uhi;jjKi 2 E(N); jKj � 1 g :Observe that M = Mm for the supermodular imset m shown in the left-hand pictureof Figure 7.5 and K = fw 2 E(N);Mw � Mg. Introduce a combinatorial imset u =Pw2K kw � w wherekw = � 4 i� w = uha;bjKi 2 K or w = uhc;djKi 2 K ;1 for remaining w 2 K ;116



�� ��fa; b; c; dg+3�� ��fa; b; cg+1 �� ��fa; b; dg+1 �� ��fa; c; dg+1 �� ��fb; c; dg+1�� ��fa; bg0 �� ��fa; cg0 �� ��fa; dg0 �� ��fb; cg0 �� ��fb; dg0 �� ��fc; dg0�� ��fag0 �� ��fbg0 �� ��fcg0 �� ��fdg0�� ��;0

������� ���� AAAAQQQQQQQ������ PPPPPPPPPPP����������� PPPPPPPPPPP����������� ������ PPPPPPPPPPP������ QQQQQQQQQQQQPPPPPPPPPPPPPPPPPPPPPP������ PPPPPPPPPPP������ ����������� ����������� ������QQQQQQQAAAA ���� �������

�� ��fa; b; c; dg+12�� ��fa; b; cg0 �� ��fa; b; dg0 �� ��fa; c; dg0 �� ��fb; c; dg0�� ��fa; bg0 �� ��fa; cg�9 �� ��fa; dg�9 �� ��fb; cg�9 �� ��fb; dg�9 �� ��fc; dg0�� ��fag+6 �� ��fbg+6 �� ��fcg+6 �� ��fdg+6�� ��;0

������� ���� AAAAQQQQQQQ������ PPPPPPPPPPP����������� PPPPPPPPPPP����������� ������ PPPPPPPPPPP������ QQQQQQQQQQQQPPPPPPPPPPPPPPPPPPPPPP������ PPPPPPPPPPP������ ����������� ����������� ������QQQQQQQAAAA ���� �������Figure 7.5: Multiset producing M and respective imset with minimal lower class.(u is shown in the right-hand picture of Figure 7.5). Since Mu \ T�(N) = Mm \ T�(N)by Lemma 2.2 Mu = M. The �rst step to show that u is an imset with minimallower class is an observation that for every v 2 S(N) with Mv = M one has v(S) < 0for some S 2 S � fabc; ab; acg. Indeed, put K0 = fuha;djKi 2 E(N) ; jKj � 1g writen � v = Pw2K lw � w where n 2 N , lw 2 Z+ and observe that lw > 0 for some w 2 K0because hmad"; wi = 0 for w 2 KnK0 while hmad"; wi > 0 for w 2 K0 (use Observation 5.6to derive contradiction with the assumption Mv = M in case lw = 0 for w 2 K0). Puts = PS2S �S and observe hs; wi � 0 for w 2 K and hs; wi = �1 for w 2 K0. This impliesn � hs; vi < 0 and the desired conclusion.Analogous observation can be made for any class S 0 consisting of a three-elementsubset of N and a pair of its two-element subsets. If v 2 S(N) satis�es Mv = M andLv � Lu then the observation above necessitates v(ac) < 0 and one can derive analogouslyv(ad); v(bc); v(bd) < 0 which implies Lv = Lu. Therefore u is an imset with minimal lowerclass and permutation of variables gives two other examples of facially equivalent imsetswith distinct minimal lower classes.On the other hand, the class D1 = fab; bc; cdg# is a determining class for M asha; cjbi; hb; djci; ha; djbci 2 M. One can show that D1 is minimal and an analogousconclusion can be made for any class obtained by permutation of variables either from D1or D2 = fab; ac; adg#. This list of minimal determining classes forM can be shown to becomplete. }7.4.3 Exclusivity of standard imsetsThe standard imset uG for an acyclic directed graph G appears to be an exclusive imsetwithin the class of structural imsets u with Mu =MG. The �rst step to show that it isan imset with the least lower class is the following lemma.Lemma 7.6 Let M be a structural model over N , } = fu 2 S(N) ; Mu = Mg andU = Uu for (any) u 2 }. If S 2 U has the form S = cT where c 2 N andM\ fha; cjKi 2 T�(N); a 2 Tg = ; =M\ fha; bjKi 2 T�(N); a; b 2 T c 2 Kg (7.12)then every (descending) unimarginal class for M contains S.117



Proof: The �rst observation is that any probability measure P = Q �Qi2NnS Pi whereQ is a probability measure over S with QT = Qi2T Qi and Pi; Qi are arbitrary one-dimensional probability measures is Markovian with respect to u 2 }. Indeed, by Lemma2.2 it su�ces to verify M\T�(N) �MP . Suppose ha; bjKi 2 M\ T�(N). If a 62 S thena ?? N n a j ; [P ] implies a ?? b jK [P ], analogously in case b 62 S. If a; b 2 S then (7.12)implies a; b 2 T and c 62 K so that a ?? N n ac j ; [P ] implies a ?? b jK [P ] as well. Thesecond step is a construction: put Xi = f0; 1g and de�ne a pair of probability measuresQ1, Q2 on XS = Qi2S Xi:Q1([xi]i2S) = 2�jSj Q2([xi]i2S) = � 2�jSj + " if Pi2S xi is even;2�jSj � " if Pi2S xi is odd;where 0 < " < 2�jSj. Then put Pj = Qj �Qi2NnS Pi for j = 1; 2 where Pi are some �xedprobability measures on Xi, i 2 N n S. Observe that both P1 and P2 is Markovian withrespect to u 2 }, P S1 6= P S2 and PL1 = PL2 whenever L � N , S n L 6= ;.Finally, suppose for contradiction that S 62 D where D � U is an unimarginal class forM. This implies PL1 = PL2 for L 2 D and therefore PL1 = PL2 for L 2 U which contradictsthe fact S 2 U .Consequence 7.5 Given an acyclic directed graph G over N the lower class Lu foru = uG is the least unimarginal and the least determining class for MG. In particular,uG is an imset with the least lower class.Proof: By (7.11) and Lemma 7.1 is Lu a determining resp. unimarginal class forMG. IfD is a lower class for v 2 S(N) withMv =MG resp. a determining class forMG then itis an unimarginal class forMG by (7.11). Lemma 7.6 can be then used to verify Lu � D.Indeed, if S 2 Lmaxu then S 2 Uu by Observation 4.5 and S = c paG(c) for some c 2 Nby (7.3). The moralization criterion (see Section 3.2) allows to verify that the condition(7.12) for T = paG(c) is ful�lled for M =MG.Remark 7.8 Thus, the standard imset uG for an acyclic directed graph G over N is bothan imset of the least degree (see Lemma 7.4) and an imset with the least lower class. Notethat a computer program [9] helped to show that in case jN j � 4 the converse holds, i.e.the only imset satisfying these two conditions is the standard imset uG (for a given graphG). The question whether these two requirements determine standard imsets for acyclicdirected graphs in general remains open - see Question 9 on p. 145. 4An interesting feature of the standard imset u for a DAG models is that it vanishesoutside Lu [ Umaxu . On the other hand, a lot of other equivalent structural imsets withthe same lower class exist, sometimes even imsets which take only strictly positive valuesin Ru n Lu. The following example shows that imsets of this kind need not exist.Example 7.5 There exists a DAG modelM over N = fa; b; c; dg such that no u 2 S(N)with the least lower class Lu among imsets with Mu =M is strictly positive on Ru n Lu(for the notion of rangeRu see Section 6.4). Consider a directed graph G shown in the left-hand picture of Figure 7.6, the corresponding standard imset is in the right-hand picture.Put s = �ac+�acd and observe that one has hs; uhi;jjKii = 0 for every hi; jjKi 2 MG\T�(N).This implies hs; vi = 0 for every v 2 S(N) with Mv = MG. Since ac; acd 2 Ru n Luit implies v(ac) = v(acd) = 0 for every v of this kind which moreover satis�es Lv = Lu.Note that an analogous consideration can be made for ~s = �bd + �abd. }118



h h h ha b c d- - -
�� ��fa; b; c; dg+1�� ��fa; b; cg0 �� ��fa; b; dg0 �� ��fa; c; dg0 �� ��fb; c; dg0�� ��fa; bg�1 �� ��fa; cg0 �� ��fa; dg0 �� ��fb; cg�1 �� ��fb; dg0 �� ��fc; dg�1�� ��fag0 �� ��fbg+1 �� ��fcg+1 �� ��fdg0�� ��;0

������� ���� AAAAQQQQQQQ������ PPPPPPPPPPP����������� PPPPPPPPPPP����������� ������ PPPPPPPPPPP������ QQQQQQQQQQQQPPPPPPPPPPPPPPPPPPPPPP������ PPPPPPPPPPP������ ����������� ����������� ������QQQQQQQAAAA ���� �������Figure 7.6: An acyclic directed graph and the respective standard imset.7.5 Other ways of representationThis section describes further ideas how structural models can be possibly represented.It is only a rough outline of those approaches which look promising and which have to beexamined in more details.7.5.1 PatternRecall that one of feasible methods of representing a class of Markov equivalent acyclicdirected graphs is to use a graph which is not an acyclic directed graph but which somehowexhibits common features of the graphs within the equivalence class - see Section 3.2, p.41. This motivated an analogous idea in the framework of structural imsets.Observation 7.5 Let M be a structural model over N , } = fu 2 S(N) ; Mu = Mg.Then the set fu(S) ; u 2 }g for S � N has one of the following four forms:f0g;Z; fm;m+ 1; : : :g for some m 2 Z+ and f: : : ;�l � 1;�lg for some l 2 Z+.Proof: If S 62 Ru for u 2 } then fv(S); v 2 }g = f0g by Lemma 6.6. If S 2 Ru thenw = uhi;jjKi with hi; jjKi 2 M \ T�(N) and w(S) 6= 0 exists by (6.23). Observe that for everyu 2 } and k 2 N one has u+ k � w 2 } which leads to the remaining cases.Pattern of a structural imset u over N can be introduced as an undirected graph whichhas the region Ru as the set of nodes and the set of lines is the collection of pairs of theform fK; iKg; fiK; ijKg for some hi; jjKi 2 Mu \ T�(N). Moreover, the nodes of thepattern have assigned symbolic values depending on the class } of v 2 S(N) with u
 v:r(S) = + if fv(S) ; v 2 }g � Z+;r(S) = � if fv(S) ; v 2 }g � Z� � f�l ; l 2 Z+g;r(S) = � if fv(S) ; v 2 }g = Z:The symbolic function r can be formally extended to P(N) by puttingr(S) = 0 if fv(S) ; v 2 }g = f0g:119



�� ��fa; b; c; dg+�� ��fa; b; cg� �� ��fa; b; dg��� ��fa; bg+ �� ��fa; cg+ �� ��fb; cg+�� ��fag� �� ��fbg� �� ��fcg��� ��;+

������� ���������� ����������� PPPPPPPPPPP������QQQQQQQAAAA ����

�� ��fa; b; c; dg+�� ��fa; b; cg� �� ��fa; b; dg��� ��fa; bg+ �� ��fa; cg+ �� ��fb; cg+�� ��fag� �� ��fbg� �� ��fcg��� ��;+

������� ���������� �����������QQQQQQPPPPPPPPPPPPPPPPPPPPPP������QQQQQQQAAAA ����Figure 7.7: Patterns of imsets from Example 7.6.An evaluated pattern is obtained by modi�cation in values of r: one writes +m wherem = min fv(S) ; v 2 }g instead of + and �l where l = min f�v(S) ; v 2 }g insteadof �. Note that the signs + and � are kept to distinguish the cases r(S) = +0 (i.e.m = 0) and r(S) = �0 (i.e. l = 0) from the case r(S) = 0 (i.e. fv(S) ; v 2 }g = f0g).Observe that (evaluated) patterns characterize classes of facial equivalence. Note thatsymbolic functions r distinguish all classes of facial equivalence if jN j � 3 - see Figure7.8 for illustration. On the other hand, this is not true in general as the following exampleshows.Example 7.6 There exist structural imsets over N = fa; b; c; dg which are not faciallyequivalent but which have the same symbolic function. Let us putu = uha;cj;i + uhb;cj;i + uhc;djabi ; v = u + uha;bj;i :The pattern of u is in the left-hand picture and the pattern of v in the right-hand pictureof Figure 7.7. }Remark 7.9 The question whether patterns distinguish all classes of facial equivalenceremains open (see Direction 3). The following modi�cation of the concept of (evaluated)pattern can possibly cure the problem if the answer is negative. More general values of thesymbolic function can be considered. One can distinguish between 'upper plus' (denotedby ��" ) and the 'lower plus' (denoted by ��# ):r(S) = ��" if 9 hi; jjKi 2 Mu \ T�(N) with ijK = S;r(S) = ��# if 9 hi; jjKi 2 Mu \ T�(N) with K = S:Alternatively, one can turn the pattern into a graph with directed and bidirected edges.Indeed, every hi; jjKi 2 Mu \ T�(N) generates four arrows iK ! ijK, jK ! ijK,iK ! K, jK ! K and every pair of arrows S ! T and T ! S can be replaced by abidirected edge S $ T . 4
120



�� ��fa; b; cg+�� ��fa; bg� �� ��fa; cg� �� ��fb; cg��� ��fag� �� ��fbg� �� ��fcg��� ��;+
���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%

�� ��fa; b; cg0�� ��fa; bg+ �� ��fa; cg+ �� ��fb; cg+�� ��fag� �� ��fbg� �� ��fcg��� ��;+
���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg� �� ��fa; cg� �� ��fb; cg��� ��fag� �� ��fbg� �� ��fcg��� ��;+

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg� �� ��fa; cg� �� ��fb; cg��� ��fag� �� ��fbg� �� ��fcg��� ��;+

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg� �� ��fa; cg� �� ��fb; cg��� ��fag� �� ��fbg� �� ��fcg��� ��;+

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg� �� ��fa; cg� �� ��fb; cg��� ��fag+ �� ��fbg+ �� ��fcg+�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%�� ��fa; b; cg0�� ��fa; bg+ �� ��fa; cg+ �� ��fb; cg0�� ��fag� �� ��fbg� �� ��fcg��� ��;+
���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg0�� ��fa; bg+ �� ��fa; cg0 �� ��fb; cg+�� ��fag� �� ��fbg� �� ��fcg��� ��;+

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg0�� ��fa; bg0 �� ��fa; cg+ �� ��fb; cg+�� ��fag� �� ��fbg� �� ��fcg��� ��;+

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg+ �� ��fa; cg� �� ��fb; cg��� ��fag� �� ��fbg� �� ��fcg+�� ��;+

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg� �� ��fa; cg+ �� ��fb; cg��� ��fag� �� ��fbg+ �� ��fcg��� ��;+

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg� �� ��fa; cg� �� ��fb; cg+�� ��fag+ �� ��fbg� �� ��fcg��� ��;+

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg� �� ��fa; cg� �� ��fb; cg��� ��fag0 �� ��fbg+ �� ��fcg+�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg� �� ��fa; cg� �� ��fb; cg��� ��fag+ �� ��fbg0 �� ��fcg+�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg� �� ��fa; cg� �� ��fb; cg��� ��fag+ �� ��fbg+ �� ��fcg0�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%�� ��fa; b; cg0�� ��fa; bg+ �� ��fa; cg0 �� ��fb; cg0�� ��fag� �� ��fbg� �� ��fcg0�� ��;+
���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg0�� ��fa; bg0 �� ��fa; cg+ �� ��fb; cg0�� ��fag� �� ��fbg0 �� ��fcg��� ��;+

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg0�� ��fa; bg0 �� ��fa; cg0 �� ��fb; cg+�� ��fag0 �� ��fbg� �� ��fcg��� ��;+

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg0 �� ��fa; cg� �� ��fb; cg��� ��fag0 �� ��fbg0 �� ��fcg+�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg� �� ��fa; cg0 �� ��fb; cg��� ��fag0 �� ��fbg+ �� ��fcg0�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%
�� ��fa; b; cg+�� ��fa; bg� �� ��fa; cg� �� ��fb; cg0�� ��fag+ �� ��fbg0 �� ��fcg0�� ��;0

���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%�� ��fa; b; cg0�� ��fa; bg0 �� ��fa; cg0 �� ��fb; cg0�� ��fag0 �� ��fbg0 �� ��fcg0�� ��;0
���� QQQQQQQQ���� QQQQ���� ����QQQQ
'

&
$

%

Figure7.8:SymbolicfunctionsoverN=fa;b;cg(rotated).
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7.5.2 Dual descriptionTwo approaches to the description of independence models by imsets were distinguishedin Chapter 5. Every structural model is induced by a structural imset and produced by asupermodular imset (see Consequence 5.4) and both methods can be viewed as mutuallydual approaches. As mentioned before Observation 5.7 (p. 87) one can take a dual point ofview and describe structural models as independence models produced by `-standardizedsupermodular imsets.Dual baricentral imsetsOne can introduce an analogue of facial equivalence and implication for `-standardizedsupermodular imsets: m 2 K`(N) \ ZP(N) implies r 2 K`(N) \ ZP(N) if Mm � Mr andthey are equivalent if they produce the same model. Moreover, every imset of this kind is anon-negative rational combination of `-skeletal imsets (see Lemma 5.3) so that these playthe role which is analogous to the role of elementary imsets within the class of structuralimsets (c.f. Theorem 5.3). Following this analogy an `-standardized supermodular imsetm over N will be called a dual baricentral imset if it has the form.m = Xr2K�̀(N);Mm�Mr r : (7.13)The corresponding poset of dual baricentral imsets is shown in Figure 7.9.CoportraitsLet me explain dual perspective in more details with help of the concept of Galois con-nection from Section 5.4. It was explained there (p. 85) that the poset of structuralmodels (U(N);�) can be viewed as a concept lattice given by the formal context (5.16).More speci�cally, it follows from Lemma 2.2 that every structural modelM over N is inone-to-one correspondence with a set of elementary imsets over N , namely withfv 2 E(N) ; v = uhi;jjKi where hi; jjKi 2 M\ T�(N) g: (7.14)In particular, every u 2 S(N), respectively m 2 K`(N) \ZP(N) corresponds through Murespectively through Mm to a subset of � = E(N):Eu � fv 2 E(N) ; v = uhi;jjKi; hi; jjKi 2 Mug = fv 2 E(N) ; u * vg;Em � fv 2 E(N) ; v = uhi;jjKi; hi; jjKi 2 Mmg = fv 2 E(N) ; hm; vi = 0g: (7.15)Thus, every structural model can be identi�ed with a set of objects of the formal context(5.16). In fact, it is an extent of a formal concept so that structural models correspondmore or less to the description in terms of objects. However, as explained in Remark5.8 every formal concept can be also described by means of its intent, i.e. in terms ofattributes. In this case the set of attributes is the `-skeleton � = K�̀(N) which motivatesthe following de�nition.By coportrait of a structural imset u over N will be understood the set of skeletalimsets Hu given by Hu = fr 2 K�̀(N) ; hr; ui = 0g: (7.16)122
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Figure7.9:DualbaricentralimsetsoverN=fa;b;cg(rotated).
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Indeed Hu = fr 2 K�̀(N) ; hr; vi = 0 for every v 2 Eug which means that Hu is nothingbut E.u. As E./u = Eu the pair (Eu;Hu) is a formal concept in sense of Section 5.4.1.By Consequence 6.2 two structural imsets are facially equivalent i� they have the samecoportrait. Thus, every class of facial equivalence is uniquely represented by the respectivecoportrait. The lattice of all coportrait over 3 variables is shown in Figure 7.10.Remark 7.10 This is to explain terminology. The idea of dual description of a structuralmodel was presented already in [108] where the concept of portrait of u 2 S(N) wasintroduced as the set of skeletal imsetsfr 2 K�̀(N) ; hr; ui > 0g: (7.17)Thus, coportraitHu is nothing but the relative complement of (7.17) inK�̀(N) which moti-vated my terminology here. Provided the `-skeleton is known (7.17) and (7.16) are equiin-formative but the concept of coportrait seems more natural from theoretical point of view(in light of Galois connection). Despite this fact I decided to keep former terminology anddo not rename things. The reason why I preferred in [108] (7.17) to (7.16) was my antici-pation that for jN j � 2 the relative occurence of zeros in fhm; ui;m 2 K�̀(N); u 2 E(N)gexceeds the relative occurence of non-zero values (which seem to be true in explored cases).Practical consequence should be that portraits have less cardinality than coportraits forstructural imsets inducing 'a lot of' independence statements. 4Nevertheless, the method of dual description of structural models is limited to thesituation when the skeleton is known. Of course, as explained in Remark 5.6 the type ofthe skeleton is not substantial since the use of the u-skeleton resp. the o-skeleton insteadof the `-skeleton leads to an 'isomorphic' concept of portrait and coportrait.Global viewOf course, owing to Consequence 5.4 and (7.15) every coportrait can also be written inthe form Hm = (Em). where m 2 K`(N)\ZP(N). Note that one can show analogously tothe proof of Lemma 6.1 thatHm = fr 2 K�̀(N) ; k �m� r 2 K`(N) for some k 2 N g :Therefore, the mutual relation of a structural imset u and the corresponding set of ele-mentary imsets Eu given by (7.15) is completely analogous to the mutual relation of an`-standardized supermodular imset m and the corresponding set of `-skeletal imsets Hm.The global view on all four above mentioned approaches to the description of a structuralmodel is indicated by Figure 7.11. One can use1. a set of elementary imsets,2. a structural imset,3. a set of `-skeletal imsets,4. an `-standardized supermodular imset.124
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Figure 7.11: Extension of Galois connection for structural models - illustration.Recall that the set of elementary imsets can be viewed as direct translation of the con-sidered structural model, the structural imset is obtained by non-negative rational com-bination of elementary imsets, the set of skeletal imsets is obtained by Galois connectionand the supermodular imset by non-negative rational combination of skeletal imsets.Let me emphasize that unlike the case of general Galois connection described in Section5.4.1 additional superstructure of summing elementary respectively skeletal imsets is atdisposal. This fact allows to describe (and later implement) respective relation amongformal concepts (namely the relation 'be a subconcept') with help of algebraic operations,more precisely by means of arithmetic of integers! This is the main asset of the describedapproach.Dual minimal generatorsHowever the dual approach exhibits some di�erent mathematical properties. One canintroduce an analogue of the concept of combinatorial imset, i.e. an imset which is anon-negative integral combination of `-skeletal imsets. But there is no analogue of theconcept of degree for imsets of this type: the sum of two `-skeletal imsets from the �rstline of Figure 5.1 on p. 79 equals to the sum of three `-skeletal imsets from the secondline of Figure 5.1.Nevertheless, one can introduce an analogue of the concept of strong facial implication(see Section 7.3.1) and prove an analogue of Lemma 7.5. Indeed, following the ideaindicated in Remark 5.8 one can introduce the lattice of coportraitsW(N) = fH � K�̀(N) ; H = Hu for u 2 S(N)g126



and observe that it coincides with the collection of closed sets with respect to a closureoperation on subsets of � = K�̀(N)H 7�! H/. = fm 2 K�̀(N) ; hm; vi = 0 for v 2 E(N) with hr; vi = 0 for every r 2 Hg :One can show then that imsets minimal with respect to the 'dual strong facial implication'correspond to minimal generators with respect to this closure operation on subsets ofK�̀(N). An interesting fact is that in case jN j = 3 every class of respective equivalenceof imsets of above type has unique minimal imset in the described sense. In other words,no analogue of Example 7.2 is valid for dual representation if jN j � 3. Moreover, thecorresponding dual baricentral imset is a multiple of the 'minimal' imset in that case.Well, perhaps the dual approach indeed exhibits better mathematical properties in thissense than the approach based on structural imsets. Nevertheless, I tend to believe thatthe phenomenon mentioned above is a coincidence and not a general feature of the dualapproach (see Theme 6).
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Chapter 8Open problemsThe goal of this chapter is to gather open problems and present a few topics omitted inthe previous chapters. Open problem are classi�ed according to the degree of vagueness inthree categories. Questions are clear inquiries formulated as mathematical problems. For-mal de�nitions of related concepts were given and expected answer is yes or no. Themes(of research) are wider areas of mutually related problems. Their formulation is slightlyless speci�c (but still in mathematical terms) and they may deserve some clari�cation ofinvolved concepts. Directions (of research) are very wide groups of problems with recog-nized common motivation source. They are formulated quite vaguely and may become atopic of research in forthcoming years. The secondary criterion of classi�cation of openproblems is their topic: the division of this chapter into sections was inspired by themotivation account from Section 1.1.8.1 Unsolved theoretical problemsIn this section open problems concerning theoretical groundings are gathered. Some ofthem were already mentioned earlier. They are classi�ed by their topics.8.1.1 Miscellaneous topicsDistributionsThere are several open problems related to Sections 4.1 and 6.2.3.Question 1 Let P and Q are probability measures over N de�ned on the a product ofmeasurable spaces (XN ;XN) = Qi2N(Xi;Xi) which have �nite multiinformation (p. 24).Has their convex combination � �P +(1��) �Q, � 2 [0; 1] �nite multiinformation as well?Theme 1 Is there any (direct) formula for the multiinformation function of a non-dege-nerate CG measure (see p. 54) in terms of their canonical or moment characteristics?Alternatively, is there any (iterative) method of its computing?Note that owing to Lemma 2.7 equivalent formulation of Theme 1 is to �nd a formulafor entropy of a CG measure P with respect toQi2N �i where f�i ; i 2 Ng is the standardreference system for P (see p. 62). I am more likely sceptical about the existence of adirect formula of this kind. The following natural question, motivated by the results ofSection 6.2.3, concerns Gaussian distribution framework.128



Question 2 Let P;Q be non-degenerate Gaussian measures on RN (see p. 165). Is therea non-degenerate Gaussian measure R on RN such that MR =MP \MQ?GraphsFurther open problems are related to Chapter 3. The following problem, named the"inclusion problem" in [42] can be viewed as an advanced subtask of the equivalence task(see Section 1.1).Theme 2 Let G;H be acyclic directed graphs over N (see p. 154). Is there any graphicalcharacterization of the inclusion MG � MH (see Section 3.2)? Is it possible to charac-terize MG � MH in terms of a simple algebraic relation of standard imsets uG and uH(p. 107)?Note that suitable graphical characterization of Markov equivalence (i.e. of MG =MH) was found (p. 40) and I would appreciate an analogous solution of Theme 2 whichis in terms of invariants of Markov equivalence. The following question concerning fac-torizably equivalent chain graphs was already mentioned in Section 3.3.Question 3 Let (XN ;XN) = Qi2N (Xi;Xi) be a �xed sample space with non-trivial Xifor every i 2 N . Let G;H be (classic) chain graphs over N (p. 154) such thatMG =MH(see p. 43). Does the class of factorizable measures on (XN ;XN) with respect to G (seeRemark 3.7 on p. 45) coincide with the class of factorizable measures with respect to H?Structural imsetsThere are some unsolved problems related to Chapter 7.Theme 3 Let G be a chain graph over N (see p. 154). Is there any direct formula forthe baricentral imset u over N (see p. 105) with Mu = MG? Can every supermodularfunction m over N (see p. 71 and 72) be e�ectively 'translated' into a baricentral imset uover N with Mu =Mm?Direction 1 Develop an e�ective criterion which decides whether a given structuralimset is a baricentral imset.Question 4 Let } be a class of facially equivalent structural imsets over N (see p. 91)and u 2 } be a combinatorial imset minimal with respect to strong facial implication;(see p. 113). Is u an imset of minimal degree in }?8.1.2 Classi�cation of skeletal imsetsBasic problem related to skeletal imsets (see Section 5.2) is the following one.Theme 4 Is there any suitable characterization of skeletal imsets which allows to �nd theskeleton K�̀(N) for any �nite non-empty set of variables N? How does jK�̀(N)j dependon jN j? 129



Note that [86] o�ers a characterization of extreme supermodular functions but theresult is more likely a criterion whether a given `-standardized supermodular function isskeletal (more precisely, it can be used for this purpose). However, the criterion doesnot seem suitable for the purpose of computer implementation. Therefore, the result of[86] does not solve the problem of �nding the skeleton for every N . A promising ideahow to tackle the problem is indicated in the rest of Section 8.1.2. A related task isthe task to classify submaximal structural models. One can �x a way of standardizationof skeletal imsets (see Remark 5.6) as submaximal structural models are in one-to-onecorrespondence with the elements of the respective skeleton. Every permutation � : N !N of variables can be extended to a permutation of the power set � : P(N) ! P(N)and this step allows one to introduce permutable equivalence on the class of skeletalimsets: any skeletal imset m is equivalent in this sense to the composition m� (see also[116]). Of course, every permutation of skeletal imsets de�nes a permutation of respectiveproduced independence models. Basic way of classi�cation is division of the class of(standardized) skeletal imsets into classes of permutable equivalence. Every equivalenceclass then represents a type of a skeletal imset. For example, 5 standardized skeletalimsets decompose into 3 types in case jN j = 3, 37 imsets decompose into 10 types in casejN j = 4 and 117978 imsets decompose into 1319 types in case jN j = 5.Level equivalenceNevertheless, perhaps even more precise way of classi�cation of skeletal imsets exists.Suppose that m 2 K(N) is a skeletal imset over N ; let respective symbols m`, mu and modenote the respective model equivalent element of the `-skeleton, the u-skeleton and theo-skeleton obtained by formulas from Remark 5.6 (p. 80-81). Thus, m (more precisely,the respective class of model equivalent skeletal imsets) de�nes a certain equivalence onthe class of subsets of N :8S; T � N S �m T , [mo(S) = mo(T ); m`(S) = m`(T ) and mu(S) = mu(T ) ] : (8.1)The equivalence classes of �m could be interpreted as areas in which these standardizedskeletal imsets have the same values; in other words, they correspond to levels of values.In fact, I conjecture that the following hypothesis is true.Question 5 Let m 2 K�̀(N), m0 is model equivalent skeletal imset over N (see p. 72)and S; T � N such that S �m T . Is then necessarily m0(S) = m0(T )?Remark 8.1 As recognized in case jN j = 4 the o-standardized representative mo cannotbe omitted in (8.1) and mo(S) = mo(T ) is often equivalent to S �m T for S; T � N .It seems that m` resp. mu can be omitted in (8.1) but not both. Therefore I think thato-standardization is the best standardization for the purpose of level equivalence. 4Two skeletal imsets over N will be called level equivalent if they induce the sameequivalence on subsets of P(N).Observation 8.1 Let m1; m2 are level equivalent skeletal imsets over N and � is apermutation of N (extended to P(N)). Then m1� and m2� are level equivalent.130



Proof: This is a hint only. Given a skeletal imset m over N , put r = m� and observe withhelp of formulas from Remark 5.6 that r` = m`�, ru = mu� and ro = mo�. Hence, for everyS; T � N one has S �r T i� �(S) �m �(T ) which implies the desired fact immediately.Remark 8.2 Further interesting operation with supermodular functions can be intro-duced with help of speci�c self-transformation � of P(N):�(S) = N n S for every S � N :Given a supermodular function m over N one can introduce z = m� and observe (seeSection 5.1.3 in [116]) that z is also a supermodular function over N called the reectionof m. Indeed, the reection of z is again m. Moreover, one can show using the formulasfrom Remark 5.6 that z` = mu�, zu = m`� and zo = mo�. Consequently, for every S; T � None has S �z T i� �(S) �m �(T ). An interesting fact is that in case jN j � 4 one hasS �m T i� N nS �m N n T for every m 2 K�o(N) (see Example 8.1 below). In particular,m and z are level equivalent in this case. Nevertheless, the question whether the abovehypotheses holds in general is open. 4Question 6 Let m 2 K�o(N) and S; T � N such that S �m T . Is then necessarilyN n S �m N n T ?SupertypesNatural consequence of Observation 8.1 is that the concept of permutable equivalence canbe extended to classes of level equivalence. Then every class of this extended permutableequivalence decomposes into several classes of level equivalence which decompose intoindividual (standardized) skeletal imsets. Thus, every class of permutable equivalence ofthis kind represents a supertype. For example, two supertypes exists in case jN j = 3 and�ve supertypes in case jN j = 4. An interesting fact is that every equivalence (8.1) onP(N), jN j = 4 de�ned by a skeletal imset m can be described by means of at most two'cardinal' criteria which distribute sets S � N to their equivalence classes (= levels) onbasis of the cardinality of the intersection of S with one or two given disjoint subsets ofN . Every equivalence on P(N) of this kind is therefore determined by a certain system ofdisjoint subsets of N having at most two components. This is illustrated by the followingexample.Example 8.1 One can distinguish �ve types of 'cardinal' criteria distributing subsets Sof N = fa; b; c; dg to levels which correspond to �ve supertypes of skeletal imsets.1. The criterion jS\fa; bgj divides P(N) into 3 levels - see the upper picture of Figure8.1. The corresponding class of level equivalence has 1 standardized imset but theclass of permutable equivalence has 6 classes of level equivalence. Therefore, therespective supertype involves 6 standardized skeletal imsets.2. The criterion jS \ fa; b; cgj divides P(N) into 4 levels - see the lower picture ofFigure 8.1. The corresponding class of level equivalence has 2 imsets, the class ofpermutable equivalence has 4 classes of level equivalence. Hence, the supertypeinvolves 8 imsets. An example of a skeletal imset of this type is in Figure 6.4 whereboth `-standardized and u-standardized versions are given.131



3. The criterion jS \ fa; b; c; dgj divides P(N) into 5 levels - see the upper pictureof Figure 8.2. The corresponding class of level equivalence has 3 imsets while thecorresponding class of permutable equivalence has just one level equivalence class.Thus, the supertype involves 3 imsets.4. Composed criterion [ jS \ fa; b; cgj ; jS \ fdgj ] divides P(N) into 8 levels - see thelower picture of Figure 8.2. The corresponding class of level equivalence has 2imsets, the class of permutable equivalence has 4 classes of level equivalence andthe supertype involves 8 imsets. An example of an imset of this kind is m� in theright-hand picture of Figure 6.3.5. Composed criterion [ jS\fa; bgj ; jS\fc; dgj ] divides P(N) into 9 levels - see Figure8.3. The corresponding class of level equivalence has 4 imsets while the correspond-ing class of permutable equivalence has 3 classes of level equivalence. The supertypeinvolves 12 imsets; an example is the imset my from Figure 4.3. }Endeavour described in Section 8.1.2 can be summarized as follows.Theme 5 Can classi�cation of supertypes of skeletal imsets by cardinal criteria be ex-tended to a general case?Moreover, in case of succesful solving of Themes 4 and 5 the following open problemmay appear to be interesting.Theme 6 Find out whether an `-standardized supermodular imset producing a structuralmodel M over N which is minimal with respect to dual strong facial implication (see p.127) is uniquely determined. If yes, is the respective dual baricentral imset (p. 122) itsmultiple?8.2 Operations with structural modelsThis section is an overview of basic operations with structural models. It is shown howthey can be realized with help of operations with imsets (either with supermodular orwith structural ones).8.2.1 Reductive operationsThese operations assign a model over T , ; 6= T � N to a structural model over N .ContractionSuppose M� T (N), ; 6= T � N and X � N n T . The modelMT jX = fhA;BjCi 2 T (T ) ; hA;BjCXi 2 Mg (8.2)will be called the contraction ofM to T conditioned by X.Observation 8.2 If M2 U(N) then MT jX 2 U(T ).132
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Figure 8.1: Cardinality criteria and respective levels for N = fa; b; c; dg.133
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Figure 8.2: Further cardinality criteria and respective levels for N = fa; b; c; dg.134
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Figure 8.3: The last cardinality criterion and respective levels for N = fa; b; c; dg.Proof: Given m 2 RP(N) de�ne mT jX 2 RP(T ) by the formulamT jX(S) = m(S [X) for S � T;and observe hmT jX ; uhA;BjCii = hm;uhA;BjCXii for every hA;BjCi 2 T (T ). By Observation 5.1derive thatm 2 K(N) impliesmT jX 2 K(T ). The equality above also implies hA;BjCi 2 MmT jXi� hA;BjCXi 2 Mm.Thus, conditioned contraction corresponds to linear operation m 7! mT jX with pro-ducing supermodular functions (imsets).Remark 8.3 Note that the model MT jX given by (8.2) was named minor of a semi-graphoidM over N in [66] while the term 'contraction' was con�ned to the case X = N nTthere. Moreover, the operation (8.2) applied to various graphical models was systemati-cally treated in [85] and [45] under name 'marginalizing and conditioning'. My terminologyis a compromise which reects the idea that the operation (8.2) is simultaneously con-traction and conditioning and �ts best other names of operations with structural imsetsmentioned below. 4RestrictionRecall that the restriction MT of M � T (N) to ; 6= T � N was already introduced onp. 15 as M\ T (T ). Of course, MT is nothing but contraction MT j; conditioned by theempty set. Hence, Observation 8.2 implies this.135



Consequence 8.1 If M2 U(N) and ; 6= T � N then MT 2 U(T ).Note that it was shown in the proof of Observation 8.2 that the restriction of Mcorresponds to the restriction of producing supermodular function, i.e. (Mm)T = MmTwhere mT (S) = m(S) for every S � T and m 2 K(N):On the other hand, an analogous statement for inducing structural imsets does not holdas the following example shows.Example 8.2 There is no linear operation with structural imsets which corresponds tothe restriction of induced structural models. Put N = fa; b; cg and T = fa; bg. Takev = uha;cj;i and w = uha;bjci. By Lemma 4.5 (Mv)T = (Mw)T = T�(T ). On the otherhand, v + w = uha;bcj;i which means (Mu+v)T = T (T ). Supposing there exists a linearmapping u 2 S(N) 7�! uT 2 S(T )such that (Mu)T =MuT observe that that vT = 0 = wT (use Lemma 6.1 and Observation4.4 to conclude that the only structural imset over T inducing T�(T ) is the zero imset).By linearity of the mapping derive (v + w)T = 0 which contradicts (Mv+w)T = T (T ). }The preceding example motivates the next open problem.Theme 7 Let u be a structural imset over N and ; 6= T � N . Is there any direct formulafor a structural imset inducing (Mu)T is terms of u?One can distinguish two versions of the problem. First, one can be interested in analgebraic formula which provides at least one structural imset over T inducing (Mu)T forany u 2 S(N). Second, one may wish to have an expression for the baricentral imset ofMT on basis of the baricentral imset of M2 U(N). Nevertheless, both desired formulasmust be non-linear as demonstrated by Example 8.2.Remark 8.4 Restriction of every CI model induced by a probability measure P over Nto ; 6= T � N is a CI model over T induced by the respective marginal P T . In fact,conditioned contraction MT jX of a CI model M� T (N) induced by a discrete measureover N (where X � N n T ) is a CI model induced by a discrete measure over T [61]. 4Other special operationsGiven M � T (N) and ; 6= T � N by the full-conditioned contraction is understood themodel MT j� = f hA;BjCi 2 T (T ) ; 8X � N n T hA;BjCXi 2 Mg :Clearly,MT j� = TX�NnTMT jX and Observation 8.2 implies with help of Observation 5.7the following fact.Consequence 8.2 If M2 U(N) and ; 6= T � N then MT j� 2 U(T ).
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The consideration above also implies that full-conditioned contraction corresponds tothe following linear operation with producing supermodular functions:m 2 RP(N) 7�! mT j�(S) = XK;K\T=Sm(K) for every S � T :Remark 8.5 The restriction of a structural imset u over N to P(T ) where ; 6= T � Nneed not be a structural imset. For example, consider N = fa; b; cg, T = fa; bg andu = uhb;cjai. Nevertheless, it is a structural imset if u vanishes outside P(T ). This fact canbe veri�ed using Lemma 5.4 and Observation 5.1 with help of an observation that everysupermodular function over T can be extended to a supermodular function over N - seethe mapping (8.5) de�ned below. 4Nevertheless, the same linear mapping can be interpreted as a mapping assigning astructural imset over T to a structural imset over N named contraction :u 2 RP(N) 7�! u[T ](S) = XK;K\T=S u(K) for S � T: (8.3)Observation 8.3 If u 2 S(N), ; 6= T � N then u[T ] 2 S(T ). Moreover,M0[T ] � f hA \ T;B \ T jC \ T i ; hA;BjCi 2 Mu g � M[T ] �Mu[T ] :Proof: The �rst fact follows from linearity of the mapping (8.3) and the formula fuhA;BjCig[T ] =uhA\T;B\T jC\T i for any hA;BjCi 2 T (N). If hA;BjCi 2 Mu then k � u � uhA;BjCi 2 S(N) forsome k 2 N and k � u[T ] � fuhA;BjCig[T ] 2 S(T ) says hA \ T;B \ T jC \ T i 2 Mu[T ] .On the other hand, the inclusion can be strict as the following example shows.Example 8.3 There exists a structural imset u over N and ; 6= T � N with M0[T ] 6=M[T ]. Put N = fa; b; c; dg, T = fa; b; cg and u = uha;bj;i + uha;bjcdi. Then u[T ] = uha;bcj;ibut ha; bcj;i 62 M0[T ]. In fact, M0[T ] is not a semi-graphoid as ha; bj;i; ha; bjci 2 M0[T ]. }This motivates the next hypothesis.Theme 8 Let M = Mu for u 2 S(N) and ; 6= T � N . Is it true that M[T ] � Mu[T ]where u[T ] is given by (8.3) coincides with the structural closure (see p. 113) of M0[T ] �fhA \ T;B \ T jC \ T i ; hA;BjCi 2 Mg? Find out whether M[T ] is a CI model inducedby a discrete probability measure over T provided that M is a CI model induced by adiscrete probability measure over N .8.2.2 Expansive operationsThese operations assign a model over N to a structural model over T , ; 6= T � N . Mainattention is devoted to extensions, that is operations which assign a model over N toM 2 U(T ) whose restriction is again M. These expansive operations are pinpointed.Another type of expansive operation is a lift which can be viewed as a counterpart of(conditioned) contraction. 137



Solid extensionGiven ; 6= T � N , M� T (T ) the model so (M; N) over N given byso (M; N) = f hA;BjCi 2 T (N) ; hA \ T;B \ T jC \ T i 2 Mg (8.4)will be called the solid extension of M to N .Observation 8.4 If M2 U(T ) then so (M; N) 2 U(N) and so (M; N)T =M.The proof is based on a special linear extensive operation which assigns an extension mto every supermodular r over T :r 2 K(T ) 7�! m(S) = r(S \ T ) for S � N : (8.5)Proof: Observe that the mapping from (8.5) is linear and hm;uhA;BjCii = hr; uhA\T;B\T jC\T iifor every hA;BjCi 2 T (N). Hence, m 2 K(N) by Observation 5.1. SupposingM 2 U(T ) by(5.15) there exists r 2 K(T ) withM =Mr. Observe that so (M; N) =Mm.Remark 8.6 Note that the solid extension of a CI model M induced by a probabilitymeasure over T is a CI model again, the respective probability measure P over N hasthe form P = Q �Qi2NnT Pi where Q induces M and Pi are probability measures onarbitrary measurable spaces (Xi;Xi), i 2 N nT . Moreover, the solid extension is a maximalextension in sense that so (M; N) � M0 2 U(N), (M0)T =M impliesM0 = so (M; N).Indeed, it su�ces to verify that hA;BjCi 2 M0 ) hA \ T;B \ T jC \ T i 2 M0:since hA;C n T jC \ T i 2 so (M; N) � M0 and M0 is a semi-graphoid by contractionproperty derive hA;B(C n T ) jC \ T i 2 M0 and hence by weak union and symmetryhA \ T;B \ T jC \ T i 2 M0. On the other hand, the solid extension need not be uniquemaximal extension. For example, consider N = fa; b; cg, T = fa; bg and M = T�(T ).Then M0 =Mu with u = uha;bjci + uha;cjbi + uhb;cjai is another maximalM0 2 U(N) with(M0)T =M. 4LiftGiven ; 6= T � N , X � N n T and M� T (T ) the modelli (M; N : X) = T�(N) [ f hA;BjCXi; hA;BjCi 2 Mg (8.6)will be called the lift ofM to N conditioned by X. Basic observation is that the operationof lift corresponds to the following linear mapping from RP(T ) to RP(N) which assigns astructural imset v[N;X] over N to a structural imset v over T :v 2 RP(T ) 7�! v[N;X](S) = � v(S \ T ) if S n T = X;0 if S n T 6= X; for any S � N : (8.7)Lemma 8.1 Suppose that ; 6= T � N , X � N n T . The mapping given by (8.7) isa linear mapping such that v[N;X] 2 S(N) whenever v 2 S(T ). Moreover, it holdsli (Mv; N : X) =Mv[N;X]. In particular, li (M; N : X) 2 U(N) whenever M2 U(T ) andone has fli (M; N : X)gT jX =M. 138



Proof: Observe that �D[N;X] = �DX for D � T which implies by linearity of (8.7)uhA;BjCi[N;X] = uhA;BjCXi for every hA;BjCi 2 T (T ). This gives the �rst two statementsof the lemma. As Mv[N;X] is a semi-graphoid it contains T�(N). If hA;BjCi 2 Mv thenk � v � uhA;BjCi 2 S(T ) for some k 2 N and by linearity k � v[N;X] � uhA;BjCXi 2 S(N)which means hA;BjCXi 2 Mv[N;X]. The converse inclusion Mv[N;X] � li (Mv; N : X)can be shown in three steps.1. hA;BjDi 2 T (N) n T�(N), :fX � Dg ) hA;BjDi 62 Mv[N;X].Indeed, use Lemma 6.2: hmD#, uhA;BjDii > 0 while hmD#; v[N;X]i = 0 as X n S 6= ; forevery S � D.2. hA;BjDi 2 T (N) n T�(N), :fABD � TXg ) hA;BjDi 62 Mv[N;X].Indeed, again use Lemma 6.2: hmABD"; uhA;BjDii > 0 while hmABD"; v[N;X]i = 0 asS n T 6= X for every S � ABD.3. hA;BjCi 2 T (T ) nMv ) hA;BjCXi 62 Mv[N;X].By Lemma 6.2 a supermodular function r over T with hr; uhA;BjCii > 0 and hr; vi = 0exists. Let m be its extension given by (8.5). It is a supermodular function over N ,hm;uhA;BjCXii = hr; uhA;BjCii > 0 and hm; v[N;X]i = hr; vi = 0.Thus, if hA;BjDi 2 Mv[N;X]nT�(N) then X � D and ABD � TX by 1. and 2. ThereforehA;BjDi = hA;BjCXi where hA;BjCi 2 T (T ) and hA;BjCi 2 Mv by 3. The nextstatement then follows from (5.14); the equality fli (M; N : X)gT jX =M is trivial.Ascetic extensionGiven ; 6= T � N , M� T (T ) the model as (M; N) over N given byas (M; N) = T�(N) [M (8.8)is called the ascetic extension of M to N . It is nothing but the lift li (M; N : X) withX = ;. Lemma 8.1 therefore implies this.Consequence 8.3 If M2 U(T ) then as (M; N) 2 U(N) and as (M; N)T =M.It follows directly from (8.8) that the ascetic extension is the least extension of M 2U(T ) in sense that M0 2 U(N), (M0)T = M implies as (M; N) � M0. Let me remindthat the proof of Lemma 8.1 implies that the ascetic extension is realized by means of alinear operation with inducing structural imsets, namely by means of the mappingv 2 RP(T ) 7�! u(S) = � v(S) if S � T ;0 otherwise ; for every S � N :Note that one can show with help of Lemma 2.9 that the ascetic extension of a CI modelinduced by non-degenerate discrete measure over T is a CI model (over N).
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Cellular extensionGiven ; 6= T � N , M� T (T ) the model ce (M; N) over N given byce (M; N) = T�(N) [ f hA;BjCXi ; hA;BjCi 2 M X � N n T g (8.9)is called the cellular extension of M to N . In fact, ce (M; N) = SX�NnT li (M; N : X).Basic observation is that the cellular extension corresponds to a linear mapping fromRP(N) which assigns a structural imset u over N to a structural imset v over T :v 2 RP(T ) 7�! u(S) = v(S \ T ) for S � N: (8.10)Lemma 8.2 Suppose M � T (T ) and ; 6= T � N . The mapping given by (8.10) is alinear mapping which assigns u 2 S(N) to v 2 S(T ). Moreover, Mu = ce (Mv; N). Inparticular, ce (M; N) 2 U(N) whenever M2 U(T ) and ce (M; N)T =M.Proof: It follows directly from (8.10) and (8.7) that u = PX�NnT v[N;X]. Thus, u 2S(N) by Lemma 8.1 and Mv[N;X] � Mu by Lemma 6.1 for every X � N n T . Theconverse inclusionMu � ce (Mv; N) can be shown in two steps.1. hU; V jW i 2 T (N), U n T 6= ; 6= V ) hU; V jW i 62 Mu.Indeed, choose i 2 U n T , j 2 V and use Lemma 6.2: hm;uhU;V jW ii > 0 and hm;ui =PX�NnT hm; v[N;X]i = 0 for m = mij". To verify the last equality use Observation 5.6and show Mv[N;X] � Mm: one has hm;uhA;BjCXii = 0 for every hA;BjCi 2 Mv andX � N n T according to Lemma 8.1. This is clear whenever i 2 CX, in case i 62 CX theassumption i 62 T � AB implies i 62 ABCX.2. hU; V jW i 2 T (N), U; V � T , hU; V jW \ T i 62 Mv ) hU; V jW i 62 Mu.Indeed, by Lemma 6.2 �nd a supermodular function r over T with hr; uhU;V jW\T ii > 0 andhr; vi = 0. De�ne a supermodular functionm over N by (8.5) and observe hm;uhU;V jW ii =hr; uhU;V jW\T ii > 0 with hm;ui =PX�NnT PK�T m(KX) �u(KX) =PX�NnT hr; vi = 0.This implies hU; V jW i 62 Mu by Lemma 6.2.Thus, if hU; V jW i 2 Mu n T�(N) then U; V � T by 1. and hU; V jW \ T i 2 Mv by 2. Toderive further statement use (5.14); the last formula is trivial.Remark 8.7 This is to explain my reasons for the chosen terminology. The reader canobserve on basis of (8.8), (8.9) and (8.4) thatas (M; N) � ce (M; N) � so (M; N) for every M� T (T ) :The inclusions may be strict as Example 8.4 below shows. The fact that as (M; N) is theleast extension ofMmotivated the adjective 'ascetic' and the fact that so (M; N) is one ofmaximal extensions ofM (see Remark 8.6) motivated the adjective 'solid'. The adjective'cellular' was motivated by the fact that ce (M; N) is composed of several di�erent 'cells',namely li (M; N : X) for X � N n T . 4Example 8.4 There exists M 2 U(N), ; 6= T � N whose ascetic, cellular and solidextensions di�er. Put N = fa; b; cg, T = fa; bg and M = Mu where u = uha;bj;i. Thenha; bjci 2 ce (M; N) n as (M; N) and hc; abj;i 2 so (M; N) n ce (M; N). }140



8.2.3 Accumulative operationsThe aim to represent 'big' structural models e�ectively in memory of a computer moti-vates the need for suitable de�nition of decomposition of a structural model into 'less-dimensional' models.Localization of UG modelsThe following intuitive consideration does not pretend preciseness, it serves as a motiva-tion account only (some results cited below can be even misinterpreted). Final goal isto achieve an analogue of the result from [63] saying that every UG model has canonicaldecomposition into prime UG submodels. In fact, well-known concept of decomposition ofundirected graphs from [53] is behind this approach. Recall that ifG is an undirected graphover N and hA;BjCi 2 T (N)nT�(N) such that C a complete set in G and A ?? B jC [G](p. 37) then the pairs of undirected graphs (GAC; GBC) is called a proper decompositionof G. The graphs GAC resp. GBC can have possibly further proper decompositions whichmeans that every UG modelMG can be gradually decomposed into UG submodels withno proper decomposition which can be named prime UG submodels ofMG. In my view,the result of [63] can be paraphrased as follows: for every undirected graph G over N aunique triangulated supergraph H over N (see p. 45) exists whose cliques correspond to(maximal) subsets of N de�ning prime UG submodels of MG. Therefore, various com-putational operations with Markovian measures with respect to G can be done 'locally' -within prime UG submodels. I believe that well-known method of local computation ap-plied mainly to DAG models [17] has analogous source of justi�cation. Therefore I hopethat these ideas can be extended to more general structural models. Suitable concept ofdecomposition of a structural model based on an accumulative operation with structuralmodels is needed. One of possible proposals is mentioned below.CompositionGiven hA;BjCi 2 T (N) and M1 2 U(AC), M2 2 U(BC) such that M1C = M2C by thecomposition ofM1 andM2 will be understood the structural modelM1
M2 over ABCgiven byM1 
M2 = clU(ABC)(as (M1; ABC) [ as (M2; ABC) [ fhA;BjCig) : (8.11)In words, both M1 and M2 are embedded into U(ABC) by the ascetic extension, thenhA;BjCi is added and the structural closure operation (see p. 113) is applied. It followsfrom the de�nition that M1 
M2 2 U(ABC). Natural question related to the conceptof conditional product from [21] is the following one.Theme 9 Suppose hA;BjCi 2 T (N), M1 2 U(AC), M2 2 U(BC) with M1C = M2C .Is it true that (M1 
M2)AC = M1 and (M1 
M2)BC = M2? Can the domain ofthe operation 
 de�ned by (8.11) be restricted suitably so that the axioms of conditionalproduct from [21] are ful�lled for it then?Structural decompositionLetM be a structural model over N and U; V � N such that UV = N . One says thatMdecomposes intoMU andMV or that (MU ;MV ) forms a structural decomposition ofM if141



M =MU 
MV . The decomposition is proper if U nV 6= ; 6= V nU . A structural modelwill be called indecomposable if it has no proper structural decomposition. Note that(MU)U\V = (MV )U\V which means that the composition MU 
MV is always de�ned.Clearly, a necessary condition for the existence of structural decomposition (MU ;MV ) isU n V ?? V n U jU \ V [M] (see p. 15). In particular,M = T�(N) is an indecomposablemodel. As MU resp. MV can be again decomposed one can obtain gradually a fulldecomposition of M into indecomposable models. Unfortunately, the hypothesis thatevery structural model has unique full decomposition of this type into 'prime' componentsis false. Indeed, consider the model from Example 7.4: one has Mabc 
Mabd = M =Macd 
Mbcd and every MS with S � N , jSj = 3 is indecomposable.Theme 10 Let G be an undirected graph over N and hA;BjCi 2 T (N) n T�(N) de�nesa proper decomposition of G. Is ((MG)AC ; (MG)BC) a structural decomposition ofMG?Has any CG model (see p. 43) unique minimal 'canonical' decomposition into maximalindecomposable submodels?It may be the case that uniqueness of 'canonical' decomposition cannot be achievedeven under possible additional standardization requirements. This would con�rm thatthe concept of structural decomposition is not suitable for the purpose mentioned earlier(p. 141). Then one should look for another type of decomposition (based on anotheraccumulative operation with structural imsets) which generalizes decomposition of UGmodels.Direction 2 Develop an analogue of the method of local computation for structuralmodels based on conveniently de�ned concept of decomposition of structural models.Find su�cient conditions for decomposition of this type which can be veri�ed by statisticaltests or on basis of expert knowledge. Develop an analogy of Shenoy's pictorial methodof valuation networks [92, 89] for local representation of structural imsets and Markovianmeasures in memory of a computer.Well-known results about factorization of maximum-likelihood estimators [53, 17]should be generalized then as well.8.3 Implementation tasksThese open problems are motivated by the task to implement facial implication on acomputer. The most important question is probably the next one.Question 7 Is every structural imset u over N already a combinatorial imset over N(see p. 59)?If the answer to Question 7 is negative then the following two problems become topicsof immediate interest.Theme 11 Given a �nite non-empty set of variables N , �nd the least �nite class H(N)of structural imset such that8 u 2 S(N) u = Xv2H(N) kv � v for some kv 2 Z+ :142



Recall that the existence of the class H(N), named minimal integral Hilbert basis ofcon(E(N)) follows from Theorem 16.4 in [90]. One has E(N) = H(N) i� S(N) = C(N).Theme 12 Given a �nite non-empty set of variables N , determine the least n� 2 N suchthat an imset over N is structural i� its multiple n� � u is a combinatorial imset, i.e.8 u 2 ZP(N) u 2 S(N) , n� � u 2 C(N):Determine the least n�� 2 N satisfying8 u 2 ZP(N) u 2 S(N) , 9n 2 N n � n�� n � u 2 C(N) :Find out how the values n� and n�� depend on jN j.Note that n�� � n� and I am not able to decide whether the inequality is strict. Indeed,n� = 1, n�� = 1, S(N) = C(N). Further important question concerns the `-skeleton.Question 8 Let K�̀(N) be the `-skeleton over N (see p. 76) and E(N) the class ofelementary imsets over N (p. 57). Is the equalitymin f hm; ui ; u 2 E(N) hm; ui 6= 0 g = 1ful�lled for every m 2 K�̀(N)?Note that the condition from Question 8 implies that gra(N) = gra�(N) (see p. 101).The following problem becomes relevant in case both Question 7 and Question 8 havenegative answers.Theme 13 How does depend the value of the least l 2 N satisfying the condition8 u 2 S(N) 8 v 2 E(N) u * v , l � u� v 2 S(N) (8.12)depend on jN j? Recall that facial implication * is de�ned on p. 93. Can one determinegra(N) directly without �nding the skeleton, i.e. without solving Theme 4?Recall that if either Question 7 or Question 8 has positive answer then the least l 2 Nsatisfying (8.12) is gra(N).Theme 14 Is there the least l� 2 N such that8 u 2 S(N) 8 v 2 E(N) u * v , l� � u� v 2 C(N) ?How does l� depend on jN j then? If there is no l� 2 N of this kind, �nd out, for a givenu 2 S(N), how the class of k 2 N satisfying8 v 2 E(N) u * v , k � u� v 2 C(N)looks? Is there a structural imset u 2 S(N) such that the condition (6.4) from Remark6.3 is not ful�lled (that is n � u 62 C(N) or (k � n� 1) � u 62 C(N) for every k; n 2 N)?143



Theme 15 Given a �nite non-empty set of variables N , is there ly 2 N such that8 u 2 S(N) 8 v semi-elementary imset over N u * v , ly � u� v 2 S(N);respectively lyy 2 N such that8 u 2 S(N) 8 v semi-elementary imset over N u * v , lyy � u� v 2 C(N)?How does ly respectively lyy depend on jN j then?The following open problem also concerns facial implication.Theme 16 Is there any method of testing facial implication which combines direct andskeletal criteria (see Lemma 6.1 on p. 93 and Lemma 6.2 on p. 96) and which is moresuitable for e�cient implementation on a computer?The above formulation is partially vague, let me specify what I have in mind in moredetails. Direct criterion of facial implication u * v consists in testing whether k � u� v 2C(N) for some k 2 N . This can be tested recursively as mentioned in Remark 6.3.However, plenty of 'transient' imset obtained during 'decomposition' procedure are notcombinatorial imsets. This can be often recognized immediately by means of Theorem 5.1(which is behind the skeletal criterion of *) and save superuous steps of the recursive'decomposition' procedure. The observation that a 'transient' imset v is not combinatorialcan be made on basis of the fact that hm; vi < 0 for a 'standard' supermodular imset mover N , for example the imset mA" resp. mA# for A � N (p. 34) or ml for l = 0; : : : ; jN j�2(p. 57). The point is that one need not to have the whole skeleton at disposal! In fact,Remark 6.10 is based just on observations of this type.Memory demandsAnother important problem is what are memory demands for representing a structuralimset in memory of a computer. Informally, by actual dimension of the class of structuralmodels U(N) is understood the 'minimal' number of binary attributes of elements of U(N)which can distinguish between every pair of distinct structural models.Observation 8.5 The following inequality holdsd ln2 jU(N)j e � actual dimension of U(N) � min f jE(N)j; jK�̀(N)j g:Proof: If s binary attributes distinguish between elements of U(N) then s bites is enough torepresent all elements of U(N). Hence 2s � jU(N)j gives the lower estimate. The fact thatelementary, respectively skeletal imsets di�erentiate between structural models follows fromLemma 2.2 resp. Consequence 6.2For example, the actual dimension of U(N) is 1 in case jN j = 2 as jU(N)j = 2 andjE(N)j = jK�̀(N)j = 1 (while in case jN j = 1 one has jU(N)j = 1 and E(N) = ; = K�̀(N)).If jN j = 3 then jU(N)j = 22 gives lower estimate 5 = d ln2 jU(N)j e which is precise sincejK�̀(N)j = 5 < 6 = jE(N)j. In case jN j = 4 one has 214 < jU(N)j = 22108 < 215,jE(N)j = 24 and jK�̀(N)j = 37. Thus, Observation 8.5 implies:144



Consequence 8.4 If jN j = 4 then the actual dimension of U(N) is between 15 and 24.Note that the inequality jU(N)j < 215 in case jN j = 4 means that one can perhaps'construct' 15 awkward arti�cial attributes which di�erentiate between the elements ofU(N) (and perhaps they have even the form of 'functions' of 24 'elementary' characteris-tics). However, I am interested in those characteristics or attributes which have reasonableinterpretation and can be generalized in sense that their generalization 'achieves' the ac-tual dimension of U(N) for jN j � 5. In fact, I am interested in solution of the followingvaguely de�ned problem.Theme 17 Given a non-empty �nite set of variables N , what is the least cardinality of aset of interpretable binary attributes which di�erentiate between structural models overN? How does it depend on jN j?8.4 Interpretation and learning tasksOpen problems loosely motivated by 'practical' questions of interpretation and learningfrom Section 1.1 are gathered below.8.4.1 Meaningful description of structural modelsThe following two open problems are motivated by the concept of standard imset for anacyclic directed graph from Section 7.2.1Question 9 Let G be an acyclic directed graph over N (p. 154). Is it true that thestandard imset for G (see p. 107) is the only imset from the class of combinatorial imsetsinducing MG which is simultaneously an imset of the least degree (p. 112) and an imsetwith the least lower class (p. 116)?Natural question is whether the concept of standard imset for a DAG model can begeneralized.Theme 18 Is there any consistent principle of unique choice of representatives of classesof facial equivalence (see p. 91) such that, for every acyclic directed graph G over N , thestandard imset uG is chosen from the class } = fu 2 S(N) ; Mu =MGg?The above description is somewhat vague, let me specify more detailed hypotheses.Suppose M 2 U(N), } = fv 2 S(N) ; M = Mvg and U = Uv for some v 2 } (it doesnot depend on v 2 } - see Lemma 6.6 on p. 102). Let us putL1� = [ fL � U ; L is a minimal lower class Lv for v 2 } gwhere minimality is understood with respect to inclusion (Lv is de�ned on p. 60). Re-spective hypotheses are that u 2 } with Lu = L1� exists for every M 2 U(N) and thata combinatorial imset with the least degree among u 2 } \ C(N) satisfying Lu = L1� isdetermined uniquely. If they were true then uG is an imset of this kind for M = MG145



where G is an acyclic directed graph over N (by Lemma 7.4 on p. 112 and Consequence7.5 on p. 118). The hypotheses can be modi�ed by considering the classL2� = [ fL � U ; L is a minimal determining class for Mgor the class L3� = [ fL � U ; L is a minimal unimarginal class for Mg(see p. 115) in place of L1�. Further open problem is motivated by Section 6.4.Direction 3 Look for necessary conditions for facial equivalence of structural imsetsformulated in terms of invariants of facial equivalence which are easy to verify and o�erclear interpretation. The aim is to �nd a set of these conditions which is able to distinguishevery pair of structural imsets which are not equivalent.Desired complete set of interpretable invariants could then become a basis of alterna-tive way of description of structural models which is suitable from the point of view ofinterpretation.8.4.2 Distribution frameworks and learningBelow mentioned problems concern more or less the distribution framework. In my view,they are also related to general task of learning structural models (see Section 1.1, p. 9).Theme 19 Let 	 be a class of probability measures over N satisfying the conditions(6.14) and (6.15) from Section 6.2.3. Let 	(u) denote the class of Markovian measureswith respect to u 2 S(N) given by (6.1) on p. 91 and S	(N) the class of 	-representablestructural imsets over N (p. 98). Is the condition8 u; v 2 S	(N) u * v , 	(u) � 	(v)ful�lled then? Does it hold under additional assumptions on 	?Question 10 Let M be a structural model over N , U = Uu is the upper class of u 2S(N) with Mu = M and D � U is an unimarginal class for M (see Section 7.4.1, p.115). Is then D necessarily a determining class for M?The above question can also be formulated relative to a distribution framework 	 (seeRemark 7.7 on p. 116).Theme 20 Let 	1;	2 be classes of probability measures satisfying (6.14) and M be astructural model over N . May it happen that minimal unimarginal classes forM relativeto 	1 and 	2 di�er? More speci�cally, I am interested in the class of discrete measures(p. 13) in place of 	1 and the class of non-degenerate Gaussian measures in place of 	2(p. 28).The last two open problems are closely related to mathematical statistics. The �rstone is the 'parametrization problem'. 146



Direction 4 Find out for which structural imsets u over N and for which classes 	 ofprobability measures with prescribed sample space (XN ;XN) = Qi2N (Xi;Xi) a suitableparametrization of the class of Markovian measures 	(u) with respect to u exists.Note that I am interested in parametrization by means of 'independent' parameters i.e.situations in which elements of 	(u) are in one-to-one correspondence with parametersbelonging to a n-dimensional interval [0; 1]n for some n 2 N . Preferable parametriza-tions are those in which parameters correspond to 'less-dimensional' marginal measures.Typical example is the parametrization of non-degenerate Gaussian measures which areMarkovian with respect to an acyclic directed graph [7, 85].Direction 5 Propose methods of learning structural models on basis of data (both sta-tistical testing and estimation). Develop methods for statistical estimation of Markovianmeasures with respect to a given structural imset within a given distribution framework(i.e. �tting procedures).I think that the most suitable methodological approach to statistical learning (ofstructural models) is to introduce suitable distance on the set of probability measuresbelonging to the considered distribution framework (with a �xed sample space). Thenone can compute the distance of the empirical measure (computed from data) and theset of Markovian measures with respect to prospective structural imset. I hope that theequivalence result from Section 4.5 (see p. 68), namely the product formula (p. 61), mayserve as a basis for some iterative �tting procedures.
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Chapter 9ConclusionsThe aim of this chapter is to summarize the method(s) of description of probabilisticconditional independence (CI) structures mentioned in this work.Chapter 3 is an overview of graphical methods of description of CI structures. Thesemethods are suitable from the point of view of interpretation and some of them are goodfrom the point of view of implementation (on a computer). However, they are not completein sense that they are not able to describe all (discrete) probabilistic CI structures (seeSection 3.6). Omission of this theoretical requirement may result in serious methodologicalerrors in practical learning procedures (see Section 1.1). This fact motivated an e�ort todevelop a non-graphical method of description of probabilistic CI structures by objects ofdiscrete mathematics which complies with the requirement of completeness.The method of description of probabilistic CI structures by means of structural im-sets described in Chapter 4 and in subsequent chapters meets the above requirement ofcompleteness for a quite wide class of distributions, namely for probability measures with�nite multiinformation (Theorem 5.2). The class of measures with �nite multiinformationinvolves three basic classes of distributions used in practice (in graphical modelling of CIstructures), namely the class of discrete measures, the class of (non-degenerate) Gaussianmeasures and the class of (non-degenerate) CG measures (see Section 4.1).Theorem 4.1 gives three equivalent de�nitions of a Markovian (probability) measureP with respect to a structural imset u. The standard de�nition requires that every CIstatement 'represented' in u is indeed valid CI statement with respect to P (see Section4.4.2). The second equivalent de�nition is the requirement that P satis�es the productformula induced by u (see Section 4.3). The product formula, which needs an auxiliaryconcept of a reference system of dominating measures, is perhaps important from thepoint of view of interpretation (of CI structures induced by structural imsets). First,it generalizes the well-known product formula for decomposable models (see (3.2) on p.45); this happens when one takes in place of u the standard imset for the respectivedecomposable graph (see Section 7.2.2, Remark 7.4). Second, it can perhaps be viewedas a loose analogue of formulas de�ning log-linear models. Third, the product formulaalso illustrates how the uniqueness principle for Markovian measures with respect to astructural imset works. The principle, formulated in Consequence 4.3, says that themarginals of a Markovian measure P (with respect to a structural imset u) for the lowerclass Lu determine uniquely the marginals for the upper class Uu. Indeed, in case of the148



standard imset induced by an acyclic directed graph (see Section 7.2) the upper classcorresponds to the collection of all marginals (including the measure P itself) and thelower class describes the least possible collection of marginals determining (uniquelly)the measure P - see Consequence 7.5 in Section 7.4.3. The third equivalent de�nition ofMarkovian measure is the requirement that the scalar product of the multiinformationfunction mP with u vanishes (see Section 4.5). This equivalent de�nition seems to beimportant from the point of view of computer implementation and maybe from the pointof view of learning. Indeed, perhaps it can serve as a basis of a (future) learning methodwhich can determine the most suitable structural imset on basis of a statistical estimateof the multiinformation function. However, the main signi�cance is in bringing the pointof view of algebra. This may facilitate computer implementation of the method on basisof arithmetic of integers.The algebraic point of view is emphasized in Chapter 5. The multiinformation functionis known to be an `-standardized supermodular function (Consequence 2.2) and the coneK`(N) of `-standardized supermodular functions plays an important role in the presentedapproach. More precisely, K`(N) is a pointed rational polyhedral cone which impliesthat it has �nitely many extreme rays and every extreme ray contains just one non-zero normalized `-standardized supermodular imset (Lemma 5.3) named `-skeletal imset.Finite collection K�̀(N) of `-skeletal imsets allows one to characterize dually structuralimsets as o-standardized imsets with non-negative scalar products with `-skeletal imsets(Theorem 5.1); in fact K�̀(N) is the least collection of normalized `-standardized imsetsof this sort.Every supermodular function de�nes a certain formal CI structure (see Section 5.1.1)and an important fact is that the class of CI structures induced by structural imsets coin-cides with the class of CI structures which can be described by supermodular functions.The relation od these two di�erent (but equivalent) methods of description of CI struc-tures is characterized in Section 5.4 as a relation of duality. This is done with help of analgebraic concept of Galois connection interpreted in light of the theory of formal conceptanalysis [28]. The lattice of CI structures induced by structural imsets (or equivalentlythose which can be described by supemodular functions) is shown to be a �nite conceptlattice which is both atomistic and coatomistic (Theorem 5.3). Its atoms correspond toknown elementary (structural) imsets while its coatoms correspond to `-skeletal imsets.Chapter 6 deals mainly with implementation of facial implication which correspondsto the inclusion of induced CI structures. Two characterization of facial implication u * vbetween structural imsets u; v are given. The �rst one (Lemma 6.1) characterizes it asa 'direct' arithmetical relation of u and v, namely that there exists l 2 N such thatl � u � v is a structural imset (resp. a combinatorial imset). The second one (Lemma6.2) characterizes it with help of `-skeletal imsets (respectively supermodular functions),namely by the requirement that u has non-zero scalar product with an `-skeletal imset (asupermodular function) whenever v does so. The skeletal characterization then leads toa characterization of facially equivalent structural imsets (Consequence 6.2).To transform the task of computer implementation of facial implication into a standardtask of integer programming two observations are needed. The �rst observation (Conse-quence 6.4) is that in testing u * v for a structural imset u and an elementary imset vthe number l 2 N such that l � u� v is a structural imset is limited by a constant. The149



constant depends on the cardinality of the set of variables N only and it has the value 1in case jN j � 4 and 7 in case jN j = 5. A good candidate for the the least constant of thistype is the grade (see Section 6.3.2); the least constant of this kind for a combinatorialimset u and an elementary imset v is found in Lemma 6.5. The second observation is thatin testing whether a given imset ~u (e.g. l �u�v above) is a structural imset the coe�cientn 2 N such that n � ~u is a combinatorial imset (i.e. a sum of known elementary imsets) isalso limited by a constant depending on the cardinality of N (Lemma 6.4). The constantis 1 in case jN j � 4; there is a hope that it is 1 in general (see Question 7).Further results of Chapter 6 allow to adapt the described method of description of CIstructures to a particular distribution framework, that is a class of probability measuresover N satisfying certain basic conditions (see Section 6.2.3).Chapter 7 concerns the problem of choice of a representative of a class of faciallyequivalent structural imsets. A good solution from the point of view of computer im-plementation seems to be the baricentral imset (Section 7.1). Indeed, facial implicationbetween baricentral imsets is very simple: one has u * v for these imsets i� u � v is acombinatorial imset (Observation 7.1). From the point of view of interpretation standardimsets for acyclic directed graphs (Section 7.2.1) and for triangulated undirected graphs(Section 7.2.2) seems to be suitable. First, they provide a simple translation of classicgraphical models into the framework of structural imsets. Second, they o�er an alter-native (non-graphical) method of testing Markov equivalence for acyclic directed graphs(Consequence 7.1). Finally, they are exclusive for two theoretical reasons: standard im-sets for acyclic directed graphs are combinatorial imsets of the least degree (Lemma 7.4)and imsets with the least lower class (Consequence 7.5).Chapter 8 is an overview of open problems. The most important problems from thepoint of view of computer implementation of the method seem to be the question whetherstructural imsets indeed coincide with combinatorial imsets (Question 7) and the task tocharacterize `-skeletal imsets (Theme 4). Note that `-skeletal imsets are known in casejN j � 5 but not in general.Well, the overall goal of the work was to present the method of description of prob-abilistic CI structures by means of structural imsets. This involves motivation, the de-scription of present state and an outlook represented by the list of open problems. Thisnon-graphical method removes inevitable limitation of graphical approaches and promisesa chance of computer implementation by transforming the problem into standard tasksof integer programming. The work gives a theoretical solution; practical implemetationrequires further research. However, in case of successful solving the task of computerimplemetation the method can �nd wide application both in area of arti�cial intelligenceand in area of multivariate statistics.
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Chapter 10AppendixUniversity graduates in mathematics should be familiar with the majority of the concepts andfacts gathered in this chapter. However, certain misunderstanding can occur in their exactmeaning and, moreover, graduates in other �elds (e.g. computer science, statistics) may not befamiliar with all basic facts. Thus, to avoid misunderstanding and to facilitate reading I decidedto recall them here. Just to provide the reader with a reference source for well-known factswhich can be easily utilized with help of the Index.10.1 Classes of setsBy a singleton is understood a set containing one element only, the symbol ; is reserved for theempty set . The symbol S � T (also T � S) denotes that S is a subset of T (alternatively Tis a superset of S) which involves the situation S = T . However, strict inclusion is denoted asfollows: S � T or T � S means that S � T but S 6= T . The power set of a non-empty set X isthe class of all its subsets fT ; T � Xg, denoted by P(X). The symbol SD denotes the unionof a class D � P(X); the symbol TD the intersection of a class D � P(X). Supposing N isa non-empty �nite set (of variables) a class D � P(N) is called ascending if it is closed undersupersets, i.e. 8 S; T � N S 2 D; S � T ) T 2 D :Given D � P(N); the induced ascending class, denoted by D"; is the least ascending classcontaining D; i.e. D" = fT � N ; 9S 2 D S � Tg:Analogously, a class D � P(N) is called descending if it is closed under subsets, i.e.8 S; T � N S 2 D; T � S ) T 2 D ;and given D � P(N) the induced descending class D# consists of subsets of sets in D; i.e.D# = fT � N ; 9 S 2 D T � Sg:A set S 2 D where D � P(N) is called a maximal set of D if 8T 2 D S � T ) S = T ;the class of maximal sets of D is denoted by Dmax: Clearly, Dmax = (D#)max and D# = (Dmax)#:Dually, a set S 2 D is called a minimal set of D if 8T 2 D T � S ) S = T and Dmin denotesthe class of minimal sets of D.By a permutation of a �nite non-empty set N will be understood a one-to-one mapping� : N ! N . It can be also viewed as a mapping on the power set P(N) which assigns �(S) =f�(x);x 2 Sg to every S � N . Then given a real function m : P(N)! R the juxtaposition m�will denote the composition of m and � de�ned by S 7! m(�(S)) for S � N .151



10.2 Posets and latticesPartially ordered set (L;�), shortly a poset, is a non-empty set L endowed with a partial ordering�, that is, a binary relation on L which is(i) reexive: 8 x 2 L x � x ,(ii) antisymmetric: 8 x; y 2 L x � y; y � x ) x = y ,(iii) transitive: 8 x; y; z 2 L x � y; y � z ) x � z .The phrase total ordering is used if moreover 8 x; y 2 L either x � y or y � x. Given x; y 2 L,one writes x � y for x � y and x 6= y. If x � y and there is no z 2 L such that x � z andz � y then x is called a lower neighbour of y and y is an upper neighbour of x. Given M � L anelement x 2 M is a minimal element of M with respect to � if there is no z 2 M with z � x,y 2M is a maximal element of M with respect to � if there is no z 2M with z � x.Given M � L, the supremum of M in L, denoted by supM and alternatively called theleast upper bound of M is an element of y 2 L such that z � y for every z 2 M but y � y0 foreach y0 2 L with z � y0 for every z 2M . Owing to antisymmetry of �, the supremum of M isdetermined uniquely if it exists. Given x; y 2 L, their join denoted by x_ y is the supremum ofthe set fxg [ fyg. A poset in which every pair of elements has a join is called join semi-lattice.Analogously, the in�mum of M � L, denoted by infM , called also the greatest lower boundof M is an element of x 2 L such that x � z for every z 2 M but x0 � x for each x0 2 L withx0 � z for every z 2M . The meet of elements x; y 2 L, denoted by x ^ y is the in�mum of theset fxg [ fyg. Lattice is a poset (L;�) such that for every x; y 2 L there exists both supremumx _ y and in�mum x ^ y in L. A lattice is distributive if for every x; y; z 2 Lx ^ (y _ z) = (x ^ y) _ (x ^ z) and x _ (y ^ z) = (x _ y) ^ (x _ z) :Typical example of a distributive lattice is a ring of subsets of a �nite non-empty set N , thatis a collection R � P(N) which is closed under (�nite) intersection and union. In particular,P(N) ordered by inclusion � is a distributive lattice.Complete lattice is a poset (L;�) such that every subset M � L has the supremum andin�mum in L. Note that it su�ces to show that every M � L has the in�mum. Any �nitelattice is an example of a complete lattice. By the null element of a complete lattice L isundestood the least element of L, that is x0 2 L such that x0 � z for every z 2 L; it is nothingbut the supremum of the empty set in L. By the unit element is understood the greatest elementsof L, that is y1 2 L such that z � y1 for every z 2 L. An element x of a complete lattice isjoin-irreducible if x 6= sup fz 2 L ; z � x g and meet-irreducible if x 6= inf fz 2 L ; x � z g.An element of a �nite lattice is join-irreducible i� it has exactly one lower neighbour and it ismeet-irreducible i� it has exactly one upper neighbour. The set of join-irreducible elements in a�nite lattice (L;�) is the least set M � L which is supremum-dense which means that for everyx 2 L there exists M 0 � M such that x = supM 0. Analogously, the set of meet-irrreducibleelements in L is the least set M � L which is in�mum-dense, i.e. for every y 2 L there existsM 0 �M with y = infM 0. Standard example of a join-irreducible element in a complete lattice isan atom of L which is an upper neighbour of the null element of L. By coatom of L is undestooda lower neighbour of the unit element of L. A complete lattice L is atomistic if the set of itsatoms is supremum dense in L; equivalently if the only join-irreducible elements are atoms. It iscoatomistic if the set of its coatoms is in�mum dense in L, i.e. the only meet-irreducible elementsare coatoms.Two posets (L1;�1) and (L2;�2) are order-isomorphic if there exists a mapping � : L1 7! L2onto L2 such that x �1 y , �(x) �2 �(y) for every x; y 2 L1 :152



The mapping � is then a one-to-one mapping between L1 and L2 and it is called an order-isomorphism. If the poset (L1;�1) is a complete lattice then (L2;�2) is also a complete latticeand � is even (complete) lattice homomorphism which means that�(supM) = sup f�(z); z 2Mg �(infM) = inf f�(z); z 2Mg for every M � L1 :General example of a complete lattice can be obtained by means of a closure operation on subsetsof a set X, that is a mapping cl : P(X)! P(X) which is(i) isotone: 8 S; T � X S � T ) cl(S) � cl(T ),(ii) extensive: 8 S � X S � cl(S),(iii) idempotent: 8 S � X cl(cl(S)) = cl(S).A set S � X is called closed with respect to cl if S = cl(S). Given a closure operation clon subsets of X the collection K � P(X) of closed sets with respect to cl is closed under setintersection: D � K ) \D 2 K (by convention \D = X for D = ;) :Every collection K � P(X) satisfying this requirement is called a closure system of subsets ofX. The correspondence between cl and K is one-to-one since the formulaclK(S) =\ fT � X ; S � T 2 K g for S � X ;de�nes a closure operation on subsets of X having K as the collection of closed sets with respectto clK (see Theorem 1 in [28]). The poset (K;�) is then a complete lattice in whichsupD = cl ([ D ) infD =\D for every D � K :Every complete lattice is order-isomorphic to a lattice of this type - see Proposition 3 in Chapter1 of [28].10.3 GraphsA (classic) graph is speci�ed by a non-empty �nite set of nodes N and by a set of edges consistingof pairs of elements taken from N . Several types of edges are mentioned in this work, but classicgraphs admit only two basic types of edges. An undirected edge or a line over N is an unorderedpair fa; bg where a; b 2 N , a 6= b (that is a two-element subset of N). A directed edge or anarrow over N is an ordered pair (a; b) where a; b 2 N , a 6= b. Pictorial representation is clear:nodes are represented by small circles and edges by corresponding links beween them. Note thatexplicit requirement a 6= b excludes any loop, that is an edge connecting a node with itself (loopsare possible in some non-classic graphs).A (classic) graph with mixed edges over (a set of nodes) N is given by a set of lines L overN and by a set of arrows A over N . Supposing G = (N;L;A) is a graph of this kind one writes'a ! b in G' in case fa; bg 2 L and says that there exists a line between a and b in G. Similarly,in case (a; b) 2 A one say that there exists an arrow from a to b in G and writes 'a ! b in G'or 'b a in G'. Pictorial representation naturally reects notation in both cases.If either a ! b in G, a ! b in G or a  b in G, then one simply says that [a; b] is an edgein G. Note explicitly that this de�nition allows (for a pair of distinct nodes a; b 2 N) that eachof a ! b, a ! b and a  b are simultaneously edges in G! If ; 6= T � N , then the inducedsubgraph of G for T is the graph GT = (T;LT ;AT ) over T where LT (AT ) is the set of those lines(arrows) over T which are also in L (in A). A hybrid graph over N is a graph with mixed edges153



G without multiple edges. That means, for an ordered pair of distinct nodes (a; b), a; b 2 N atmost one of three above mentioned options can occur.A route from a node a to a node b (or between nodes a and b) in a graphG with mixed edges isa sequence of nodes c1; : : : ; cn 2 N , n � 1 together with a sequence of edges �1; : : : ; �n�1 2 L[A(possibly empty in case n = 1) such that a = c1, b = cn and �i is either ci ! ci+1, ci ! ci+1 orci  ci+1 for i = 1; : : : ; n� 1. A route is called undirected if �i is ci ! ci+1 for i = 1; : : : ; n� 1,descending if �i is either ci ! ci+1 or ci ! ci+1 for i = 1; : : : ; n � 1 and strictly descendingif n � 2 and �i is ci ! ci+1 for i = 1; : : : ; n � 1. In particular, every undirected route is adescending route. A path is a route in which all nodes c1; : : : ; cn are distinct, a cycle is a routewhere n � 3, c1 = cn and c1; : : : ; cn�1 are distinct (and �2 is not a reverse copy of �1 in casen = 3). A directed cycle is a cycle which is a descending route and where �i is ci ! ci+1 at leastonce. The adjectives undirected and (strictly) directed are used for paths as well.A node a is a parent of a node b in G or b is a child of a if a! b in G; a is an ancestor of bin G, dually b is a descendant of a if there exists a descending route (equivalently a descendingpath) from a to b in G. The set of parents of a node b in G will be denoted by paG(b). SupposingA � N the symbol anG(A) will denote the set of ancestors of the nodes of A in G. Analogously,a is a strict ancestor (b is a strict descendant of a) if there exist a strictly descending route froma to b. Similarly, a is connected to b in G if there exists an undirected route (equivalently anundirected path) between a and b. Clearly, the relation 'be connected' is an equivalence relationwhich decomposes N into equivalence classes, named connectivity components.An undirected graph is a graph containing only lines (that is A = ;), a directed graph is agraph containing only arrows (that is L = ;). The underlying graph H of a graph with mixededges G = (N;L;A) is an undirected graph H over N such that a ! b in H i� [a; b] is an edgein G. A set A � N in an undirected graph H over N is complete if a ! b for every a; b 2 A,a 6= b; a clique of H is a maximal complete subset of N .A acyclic directed graph over N is a directed graph over N without directed cycles. It canbe equivalently introduced as a directed graph G whose nodes can be ordered in a sequencea1; : : : ; ak, k � 1 such that if [ai; aj ] is an edge in G for i < j, then ai ! aj in G. A chain for ahybrid graph G over N is a partition of N into ordered disjoint (non-empty) subsets B1; : : : ; Bn,n � 1 called blocks such that, if [a; b] is an edge in G with a; b 2 Bi then a ! b, and if [a; b] is anedge in G with a 2 Bi; b 2 Bj; i < j then a! b. A chain graph is a hybrid graph which admitsa chain. It can be equivalently introduced as a hybrid graph without directed cycles (see [110]Lemma 2.1). Evidently, every undirected or acyclic directed graph is a chain graph.Note that various other types of edges are used in advanced graphical approaches (see Section3.5), e.g. bidirected edges, dashed lines, dashed arrows or even loops. From purely mathematicalpoint of view these edges can be also introduced as either ordered or unordered pairs of nodes,but their meaning is di�erent. Thus, because of di�erent interpretation they have to be carefullydistinguished from the above mentioned 'classic' edges. However, all the concepts introduced inSection 10.3 can be naturally extended to the graphs allowing edges of additional types.10.4 Topological conceptsMetric space (X; �) is a non-empty set X endowed with a distance � which is a non-negative realfunction � : X� X! [0;1), such that 8x; y; z 2 X one has(i) �(x; y) = 0 i� x = y,(ii) �(x; y) = �(y; x),(iii) �(x; z) � �(x; y) + �(y; z). 154



A set G � X is called open in (X; �) if for every x 2 G there exists " > 0 such that the open ballU(x; ") � fy 2 X ; �(x; y) < "g with center x and radius " belongs to G. A set F � X is closed ifits complement X nG is open. A metric space is separable if it has a countable dense set , that issuch a set S � X that 8x 2 X 8 " > 0 there exists y 2 S \ U(x; "). A metric space is completeif every Cauchy sequence x1; x2; : : : of elements of X, i.e. a sequence satisfying 8 " > 0 9n 2 Nsuch that 8 k; l � n �(xk; xl) < ", converges to an element x 2 X, i.e. 8 " > 0 9n 2 N suchthat 8 k � n �(xk; x) < ".Classic example of a separable complete metric space is an arbitrary non-empty �nite set Xendowed with the discrete distance � de�ned as follows:�(x; y) = � 0 if x = y ;1 otherwise :Another common example is the set of n-dimensional real vectors Rn , n � 1 endowed with theEucledian distance%(x;y) =vuut nXi=1(xi � yi)2 for x = [x1; : : : ; xn]; y = [y1; : : : yn] :The set of real numbers R with %(x; y) = jx� yj is a special case.Topological space (X; �) is a non-empty set X endowed with a topology � which is a classof subsets of X closed under �nite intersection, arbitrary union, and involving both the emptyset ; and X itself. Every metric space (X; �) is an example of a topological space because theclass of open sets in (X; �) is a topology. A topological space of this kind is called metrizableand its topology is induced by the distance �. For instance, the set of real numbers R is oftenautomatically understood as a topological space endowed with Eucledian topology induced byEucledian distance. The product of topological spaces (X1; �1) and (X2; �2) is the Cartesianproduct X1 � X2 endowed with the product topology , that is the class of sets G � X1 � X2 suchthat 8 (x1; x2) 2 G there exist G1 2 �1, G2 2 �2 with (x1; x2) 2 G1 � G2 � G. The productQi2N (Xi; �i) of any �nite collection (Xi; �i), i 2 N , jN j � 2 of topological spaces is de�nedanalogously. For example, Rn(n � 2) endowed with the topology induced by Eucledian distancecan be viewed as the product of topological spaces Xi = R, i 2 f1; : : : ; ng.A real function f : X ! R on a topological space (X; �) is continuous if fx 2 X; f(x) < rgbelongs to � for every r 2 R.10.5 Measure-theoretical conceptsMeasurable space (X;X ) is a non-empty set X endowed with a �-algebra X over X which is a classof subsets of X involving X itself and closed under countable union and complement. Given a classA of subsets of X, the least �-algebra over X containing A (i.e. the intersection of all �-algebrascontaining A) is called the �-algebra generated by A and denoted by �(A). In particular, if(X; �) is a topological space, then the �-algebra generated by its topology is the Borel �-algebraor the �-algebra of Borel sets. Trivial �-algebra over X is the class f;;Xg, that is the �-algebragenerated by an empty class. Given a measurable space (X;X ) the class of all �-algebras S � X ,ordered by inclusion, is a lattice. Indeed, for �-algebras S;T � X , their supremum S _T is the�-algebra generated by S [ T , while their in�mum S ^ T is simply the intersection S \ T . Theproduct of measurable spaces (X1;X1) and (X2;X2) is the Cartesian product X1 � X2 endowedwith the product �-algebra X1�X2 which is generated by measurable rectangles, that is the setsof the form A�B where A 2 X1 and B 2 X2. The product (Qi2N Xi;Qi2N Xi) of arbitrary �nitecollection of measurable spaces (Xi;Xi), i 2 N where jN j � 2 is de�ned analogously.155



A real function f : X ! R on a measurable space (X;X ) is measurable (sometimes onewrites X -measurable) if fx 2 X ; f(x) < rg belongs to X for every r 2 R. Typical example isthe indicator �A of a set A 2 X de�ned as follows:�A(x) = � 1 if x 2 A ;0 if x 2 X n A :Given a real measurable function f : X ! R, its positive part f+ and negative part f� arenon-negative measurable functions de�ned byf+(x) = max ff(x); 0g ; f�(x) = max f�f(x); 0g for x 2 X ;and one has f = f+ � f� and jf j = f+ + f�.Non-negative measure on a measurable space (X;X ) is a function � de�ned on X , takingvalues in the interval [0;1] (in�nite values are allowed) which satis�es �(;) = 0 and is countablyadditive, that is the equality �( 1[i=1 Ai) = 1Xi=1 �(Ai)holds for every countable collection of pairwise disjoint sets A1;A2; : : : in X . It is a �nitemeasure if �(X) <1 and a �-�nite measure if there exists a sequence B1;B2; : : : of sets in Xsuch that X = S1i=1 Bi and �(Bi) <1 for every i 2 N. A trivial example of a �nite measure is anon-empty �nite set X endowed with the counting measure � on (X;P(X)) de�ned by �(A) = jAjfor every A � X. Classic example of a �-�nite measure is Lebesgue measure on Rn , n � 1,endowed with the Borel �-algebra Bn. This measure can be introduced as the only non-negativemeasure � on (Rn ;Bn) ascribing to every n-dimensional interval its volume, that is� ( nYi=1[ri; si) ) = nYi=1(si � ri) whenever ri; si 2 R; ri < si; i = 1; : : : ; n :Probability measure is a measure � satisfying �(X) = 1. It is concentrated on a set B 2 X if�(B) = 1 or equivalently �(X n B) = 0. Two real measurable functions f and g on (X;X ) equal�-almost everywhere if �(fx 2 X; f(x) 6= g(x)g) = 0. Then one writes f = g �-a.e. Clearly, itis an equivalence relation.The concept of integral is understood in sense of Lebesgue. Given a non-negative mea-sure � on (X;X ) this construction (described for example in [87] Chapter 1) assigns a valueRA f(x) d�(x) from [0;1], called the integral of f through A with respect to � to every non-negative measurable function f and arbitrary A 2 X (f can be de�ned on A only). A real measur-able function f on (X;X ) is called �-integrable if the integral of its absolute value RX jf(x)j d�(x)is �nite. Finite integral RA f(x) d�(x) (i.e. a real number) is then de�ned for every �-integrablefunction f and A 2 X . Note that supposing f is �-integrable and g is X -measurable function onX one has f = g �-a.e. i� RA f(x) d�(x) = RA g(x) d�(x) for every A 2 X (and g is �-integrablein both cases). Note that in case (X;X ) = (Qi2N Xi;Qi2N Xi) it is equivalent to apparentlyweaker requirement that the equality of integrals holds for every measurable rectangle A only.This follows from the fact that every two �nite measures on (Qi2N Xi;Qi2N Xi) which equal onmeasurable rectangles must coincide.Sometimes, one needs to introduce (possibly in�nite) integral even for a non-integrable realmeasurable function f : X! R by the formulaZX f(x) d�(x) = ZX f+(x) d�(x)� ZX f�(x) d�(x)156



provided that at least one of the integrals on the right-hand side is �nite. Then one says that f is�-quasi-integrable and the integral RX f(x) d�(x) is de�ned as a value in the interval [�1;+1].Let us refer for elementary properties of Lebesgue integral to [87], Chapter 1.Supposing � and � are measures on (X;X ) one says that � is absolutely continuous withrespect to � and writes � � � if �(A) = 0 implies �(A) = 0 for every A 2 X . Basic measure-theoretical result is Radon-Nikodym theorem (see [87], Sections 6.9 and 6.10).Theorem Supposing � is a �nite measure and � a �-�nite measure on (X;X ) such that � � �there exists a non-negative �-integrable function f called Radon-Nikodym derivative of � withrespect to � such that �(A) = ZA f(x) d�(x) for every A 2 X :Moreover, one can show (using Theorem 1.29 in [87]) that, for every X -measurable function gon X, g is �-integrable i� g � f is �-integrable andZA g(x) d�(x) = ZA g(x) � f(x) d�(x) for every A 2 X :According to the remark above, Radon-Nikodym derivative is determined uniquely only withinequivalence �-a.e. One writes f = d�d� to denote that a non-negative X -measurable function f is(a version of) Radon-Nikodym derivative of � with respect to �.Product of �-�nite measures �1 on (X1;X1) and �2 on (X2;X2) is the unique measure �1 � �2on (X1 � X2;X1 �X2) de�ned on measurable rectangles as follows:(�1 � �2) (A� B) = �1(A) � �2(B) whenever A 2 X1; B 2 X2 :Let us refer to [87] (Chapter 7, Example 7 and Sections 7.6, 7.7) for the proof of existence anduniqueness of (necessarily �-�nite) product measure �1 � �2. Product of �nitely many �-�nitemeasures Qi2N �i, jN j � 2 can be introduced analogously. Another basic measure-theoreticalresult is Fubini theorem (see [87], Section 7.8).Theorem Let �1 be a �-�nite measure on (X1;X1) and �2 a �-�nite measure on (X2;X2).Suppose that f is a non-negative X1 � X2-measurable function on X1 � X2. Then the functionx1 7! RX2 f(x1; x2) d�2(x2) is X1-measurable, the function x2 7! RX1 f(x1; x2) d�1(x1) is X2-measurable and one hasZX1�X2 f(x1; x2) d(�1 � �2)([x1; x2]) == ZX1 ZX2 f(x1; x2) d�2(x2) d�1(x1) = ZX2 ZX1 f(x1; x2) d�1(x1) d�2(x2) :Whenever f is �1 � �2-integrable real function on X1 � X2 the same conclusion holds with theproviso that respective functions on Xi are de�ned �i-almost everywhere (i = 1; 2).By a measurable mapping of a measurable space (X;X ) into a measurable space (Y;Y) isunderstood a mapping t : X! Y such that for every B 2 Y the set t�1(B) � fx 2 X; t(x) 2 Bgbelongs to X . Note that a measurable function is a special case when Y is R endowed with theBorel �-algebra. Every probability measure P on (X;X ) then induces through t a probabilitymeasure Q on (Y;Y) de�ned by Q(B) = P (t�1(B)) for every B 2 Y.157



Two measurable spaces (X;X ) and (Y;Y) are isomorphic if there exists a one-to-one mapping& : X ! Y which is onto Y and preserves countable union and complement. Then &(;) = ;,&(X) = Y and countable intersection and inclusion are also preserved. The inverse mappingpreserves these operations as well, and every measure � on (X;X ) corresponds to a measure �on (Y;Y) de�ned by �(B) = �(&�1(B)) for B 2 Y ;and conversely. For example, given measurable spaces (X1;X1) and (X2;X2), the space (X1;X1)is isomorphic to (X1 � X2; �X1) endowed with the �-algebra�X1 � fA� X2 ; A 2 X1 g � X1 �X2 :Supposing P is a probability measure on a measurable space (X;X ) and A � X is a �-algebra over X, the restriction of P to A will be denoted by PA. Given B 2 X , the conditionalprobability of B given A with respect to P is an A-measurable function h : X! [0; 1] such thatP (A \ B) = ZA h(x) dP (x) for every A 2 A : (10.1)One can use Radon-Nikodym theorem with (X;A), � = PA, and �(A) = P (A \ B) for A 2 A,to show that a function h satisfying (10.1) exists and is determined uniquely within equivalencePA-a.e. Let us write h = P (BjA) to denote that a A-measurable function h : X ! [0; 1] is (aversion of) conditional probability of B given A. Let us mention (without proof) two equivalentde�nitions of conditional probability. The �rst one, apparently weaker, says that h = P (BjA) i�the equality (10.1) holds for every A 2 G, where G � A is a class closed under �nite intersectionsuch that �(G) = A. The second one, apparently stronger, says that h = P (BjA) i� for everynon-negative A-measurable function g : X! R and A 2 A one hasZA\B g(x) dP (x) = ZA g(x) � h(x) dP (x) � ZA g(x) � h(x) dPA(x) :It follows from the de�nition of conditional probability that whenever S � T � X are �-algebras,and B 2 X then every S-measurable version of P (BjT ) is a version of P (BjS). Sometimes, ithappens that a certain fact or the value of an expression does not depend on the choice of aversion of conditional probability. In this case the symbol P (BjA) is used in the correspondingformula to substitute arbitrary version of conditional probability of B given A (w.r.t. P ).Remark Having �xed just P on (X;X ) and a �-algebra A � X by a regular version of con-ditional probability given A is understood a function which ascribes to every B 2 X a versionof P (BjA) such that, for every x 2 X, the mapping B 7! P (BjA)(x) is a probability measureon (X;X ). Note that this concept is taken from [55], x26.1 and that a regular version of con-ditional probability may not exist in general (e.g. Example VI.1.35 in [98]). However, undercertain topological assumptions, namely that X is a separable complete metric space and X isthe class of Borel sets in X, its existence is guaranteed (see either [98], Theorem VI.1.21 or [74],Consequence of Theorem V.4.4). 4Supposing � is a measure on the product of measurable spaces (X1�X2;X1�X2) themarginalmeasure � on (X1;X1) is de�ned as follows:�(A) = �(A� X2) for every A 2 X1 :Every X1-measurable function h on X1 can be viewed as X1�X2-measurable function on X1�X2.Then h is �-integrable i� it is �-integrable andZX1�X2 h(x1) d�([x1; x2]) = ZX1 h(x1) d�(x1) :158



A real function ' : [0;1)! R is called convex if for all r; s 2 [0;1) and � 2 [0; 1]' (� � r + (1� �) � s) � � � '(r) + (1� �) � '(s) :It is called strictly convex if this inequality is strict whenever r 6= s and � 2 (0; 1). Further basicresult is Jensen's inequality (one can modify the proof from [87], Section 3.3).Theorem Let � be a probability measure on (X;X ), f : X! [0;1) a �-integrable function and' : [0;1)! R a convex function. Then'(ZX f(x) d�(x) ) � ZX ' (f(x)) d�(x):In case ' is strictly convex the equality occurs if and only if f is constant �-a.e., more exactlyf(x) = k for �-a.e. x 2 X where k = RX f(x) d�(x).10.6 Conditional independence of �-algebrasLet A;B; C � X are �-algebras in a measurable space (X;X ) and P is a probability measure onit. One can say that A is conditionally independent of B given C with respect to P and writeA ?? B j C [P ] if, for every A 2 A and B 2 B, one hasP (A \ BjC)(x) = P (AjC)(x) � P (BjC)(x) for P C-a.e. x 2 X : (10.2)Note (without proof) that an apparently weaker equivalent formulation is as follows. It su�cesto verify (10.2) only for A 2 ~A and B 2 ~B where ~A � A respectively ~B � B are classes closedunder �nite intersection such that �( ~A) = A respectively �( ~B) = B.Lemma 10.1 Under the assumptions above A ?? B j C [P ] occurs i� for every A 2 A there existsa C-measurable version of P (AjB _ C).Proof: To show the necessity of the condition �x A 2 A and choose a version f of P (AjC).Write for every B 2 B;C 2 C by de�nition of P (A \ BjC) and (10.2)P (A \ B \ C) = ZC P (A \ BjC)(x) dP (x) = ZC P (AjC)(x) � P (BjC)(x) dP (x);and continue using the 'stronger' de�nition of P (BjC) and the fact f = P (AjC)ZC P (AjC)(x) � P (BjC)(x) dP (x) = ZB\C P (AjC)(x) dP (x) = ZB\C f(x) dP (x):Since the class G = fB \ C; B 2 B; C 2 Cg is closed under �nite intersection and B _ C = �(G),by the 'weaker' de�nition of P (AjB _ C) conclude that f = P (AjB _ C).To show the su�ciency �x A 2 A and B 2 B. Take a C-measurable version f of P (AjB _ C)and observe f = P (AjC). Then write by the de�nition of P (A\BjC) and the fact f = P (AjB_C)for every C 2 C ZC P (A \ BjC)(x) dP C(x) = P (A \ B \ C) = ZB\C f(x) dP (x) ;159



and continue using the 'stronger' de�nition of P (BjC) and the fact f = P (AjC)ZB\C f(x) dP (x) = ZC f(x) � P (BjC)(x) dP C(x) = ZC P (AjC)(x) � P (BjC)(x) dP C(x):Thus, the equalityZC P (A \ BjC)(x) dP C(x) = ZC P (AjC)(x) � P (BjC)(x) dP C(x)was veri�ed for every C 2 C which implies (10.2).The next lemma describes basic properties of conditional independence for �-algebras.Lemma 10.2 Supposing P is a probability measure on (X;X ) and A;B; C;D; E ;F ;G � X are�-algebras, it holds(i) B � C ) A ?? B j C [P ] ;(ii) A ?? B j C [P ] ) B ?? A j C [P ] ;(iii) A ?? E j C [P ]; F � E ; C � G � E _ C ) A ?? F jG [P ] ;(iv) A ?? B jD _ C [P ]; A ?? D j C [P ] ) A ?? B _D j C [P ] :Proof: The condition (ii) follows immediately from symmetry in (10.2). For other propertiesuse the equivalent de�nition from Lemma 10.1. For (i) realize that B _ C = C and thereforeevery version of P (AjB _ C) is C-measurable. In case (iii) observe S � F _ G � E _ C � T . Theassumption A ?? E j C [P ] implies, for every A 2 A, the existence of a C-measurable version ofP (AjT ). Since C � G � S it is both G-measurable and S-measurable. Hence, it is a versionof P (AjS). The existence of a G-measurable version of P (AjS) means A ?? F jG [P ]. To show(iv) �x A 2 A and by A ?? B jD _C [P ] derive the existence of (D _C)-measurable version f ofP (AjB _ D _ C). Similarly, by A ?? D j C [P ] derive the existence of C-measurable version g ofP (AjD _ C). Observe that f is a version of P (AjD _ C) and by the 'uniqueness' of P (AjD _ C)derive that f = g PD_C-a.e. Hence, f and g are equal PB_D_C-a.e. and by 'uniqueness' ofP (AjB _ D _ C) conclude that g is its version. This implies A ?? B _D j C [P ].Consequence 10.1 Supposing P is a probability measure on (X;X ) semi-graphoid propertiesfor �-algebras hold, that is one has for �-algebras A;B; C;D � X (the symbol of P is omitted):1. triviality: A ?? B j C whenever B _ C = C,2. symmetry: A ?? B j C ) B ?? A j C,3. decomposition: A ?? B _D j C ) A ?? D j C,4. weak union: A ?? B _D j C ) A ?? B jD _ C,5. contraction: A ?? B jD _ C & A ?? D j C ) A ?? B _ D j C.Proof: Use Lemma 10.2; for decomposition use (iii) with E = B _ D, F = D, G = C; for weakunion put E = B _ D, F = B, G = D _ C instead.160



10.7 Relative entropySuppose that P is a �nite measure and � a �-�nite measure on a measurable space (X;X ). Incase P � � choose a version of Radon-Nikodym derivative dPd� , accept the convention 0 � ln 0 � 0and introduce H(P j�) = ZX dPd� (x) � ln dPd� (x) d�(x): (10.3)Provided that the function dPd� �ln dPd� is �-quasi-integrable we call the integral the relative entropyof P with respect to �. Of course, quasi-integrability and the value of H(P j�) does not dependon the choice of a version of dPd� . It follows from the de�nition of Radon-Nikodym derivativethat H(P j�) can be equivalently introduced as the integralH(P j�) = ZX ln dPd� (x) dP (x) ; (10.4)provided that ln dPd� is P -quasi-integrable. Hence, the relative entropy of P with respect to � is�nite i� ln dPd� is P -integrable. Let us note that, in general P � � does not imply the existenceof the integral in (10.3) and in case H(P j�) is de�ned, it can take any value in the interval[�1;+1]. However, when both P and � are probability measures (and P � �) the existenceof H(P j�) is guaranteed and it can serve as a measure of similarity of P to �.Lemma 10.3 Supposing P and � are probability measures on (X;X ) such that P � � therelative entropy of P with respect to � is de�ned and H(P j�) � 0. Moreover H(P j�) = 0 i�P = �.Proof: Apply Jensen's inequality to the case f = dPd� and '(r) = r � ln r for r > 0, '(0) = 0.Since P is a probability measure RX f(x) d�(x) = 1 and '(1) = 0 gives the lower estimate.Moreover, since ' is strictly convex H(P j�) = 0 i� f(x) = 1 for �-a.e. x 2 X which is equivalentto the requirement P = �.Let us emphasize that the assumption that H(P j�) is �nite involves the requirement P � �.10.8 Finite-dimensional subspaces and conesThroughout Section 10.8 the set of n-dimensional real vectors Rn ; n � 1 is �xed. It is a topo-logical space endowed with Eucledian topology. Given x;y 2 Rn and � 2 R the sum of vectorsx+ y 2 Rn and the scalar multiple � � x 2 Rn are de�ned componentwisely. The symbol 0 de-notes the zero vector which has 0 as all its components. Given A � Rn the symbol �A denotesthe set f�x ;x 2 Ag where �x denotes the scalar multiple (�1) � x. The scalar product of twovectors x = [xi]ni=1 and y = [yi]ni=1 is the number hx;yi =Pni=1 xi � yi.10.8.1 Linear subspacesA set L � Rn is a linear subspace if 0 2 L and L is closed under linear combinations, i.e.8x;y 2 L 8�; � 2 R � � x+ � � y 2 L :Every linear subspace of Rn is a closed set with respect to Eucledian topology. A set A � Rnlinearly generates a subspace L � Rn if every element of L is a linear combination of elementsof A, i.e. 8x 2 L 9B � A �nite such that x =Xy2B�y � y for some �y 2 R; y 2 B:161



By convention 0 is the empty linear combination which means that ; linearly generates thesubspace f0g. A �nite set A � Rn is linearly independent if8�y 2 R; y 2 A Xy2A�y � y = 0 ) [�y = 0 for every y 2 A] :In particular, a set containing 0 is never linearly independent. Linear basis of a subspace L � Rnis any �nite linearly independent set A � L which (linearly) generates L. Every linear subspaceL � Rn has a basis which is possibly empty in case L = f0g. Di�erent bases of L have the samenumber of elements called the dimension of L. The dimension is the number between 0 (forL = f0g) and n (for L = Rn).One says that a subspace L � Rn is a direct sum of subspaces L1; L2 � Rn and writesL = L1 � L2 if L1 \ L2 = f0g, L1 � L, L2 � L and L1 [ L2 generates L. Then every x 2 L canbe written in the form x = y + z where y 2 L1, z 2 L2 and this decomposition of x is unique.Moreover, the dimension of L is the sum of dimensions of L1 and L2. The orthogonal complementof a set A � Rn is the setA? = fx 2 Rn ; hx;yi = 0 for every y 2 Ag :It is always a linear subspace. Moreover, for every linear subspace L � Rn one has Rn = L� L?and L = (L?)?.10.8.2 Convex conesA set K � Rn is a convex cone if 0 2 K and K is closed under conical combinations, i.e.8x;y 2 K 8�; � � 0 � � x+ � � y 2 K :By closed convex cone is understood a convex cone which is a closed set with respect to Euclediantopology on Rn . An example of a closed convex cone is a linear subspace. Another example isthe dual cone A� to a set A � Rn de�ned byA� = fy 2 Rn ; hx;yi � 0 for every x 2 Ag :This is a general example as K � Rn is a closed convex cone i� K = A� for some A � Rn (seeConsequence 1 in [105]). Further example of a closed cone is the conical closure con(B) of anon-empty set ; 6= B � Rn (con(;) = f0g by convention):con(B) = fx 2 Rn ; x =Xz2C�z � z for some �z � 0 and �nite ; 6= C � Bg:Note that, con(B) = B�� for every �nite B � Rn (see Fact 6 and Proposition 1 in [105]). A conecon(B) with �nite B called a polyhedral cone; by a rational polyhedral cone is understood theconical closure of a �nite set of rational vectors B � Qn . Basic fact is that a set K � Rn is apolyhedral cone i� K = A� for a �nite A � Rn . Analogously, K is a rational polyhedral cone i�K = A� for a �nite set of rational vectors A � Qn (see Proposition 5 in [105]). Note that thesefacts can be viewed as consequences (or analogues) of a well-known result from convex analysissaying that polytopes coincide with bounded polyhedrons. Let us call by a face of a polyhedralcone K a convex cone F � K such that 8 x;y 2 K x + y 2 F implies x;y 2 F. Note thatthis is a modi�cation of the usual de�nition of a face of a closed convex set from [12] and thede�nitions coincide for non-empty subsets F of a polyhedral cone K. One can show that a faceof a polyhedral cone is a polyhedral cone (c.f. Consequence 8.4 in [12]).162



A closed cone K � Rn is pointed if K\(�K) = f0g. Apparently stronger equivalent de�nitionsays that a closed cone K is pointed i� there exists y 2 Rn such that hx;yi > 0 for everyx 2 K n f0g (see Proposition 2 in [105]). By a ray generated by non-zero vector 0 6= x 2 Rn isunderstood the set Rx = f� � x ; � � 0g. Clearly, every cone contains whole ray R with any ofits non-zero vectors 0 6= x 2 R which then necessarily generates R. Given a closed convex coneK � Rn a ray R � K is called extreme (in K) if8x;y 2 K x+ y 2 R implies x;y 2 R:A closed cone K has extreme rays i� it is pointed and contains a non-zero vector 0 6= x 2 K.Moreover, every pointed closed convex cone K � Rn is a conical combination of its extremerays, more exactly K = con(B) for every B � K such that M \ (R n f0g) 6= ; for each extremeray R � K. Note that this fact can be viewed as a consequence of well-known Krein-Millmantheorem for bounded closed convex sets (see Proposition 4 in [105]). A pointed closed cone is apolyhedral cone i� it has �nitely many extreme rays. Moreover, it is a rational polyhedral conei� it has �nitely many extreme rays and every its extreme ray is generated by a rational vector(see Consequence 5 in [105]). Basic result of Section 5.2 are based on the following speci�cproperty of pointed rational polyhedral cones.Lemma Let K � Rn be a pointed rational polyhedral cone and R is an extreme ray of K. Thenthere exists q 2 Qn such that hq;xi = 0 for any x 2 R and hq;yi > 0 whenever 0 6= y belongsto other (extreme) ray of K.Another useful fact is that every conical combination of integral vectors is necessarily arational conical combination (see Lemma 10 in [105]).Fact Supposing B � Zn every x 2 con(B) \ Zn has the form x = Py2B �y � y where �y 2 Q ,�y � 0 for every y 2 B.10.9 Concepts from multivariate analysisThe concepts and facts mentioned in this section are commonly used in mathematical statistics,in particular in its special area known as multivariate analysis. The proofs of the facts fromSection 10.9.1 can be found in textbooks of matrix calculus, for example [23], Chapters 1 and2. The proofs of basic facts from Section 10.9.3 are in any reasonable textbook of statistics, seee.g. [3], section V.1.10.9.1 MatricesGiven non-empty �nite sets N;M by a real N �M -matrix will be understood a real function onN �M , that is an element of RN�M . The corresponding values are indicated by subscripts sothat one writes � = (�ij)i2N;j2M to explicate the components of a matrix � of this type. Notethat this approach slightly di�ers from classic understanding of the concept of matrix where theindex sets have settled pre-orderings, e.g. N = f1; 2; : : : ; ng and M = f1; : : : ;mg. This enablesone to write certain formulas involving matrices in much more elegant way.The result of matrix multiplication of an N �M -matrix � and an M �K-matrix � (whereN;M;K are non-empty �nite sets) is an N �K-matrix denoted by � � �. A real vector v overN , that is an element of RN will be here understood as a column vector so that it should appearin matrix multiplication with an N �N -matrix � from left: � �v. Null matrix or vector havingall components zero is denoted by 0; unit matrix by I. An N � N -matrix � = (�ij)i;j2N issymmetric if �ij = �ji for every i; j 2 N ; regular if there exists (uniquely determined) inverse163



N � N -matrix ��1 such that � ���1 = I = ��1 ��. The transpose of � will be denoted by�>, the determinant by det(�).By a generalized inverse of a real N�N -matrix � will be understood any N�N matrix ��such that � ��� �� = �. A matrix of this sort always exists, but it is not determined uniquelyunless � is regular when it coincides with ��1 (see [82], Section 1b.5). However, the expressionsin which generalized inverses are commonly used usually do not depend on their choice.A real symmetric N �N -matrix � is called positive semi-de�nite if v> �� � v � 0 for everyv 2 RN , and positive de�nite if v> �� � v > 0 for every v 2 RN , v 6= 0. Note that � is positivede�nite i� it is regular and positive semi-de�nite. In that case is ��1 positive de�nite as well.Given an N �N -matrix � = (�ij)i;j2N and A;B � N the symbol �A�B will be used to denoteA� B-submatrix , that is �A�B = (�ij)i2A;j2B. Supposing � is positive de�nite (semi-de�nite)and A � N its main submatrix �A�A is positive de�nite (semi-de�nite) as well. Note that theoperation � 7! �A�A plays sometimes the role of 'marginalizing' (but only for positive semi-de�nite matrices). On the other hand, supposing � is only regular, �A�A need not be regular.Suppose that � is a real N �N -matrix, non-empty sets A;C � N are disjoint and �C�C isregular. Then one can introduce Schur complement �AjC as an A�A matrix as follows:�AjC = �A�A ��A�C � (�C�C)�1 ��C�Awith the convention �Aj; � �A�A. Note that �AC�AC is regular i� �AjC (and �C�C) is regularand (�AjC)�1 = ((�AC�AC)�1)A�A then. Moreover, the following 'transitivity principle' holds:supposing A;B;C � N are pairwise disjoint and � is an N � N -matrix such that both �C�Cand �BC�BC is regular one has �AjBC = (�ABjC)AjB. An important fact is that whenever �is positive de�nite then �AjC is positive de�nite as well. Thus, the operation �AC�AC 7! �AjCoften plays the role of 'conditioning' (for positive de�nite matrices only).However, one sometimes needs to de�ne 'conditional' matrix �AjC even in case that �C�Cis not regular. Thus, supposing � is a positive semi-de�nite matrix one can introduce �AjC bymeans of generalized inverse (�C�C)� as follows�AjC = �A�A � �A�C � (�C�C)� ��C�A:Note that this matrix does not depend on the choice of generalized inverse (use [82], Section8a.2(v) ) and that in case of positive de�nite matrix is coincides with the above mentionedSchur complement. Therefore, the concept of 'conditioning' is extended to positive semi-de�nitematrices.10.9.2 Statistical characteristics of probability measuresRemark Elementary concept of mathematical statistics is a random variable which is a realmeasurable function � on a certain (intentionally unspeci�ed) measurable space (
;A) where
 is interpreted as the 'universum' of elementary events and A as the collection of 'observable'random events. Moreover, it is assumed that (
;A) admits a probability measure P . Thenevery random vector , that is a �nite collection of random variables � = [�i]i2N where jN j � 2induces on RN = Qi2N Xi with Xi = R, endowed with the Borel �-algebra BN (= the productof Borel �-algebras on R in this case) a probability measure P called the distribution of �P (A) = P (fw 2 
; �(w) 2 Ag) for every Borel set A � RN :The measurable space (RN ;BN ) is then called the (joint) sample space. Note that 'generalized'random variables taking values in alternative sample spaces (e.g. �nite sets instead of R) aresometimes considered as well. 164



The area of interest of mathematical statistics is not the 'underlying' theoretical probabilityP but the induced probability measure P on the sample space. Indeed, despite the fact that text-books of statistics introduce various numerical characteristics of random vectors, these numbersactually do not characterize random vectors themselves but their distributions, that is inducedBorel probability measures on RN . The purpose of many statistical methods is then simply toestimate these numerical characteristics from data. De�nitions of basic ones are recalled thissection. 4Let P be probability measure on (Qi2N Xi;Qi2N Xi) = (RN ;BN ) where jN j � 2. Let xidenote the i-th component (i 2 N) of a vector x 2 RN . In case that, for every i 2 N , the functionx 7! xi; x 2 RN (which is BN -measurable) is P -integrable one can de�ne the expectation as areal vector e = (ei)i2N 2 RN having componentsei = ZRN xi dP (x) = ZXi y dP fig(y) for i 2 N:If moreover the function x 7! (xi � ei) � (xj � ej) is P -integrable for every i; j 2 N one de�nesthe covariance matrix of P as an N �N -matrix � = (�ij)i;j2N with elements�ij = ZRN (xi � ei) � (xj � ej) dP (x) = ZXi�Xj (y � ei) � (z � ej) dP fi;jg(y; z) for i; j 2 N:Alternative names are 'variance matrix', 'dispersion matrix' [82], or even 'variance-covariancematrix' [124]. Elementary fact is that covariance matrix is always positive semi-de�nite; theconverse is also valid (see the next section).Supposing P has a covariance matrix � = (�ij)i;j2N such that �ii > 0 for every i 2 N one canintroduce the correlation matrix � = (�ij)i;j2N by the formula�ij = �ijp�ii � �jj for i; j 2 N:Note that the situation above occurs whenever � is regular (= positive de�nite) and � is thena positive de�nite matrix with ii = 1 for every i 2 N .10.9.3 Multivariate Gaussian distributionsDe�nition of a general Gaussian measure on RN is not straightforward. First, one has tointroduce one-dimensional Gaussian measure N (r; s) on R with parameters r; s 2 R; s � 0.In case s > 0 one can do so by de�ning Radon-Nikodym derivative with respect to Lebesguemeasure on R f(x) = 1p2�s � exp� (x�r)22s for x 2 R :In case s = 0 is N (r; 0) de�ned as the Borel measure on R concentrated on frg.Then supposing e 2 RN and � is a positive semi-de�nite N � N -matrix (jN j � 1) onecan introduce the Gaussian measure N (e;�) as a Borel measure P on RN such that, for everyv 2 RN , P induces through measurable mapping x 7! x> �v, x 2 RN one-dimensional Gaussianmeasure N (v> � e;v> �� � v) on R. Let us note that a measure of this kind always exists andis determined uniquely by the requirement above. Moreover, P has then the expectation e andthe covariance matrix �. This indicates why parameters were designed in this way and showsthat every positive semi-de�nite matrix is the covariance matrix of a Gaussian measure.165



Linear transformation of a Gaussian measure N (e;�) by a mapping x 7! y+� �x; x 2 RNwhere y 2 RM ; � 2 RM�N ; jM j � 1 is again a Gaussian measure N (y +� � e; � �� ��>). Inparticular, the marginal of a Gaussian measure is again a Gaussian measureP = N (e;�); ; 6= A � N ) PA = N (eA;�A�A) : (10.5)Note that this explains the interpretation of �A�A as a 'marginal' matrix. Very important factis that independence is characterized by means of the covariance matrixP = N (e;�) A;B � N A \B = ; ) [PAB = PA � PB i� �A�B = 0 ] : (10.6)In general, Gaussian measure N (e;�) is concentrated on a certain shifted linear subspace whichcan be described as followsfx 2 RN ; 8v 2 RN v> �� = 0 ) v> � (x� e) = 0 g : (10.7)In case � is regular, the subspace is whole RN and P = N (e;�) can be introduced directly byits Radon-Nikodym derivative with respect to Lebesgue measure on RNf(x) = 1p(2�)jNj�det(�) � exp � (x�e)>���1�(x�e)2 for x 2 RN :This version of Radon-Nikodym derivative is strictly positive and continuous with respect toEucledian topology on RN . Moreover, it is the unique continuous version within the classof all possible versions of Radon-Nikodym derivative of P with respect to Lebesgue measure�. This simple fact motivates an implicit convention used commonly in statistical literature;only continuous versions, called densities are taken into consideration. The convention is inconcordance with usual way of 'marginalizing' since, for ; 6= A � N , by integrating continuousdensity fA(x) = ZXNnA f(x; y) d�(y) for x 2 RA ;one gets a continuous density again. This also motivates a natural way of de�nition of (contin-uous) conditional density for disjoint A;C � N by the formulafAjC(xjz) = fAC(xz)fC(z) for x 2 RA ; z 2 RC ;where the ratio is zero whenever fC(z) = 0 by convention, and the de�nition of conditionalmeasure for every z 2 RCPAjC(Ajz) = ZA fAjC(xjz) d�A(x) for every Borel set A � RA ;which appears to be a regular version of conditional probability on RA given C. Let us emphasizethat just the acceptance of the convention above leads to its 'uniqueness' for every z 2 RC . Itis again a Gaussian measureP = N (e;�); A;C � N; A \ C = ; 6= A )PAjC(�jz) = N (eA +�A�C � (�C�C)�1 � (z � eC) ; �AjC) (10.8)(see [82], Section 8a.2(v) ), called sometimes conditional Gaussian measure. Important featureis that its covariance matrix does not depend on z. This maybe explains the meaning of Schurcomplement �AjC , sometimes called the conditional covariance matrix.166



However, conditioning can be introduced 'uniquely' even in case of degenerate Gaussianmeasure for z 2 RC belonging to respective shifted linear subspace mentioned in (10.7). It isagain a Gaussian measure, given by (10.8) but (�C�C)�1 is replaced by a generalized inverse(�C�C)�. As shown in [82], section 8a.2(v), this conditional measure does not depend on thechoice of generalized inverse.The last important fact is that in case � is positive de�nite the measure P = N (e;�) has�nite relative entropy with respect to Lebesgue measure � on RN , namelyH(P j�) = �jN j2 � ln(2�) � jN j2 � 12 ln(det(�)); (10.9)see [82], section 8a.6 (note that Rao's entropy is nothing but minus relative entropy).
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