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ABSTRACT 

The class of chain graphs (CGs) involving both undirected graphs (=Markov 
networks) and directed acyclic graphs (= Bayesian networks) was introduced in middle 
eighties for description of probabilistic conditional independence structures. Every class 
of Markov equivalent CGs (that is, CGs describing the same conditional independence 
structure) has a natural representative, which is called the largest CG. The paper 
presents a recovery algorithm, which on the basis of the conditional independence 
structure given by a CG (in the form of a dependency model) finds the largest CG 
representing the corresponding class of Markov equivalent CGs. As a by-product a 
graphical characterization of graphs which are the largest CGs (for a class of Markov 
equivalent CGs) is obtained, and a simple algorithm changing every CG into the 
largest CG of the corresponding equivalence class is given. © 1997 Elsevier Science 
Inc. 

K E Y W O R D S :  chain graph, dependency model, Markov equivalence, pattern, 
largest chain graph, recovery algorithm 

1. I N T R O D U C T I O N  

Classical graphical approaches to the description of probabilistic condi- 
tional independence structures use either undirected graphs (UGs), also 
called Markov networks, or directed acyclic graphs (DAGs),  known as 
Bayesian networks or (probabilistic) influence diagrams. In middle eighties 
Lauritzen and Wermuth  [12] introduced the class of chain graphs (CGs), 
which includes both UGs  and DAGs,  but not only them. In CGs both 
undirected edges, called lines, and directed edges, called arrows, are 
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simultaneously allowed, but directed cycles are for forbidden (nevertheless, 
undirected cycles are allowed). To establish semantics for CGs, Lauritzen 
[14], followed by Frydenberg [7], generalized the so-called moralization 
criterion for DAGs from [15] for reading independencies from a CG. It is 
an indirect criterion consisting of three steps: restricting the CG to a 
certain set of nodes, transforming it properly to an UG (called the moral 
graph), and using the separation criterion for UGs with respect to the 
moral graph. An equivalent c-separation criterion, testing trails in the 
original CG directly, was proposed in [3]. It generalizes the well-known 
d-separation criterion for DAGs introduced by Pearl [17]. The separation 
criterion for CGs helped lately to confirm Lauritzen's and Frydenberg's 
conjecture [14, 7] that for every CG there exists a probability distribution 
which exhibits exactly those independencies which can be read from the 
graph according to the moralization criterion. This generalizes analogous 
results for UGs [8, 10] and DAGs [9]. 

Several recent works show that CGs are attracting the attention of 
researchers. Whittaker [23] gave several examples of the use of CGs; Cox 
and Wermuth [6] considered a wider class of chain graphs having two 
further types of edges, namely "dashed lines" and "dashed arrows". 
Andersson, Madigan, and Perlman [1] used special CGs, called essential 
graphs, to represent uniquely classes of Markov equivalent DAGs and 
characterized the essential graphs in graphical terms. Meek [16] followed 
the method of [22] and proposed an algorithm which on basis of the 
conditional independence structure given by a DAG finds the above- 
mentioned essential graph. Buntine [4] gave an equivalent definition of a 
CG as a hierarchical combination of Markov and Bayesian networks. 

In case of UGs, the conditional independence structure given by an' UG 
uniquely determines the graph. This is not true in case of DAGs, where 
different DAGs can describe the same conditional independence structure 
(then we say that the DAGs are Markov equivalent). The same situation 
occurs in the case of CGs. Frydenberg [7] characterized Markov equivalent 
CGs in graphical terms, namely as CGs having the same underlying graph 
and the same occurrences of (minimal) complexes. This result generalizes 
an analogous characterization of Markov equivalence for DAGs from [21]. 
Unlike the case of DAGs, where the class of Markov equivalent DAGs has 
no distinguished member, every class of Markov equivalent CGs can be 
naturally represented by a special CG within the class. Frydenberg [7] 
showed that every class of Markov equivalent CGs has a CG with the 
greatest number of lines (or dually with the lease number of arrows). This 
graph is called the largest C G  of the corresponding class of Markov 
equivalent CGs. Note for explanation that the essential graph of a class of 
Markov equivalent DAGs does not coincide in general with the largest CG 
of the corresponding class of Markov equivalent CGs. 
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This paper describes a recovery algorithm which, on the basis of the 
conditional independence structure given by an unknown CG, finds the 
largest CG of the corresponding class of Markov equivalent CGs. Like 
analogous procedures from [22] and [16] for finding the essential graph of a 
class of Markov equivalent DAGs, the presented recovery algorithm has 
two stages. First, on the basis of special "elementary" statements obtained 
from the dependency model, one identifies the edges of the underlying 
graph and the occurrences of complexes, and forms the so-called pattern 
of the equivalence class. It is a special graph, having the required underly- 
ing graph and only arrows produced by the complexes (the other edges are 
lines). According to the above-mentioned Frydenberg's characterization of 
Markov equivalence [7], this pattern uniquely determines the class of 
Markov equivalent CGs. However, the pattern is not a CG in general, and 
some of its lines have to be changed into arrows to obtain the correspond- 
ing largest CG. This is done in the second stage of the recovery algorithm 
by repeated application of three special rules. 

Moreover, the graphs which are the largest CGs of classes of Markov 
equivalent CGs are characterized in graphical terms. In fact, a simple 
algorithm which on the basis of a CG finds the corresponding largest CG is 
presented. It applies a so-called pool-component rule to the given CG, and 
a CG coincides with the corresponding largest CG iff this rule cannot be 
applied, or equivalently, iff the given CG has maximal connectivity compo- 
nents in certain sense. 

The structure of the paper is as follows. In the second section basic 
definitions and important results are recalled. The third section describes 
the first stage of the recovery algorithm, namely how the above-mentioned 
pattern of the class of Markov equivalent CGs can be obtained on the 
basis of the conditional independence structure given by a CG. It is shown 
that the presented algorithm really yields the desired pattern. The fourth 
section deals with the second stage of the recovery algorithm. Three basic 
rules, namely the transitivity rule, the necessity rule, and the double-cycle. 
rule, for changing the pattern into the corresponding largest CG are 
formulated, and the proof of completeness of those rules is given (that is, 
the proof that their application really yields the largest CG). A formal 
strengthening of the basic rules is also discussed in a subsection of the 
fourth section. The fifth section describes the pool-component rule for 
obtaining the largest CG of a class of Markov equivalent CGs directly 
from a member of the class. As a consequence of the preceding results a 
characterization of largest CGs is obtained. In the last (sixth) section, 
named Conclusions, a few remarks on presented results are given. 

Note that several results of this paper were already formulated in the 
conference contribution [19], but the proof of the main result was omitted 
there owing to space limitation. 
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2. BASIC CONCEPTS 

2.1. Graphs 

A hybrid graph G over a nonempty  finite set of  nodes N is specified by a 
set o f  two-e lement  subsets of  N,  called edges, where every edge {u, v} is 
ei ther  a line ( = u n d i r e c t e d  edge), deno ted  by u - - v  or  v -  u, or  an 
arrow (=  directed edge) f rom u to v, deno ted  by u ~ v or  v (--- u, or  an 
arrow f rom v to u, deno ted  by u ~- v or  v ~ u. An  undirected graph (UG)  
is a graph  containing only lines; a directed graph is a graph  containing only 
arrows. The  underlying graph of  G is obta ined f rom G by changing all 
edges of  G into lines. The  induced subgraph of  G on a nonempty  set 
T c N,  deno ted  by G v, is the graph  over T which has exactly those edges 
in G which are subsets o f  T. Connectivity components of  G are obta ined by 
removing all arrows in G and taking the connectivity componen t s  o f  the 
remaining undi rec ted  graph. 

A route in G is a sequence o f  its nodes  v 1 . . . . .  v~, k > 1, such that  
{vi, vi+ 1} is an edge in G for  every i = 1 . . . . .  k - 1. It is called a path if it 
consists of  distinct nodes. It  is called a pseudocycle if v 1 = v~, and a cycle 
if moreove r  k > 4 and vl . . . . .  v k_ ~ are distinct. A cycle v~ . . . . .  v~, k > 4, 
is called a chordless cycle in G if there is no o ther  edge in G between 
nodes  {v~ , . . . , v~_  1} except the men t ioned  edges of  the cycle. Such an 
addit ional edge is called a chord of  the cycle. A (pseudo)cycle is undirected 
if it consists of  lines only. A (pseudo)cycle is directed if v i ~ vi+~ or  
v i - v i +  1 for i =  1 . . . . .  k - 1 ,  and v j - -*vj+  1 for  at least one  j 
{1 . . . . .  k - 1}. A directed acyclic graph ( D A G )  is a directed graph without  
directed cycles. 

A complex in G is a special induced subgraph of  G, namely a path 
v~ . . . . .  v~, k _> 3, such that  Vl ---.-) 132, u i - -  Vi+ 1 for i = 2 . . . . .  k - 2, 
vk- i  ~ vk in G, and no addit ional  edges between nodes  of  {v~, . . . ,  vk} 
exist in G. The  nodes  v I and v k are called the parents of the complex, the 
set {v 2 . . . . .  vk 1} the region of  the complex, and the number  k - 2 the 
degree of  the complex. The  set of  parents  o f  a complex K will be denoted  
by par(K). No te  that  the concept  of  complex is equivalent  to Frydenberg ' s  
not ion of  "minimal  complex"  [7]. I decided to simplify the terminology 
because  I believe that  "nonmin imal  complexes"  have no reasonable  use. 

Having nodes  u , v  with u ~ v in G, u is called a parent of  v and v a 
child of  u. In case u - -  v they are siblings. Supposing A is a set of  nodes  
o f  G, the set o f  parents  [children] o f  nodes  in A will be deno ted  by 
p a G ( A )  [chG(A)]. The  boundary  of  A,  deno ted  by bdG(A),  is the set of  
parents  and siblings o f  nodes  in A which are not  in A.  The  symbol of  the 
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graph  G is omi t ted  when it is clear f rom context; a singleton {u} will be 
of ten deno ted  by the symbol of  the cor responding  node  u. 

A route  v 1 . . . . .  vk ,  k > 1, is d e s c e n d i n g  if v i ~ vi+ 1 or  v i - -  Ui+ 1 for  
1 < i < k - 1. In  particular,  an undirec ted  path is considered to be a 
descending path. A n o t h e r  special descending path  is a sl ide,  that  is, a pa th  
v 1 . . . . .  v k, k >_ 2, such that v I ---> v 2 and v i - -  vi+ 1 for  i = 2 . . . . .  k - 1. I f  
there exists a descending path  f rom a node  u to a node  v, then u is an 
a n c e s t o r  of  v, or  dually v is a d e s c e n d a n t  of  u. Having a set of  nodes  
A c N, its ances t ra l  set ,  deno ted  by a n t ( A ) ,  is the set of  all ancestors o f  
nodes  in A (it contains A).  

A c h a i n  for  a hybrid graph G over  N is a part i t ion of  N into o rdered  
disjoint (nonempty)  subsets B 1 . . . . .  a n ,  n > 1, called blocks ,  such that  if 
{u,v} is an edge with u , v  ~ B i then u - -  v, and if {u,v} is an edge with 
u ~ B i, v ~ Bj ,  i < j ,  then u ~ v. The  original definition o f  C G  (which 
also explains the terminology) is the following one. 

DEFINITION 2.1 A chain graph (CG) is a h y b r i d  graph  w h i c h  a d m i t s  a 

cha in .  

However ,  there  are several equivalent  definitions o f  C G  ment ioned  in 
the following lemma.  They  imply that  CGs  include both  U G s  and DAGs .  

LEMMA 2.1 The f o l l o w i n g  c o n d i t i o n s  are e q u i v a l e n t  f o r  a hybr id  g raph  G: 

(i) G is a c h a i n  graph ,  

(ii) G h a s  n o  d i rec ted  p s e u d o c y c l e s ,  

(iii) G h a s  n o  d i rec ted  cycles,  

(iv) G h a s  n o  d i rec ted  chord less  cycles,  

(v) the  se t  o f  connec t i v i t y  c o m p o n e n t s  o f  G can  be  ordered  to f o r m  a 

cha in .  

Proof  To verify (i) ~ (ii) by contradict ion let us consider  a directed 
pseudocycle  v 1 . . . . .  Uk, k > 4, in a C G  G. Let  us take the last block B r of  
a chain B 1 . . . . .  B n which is hit by a node  v i of  the pseudocycle  (i.e. 
v i ~ Br).  As B r is the last hit block, the possibility v i ~ vi÷ 1 is excluded. 
Therefore  v i - -  v i+ 1 and v i+ l ~ Br" By repet i t ion of  this considerat ion we 
show that  all nodes  of  the pseudocycle  belong to B r (recall that  vk = Vl), 
which contradicts  the assumpt ion that  the pseudocycle  contains at least 
o n e  a r r o w .  

To show (ii) ,=, (iii) it suffices to realize that  a directed cycle can be 
made  f rom a directed pseudocycle  by successive removal  of  its parts  
between two different occurrences  of  the same node.  

A similar principle holds for  the p roo f  of  (iii) ¢~ (iv). If  a directed cycle 
V 1 . . . . .  Vk, k >_ 4, has a chord  {Vi, Vj} in G, 1 _< i, j _< k - 1, 2 _< j - i _< 
k - 3, then ei ther  v I . . . . .  v i, vj . . . .  , v k or v i . . . .  , vy, v i is a directed cycle in 
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G, and one obtains a chordless directed cycle by successive removal of 
chords. 

The implication (ii) ~ (v) can be proved by induction on the number of 
connectivity components of G. Supposing G satisfies (ii), the first observa- 
tion is that there is no arrow between nodes of the same connectivity 
component  of G, as otherwise the arrow together with an undirected path 
connecting the nodes would form a directed pseudocycle. Thus, the claim 
is evident if G has just one component.  The second observation is that 
there exist a component  C of G with chc (C)  = Q3. Indeed, otherwise one 
could construct a never-ending descending path owing to the fact that 
every component  has a child. Owing to (ii), that path would never return to 
the same component,  which contradicts the assumption that G has finitely 
many nodes. Let us take a component  C of G with chc (C)  = 0 .  Then the 
induced subgraph GN\ c also satisfies (ii) and has the same components as 
G with the exception of C. Moreover,  all arrows entering C are directed 
into nodes of C; and C can be added as the last block to a chain of 
connectivity components of GN\ c. 

The implication (v) ~ (i) is trivial. • 

A connectivity component  C of a CG G is called terminal if chc (C)  = Q. 
Lemma 2.1(v) implies that every CG has at least one terminal connectivity 
component,  namely the last block of a chain of components. Note that one 
CG may admit several chains, but every block of a chain is a union of 
connectivity components of the graph. Thus, chains made of connectivity 
components cannot be refined. 

Supposing C is a connectivity component  of a CG G, the symbol .7{(C) 
will denote the class of complexes in G having their region in C. 

2.2. Dependency Models and Markov Properties 

Supposing N is a nonempty finite set of variables, let us denote by T(N)  
the class of triplets (X ,  Y I Z )  of disjoint subsets of N whose first two 
components X and Y are nonempty. These triplets will describe particular 
conditional (in)dependency statements. A dependency model over N is a 
decomposition of T(N)  into two parts, namely the independence part and 
the complementary dependence part. Let's write I M ( X, Y I Z}  if a triplet 
{ X, Y I Z )  belongs to the independence part of a dependency model M, 
and otherwise write D M (X ,  Y IZ  ). Conditional independence structures 
over N will be described by dependency models over N. 

A probability distribution over N is specified by a collection of nonempty 
finite sets {Xi; i ~ N} and by a function P : Fli~ N Xi ~ [0, 1] with E{P(x); 
x E F I i ~  NXi} = 1. If P ( x ) > 0  for all x ~ I q i ~  NXi,  then P is called 
strictly positive. Whenever O ~ X c N and P is a probability distribution 
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over N, its marginal distribution on X is a probability distribution pX (over 
X)  defined as follows (pN _ p): 

pX(x) = ~ ( P ( x , y ) ; y ~  r I  Xi/ for x ~  I-I x i .  
i ~ N \ X  ! i ~ X  

Having (X ,  Y I Z )  ~ T ( N )  and a probability distribution P over N, we 
will say that X is conditionally independent of Y given Z with respect to P 
and write X ~- Y I Z (P)  if 

VXE H Xi,yE H Xi, z (= H Xi, 
i ~ X  i ~ Y  i ~ Z  

pX u Y U Z(x ,y ,z)  "PZ(z) = pX U Z(x , z ) . P Y u z ( y , z ) ,  

where we accept the convention P~  (-)  = 1. 
The dependency model induced by a probability distribution P over N 

has its independence part specified as the collection of all triples (X,  Y I 
Z}  ~ T ( N )  such that X ~ Y I Z (P). Thus, the dependency model induced 
by a probability distribution P describes the probabilistic conditional 
independence structure of P. 

Supposing G is a CG, its moral graph is obtained in two steps. First, the 
parents of every complex in G are joined by an edge. Second, the 
underlying graph of the resulting graph is taken. Frydenberg [7] gave 
another equivalent definition, namely to join the parents of every connec- 
tivity component of G which are not joined, and then to "forget" the 
orientations. 

A triplet (X ,  Y I Z }  ~ T ( N )  is represented in a CG G according to the 
moralization criterion if every path in the moral graph of GantX u Y u z) from 
a node of X to a node of Y contains a node of Z. Thus, the moralization 
criterion taken from [14, 7] has three steps: first, to take the induced 
subgraph of G on the corresponding ancestral set a n c ( X  U Y u Z); 
second, to find the moral graph of the induced subgraph; third, to apply 
the classical separation criterion for UGs to the moral graph. Note that in 
[3] we have introduced a direct separation criterion for CGs, which 
generalizes the concept of d-separation for DAGs from [17]. This 
c-separation criterion tests directly trails in the original CG whether they 
are blocked by a set of nodes. Nevertheless, we have proved in [18] 
(Consequence 4.1) that the moralization criterion and the separation 
criterion for CGs are equivalent. 

The dependency model induced by a CG G has its independence part 
specified as the class of triplets represented in G according to the moral- 
ization criterion. 

A probability distribution P over N is Markovian w.r.t, a CG G over N 
if every triplet from T ( N )  represented in G belongs to the independence 
part of the dependency model induced by P. The use of CGs for descrip- 
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tion of probabilistic conditional independence structures is justified by the 
following result proved in [18, Theorem 7.2] by essential use of the 
c-separation criterion. 

THEOREM 2.1 For every CG G over N there exists a strictly positive 
probability distribution P over N such that the dependency models induced 
by G and P coincide. 

Two chain graphs G and H over N are Markov equivalent if their 
classes of Markovian distributions coincide. Frydenberg [7, Property 5.6] 
gave the following characterization of Markov equivalence which general- 
izes an analogous result for DAGs from [21]. 

THEOREM 2.2 Two CGs are Markov equivalent iff they have the same 
underlying graph and complexes. 

Supposing G and H are CGs over the same set of variables with the 
same underlying graph, we say that G is larger than H if every arrow of G 
is an arrow in H with the same orientation. Note that Frydenberg [7] 
defined the relation "larger" for every pair of CGs, and I use only a 
restricted definition here. The following theorem reformulates a little bit a 
further result from [7, Proposition 5.7]. 

THEOREM 2.3 For every CG G there exists a Markov equivalent CG G~ 
which is larger than every CG which is Markov equivalent to G. 

DEFINITION 2.2 The graph G~ from the previous theorem is called the 
largest CG of the class of  CGs which are Markov equivalent to G (or 
briefly, the largest CG corresponding to G). 

It is evident that the largest CG of every class of Markov equivalent CGs 
is uniquely determined. 

3. THE FIRST STAGE: THE PATrERN 

3.1. Description of  the Pattern Recovery 

The first step of the recovery algorithm is to obtain so-called pattern of 
the corresponding class of Markov equivalent CGs on the basis of the 
dependency model induced by a CG. 

DEFINITION 3.1 An arrow in a CG G is called a complex arrow in G if it 
belongs to a complex in G. The pattern of the class of  CGs which are 
Markov equivalent to G (or briefly the pattern corresponding to G), denoted 
by G o, is a hybrid graph obtained from the underlying graph of G by 
directing all edges which are complex arrows in G (with the same orienta- 
tion). 
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On can derive from Theorem 2.2 that two CGs are Markov equivalent 
iff they have the same pattern. However, the pattern may not be a CG, as 
the following example shows. 

EXAMPLE 3.1 To illustrate the concept of pattern, let us consider the 
D AG G in Figure 1(i). It has only one complex: a --* d ~ c. The corre- 
sponding pattern is in Figure l(ii). 

To reconstruct the pattern corresponding to a CG from its induced 
dependency model the following notation is suitable. 

DEFINITION 3.2 Let M be a dependency model over N, and u, v, w ~ N 
be distinct. The symbol DM(u ,  v l - )  will be used to replace an entire 
collection o f  statements, namely D M ( u, v I Z )  for all Z c N \ {u, v}. Simi- 
larly, DM(u ,  v l + w )  will replace D M ( u , v  I Z )  for all Z c N \ { u , v }  
with w ~ Z. 

The algorithm presented here produces a sequence of hybrid graphs 
Ho,H 1 . . . .  with the same underlying graph as G, such that H i has all 
complexes in G of degree at most i. 

PATFERN RECOVERY ALGORITHM Let M be the dependency model 
induced by an (unknown) CG G over N. 

(i) The starting iteration is an undirected graph H 0 over N defined by 
the following rule: u - - v  in H 0 iff DM(U, v l - ) .  

(ii) For  l = 1 . . . . .  card N - 2 the iteration H t is made from H t_l by 
possible directing of some lines of Hz_ 1. Namely, in every situation 
when some sequence of distinct nodes w I . . . . .  wt+ 2 exists such that 
• W 1 - - )  W 2 or w 1 - -  w 2 in H t_ 1, 

• W I +  1 ~'- W I +  2 o r  W l +  1 - -  W l +  2 in H t 1, 

• w i - - w i + l  in H t_l f o r i = 2  . . . . .  l, 
• no other edge exists in lit_ 1 among {w 1 . . . . .  wt+2}, 
• D M ( W l ,  WI+2 I +W2) ,  and 
• DM(Wl ,WI+2 I +WI+I)  , 

(i)b a 

(ii) C ~ d d  c b /o 

e O  e O  

Figure 1, Example of a DAG and its pattern. 
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one has w I ~ w 2 and wt+ 1 ~ wl+ 2 in H l (note that these edges 
may possibly be directed already in H l 1). All other edges of  H l 
keep their type and orientation from H l_ 1- 

The following result justifies the algorithm; its proof  is the topic of the 
rest of  this section. 

THEOREM 3.1 The last iteration of  the pattern recovery algorithm is just 
the pattern corresponding to the considered (unknown) CG G. 

3.2 Several Lemmas 

LEMMA 3.1 Let G be a C G  over N; M the dependency model induced by 
G; and u ,v  ~ N distinct such that {u,v} is not an edge in G. Then 
IM<U,V I bdG(U) U bdG(V)). 

Proof  Let us apply the moralization criterion to <u, v l T } ,  where 
T = bda (u )  u bdG(V). Evidently ana({U, v} U T)  = ana({U, v}) and one 
should consider the induced subgraph H = Gan((,,vi ). Let us verify by 
contradiction that either chH(u) or chr/(v)  is empty. Indeed, if u --+ t in H 
for some t, then owing to t ~ ana({U, v}) there exists a descending path in 
G from t to {u, v}. It has to lead to v, as otherwise a directed cycle in G 
exis t s - -see  Lemma  2.1(iii). Similarly, v -+ s in H for some s implies that 
there is a descending path in G from s to u. Thus, if both u --+ t and 
v ~ s, then u ~ t -.. v ~ s ... u is a directed pseudocycle in G, which 
contradicts Lemma  2.1. Therefore,  one can suppose without loss of gener- 
ality that chH(u) = Q. This implies that no edge leading to u is added 
when the moral  graph of H is made,  and u has bdG(U) as the set of its 
neighbors in the moral graph. Thus, T interrupts every path between u 
and v in the moral graph of H. • 

LEMMA 3.2 Let G be a CG over N; M the dependency model induced by 
G; and u, v ~ N distinct. Then {u,v} is an edge in G iff DM(U, V t - } .  

Proof  Supposing {u, v} is an edge in G, for every Z c N \ {u, v} the 
edge {u, v} occurs in the moral  graph of Gan({u,v} v z )  and (u,  v l Z )  is not 
represented in G according to the moralization criterion. Thus, the neces- 
sity of the condition DM<U, V l - )  is verified; the sufficiency follows 
directly from Lemma  3.1. • 

LEMMA 3.3 Let G be a CG over N, and M the dependency model induced 
by G. Suppose that u, v, w ~ N are distinct nodes of  N such that {u, w}, 
{v, w} are edges in G and {u, v} is not an edge in G. Then u ~ w ~ v is a 
complexin G iff DM<u,v I +w}.  

Proof  Supposing u ~ w  ~ - v  in G and w ~ Z c N \ { u , v } ,  the 
moral graph of Gan(~,,v~uz ) contains the edge {u,v}. Hence,  necessarily 
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D M (u ,  v [ + w) .  F o r  sufficiency one  can suppos e  by con t r ad i c t i on  tha t  the  
i nduced  subg raph  on  {u, w, v} is no t  a comp lex  in G. T h e n  w ~ bdG(U) u 
bdG(V), and  L e m m a  3.1 leads  to con t rad ic t ion .  • 

LEMMA 3.4 L e t  G be a C G  over  N ,  and  M the dependency  m o d e l  i nduced  

by G.  Suppose  that  w I . . . . .  Wk, k >_ 4, is a sequence  o f  dist inct  nodes  where  

• {wi, wi+ 1} i s a n e d g e i n  G f o r i  = 1 . . . . .  k - 1, 

• no  other  edge exists in G a m o n g  {w 1 . . . . .  Wk}, 

• Wi, Wi+l . . . . .  Wj is no t  a c o m p l e x  in G whenever  1 < i <_ j < k ,  2 <_ 

j - i < k - 1 .  

Then  w I ~ w e . . . . .  w k - 1 ~-- W k is a c o m p l e x  in G i f f  

[DM(WI,W k I "}-W2)• DM(WI,W k I +Wk_l)]- 

P r o o f  T h e  necess i ty  o f  D M ( W l , W  k I + w 2 ) :  if w 2 E Z c N \  {Wl,Wk},  

then  the  complex  w ~ - ~  w 2 w~_ 1 ~ wk occurs  in the  induced  
subgraph  o f  G on anG({Wl,W k} tO Z )  and  the  edge  {W1,Wk} Occurs in 
the  c o r r e s p o n d i n g  m o r a l  g raph .  The  necess i ty  of  D g ( w  1, w k I + W k _  1 ) is 
ana logous .  

To show the sufficiency o f  the  cond i t ions  let  us verify first by con-  
t r ad ic t ion  tha t  w I ~ w 2 in G. I ndeed ,  o therwise  w 2 ~ bdG(W 1) and  
one  can use L e m m a  3.1 for  u = w 1, v = w k to ge t  con t r ad i c t i on  with 

DM(W1,W k I +W2) .  Similar ly,  DM(WI,W k I "~-Wk-l~ impl ies  wk_ 1 ~ w k in 
G. Suppos ing  tha t  wj_ 1 ~ wi in G for  some  3 < j < k - 1 let  us cons ide r  
the  min ima l  such j and  find max imal  1 < i < j - 2 with w i ~ wi+ 1 in G.  
T h e n  w i ---, w i+1 w~ 1 ~ wj is a complex  in G wha t  con t rad ic t s  
the  assumpt ion .  Thus ,  no such j exists. Similarly,  no  2 < i < k - 2 with 

w i ~ wi+ 1 in G exists and  w r - -  Wr+ 1 for  r = 2 . . . . .  k - 1. • 

A gene ra l  sufficient cond i t ion  for  exis tence  of  a complex  arrow,  which 
will be  u t i l ized in sequel ,  is given by the  fol lowing l emma.  

LEMMA 3.5 L e t  L be a C G  over  N ,  and  w I . . . . .  w k, k > 3, a sequence  o f  
nodes  in L (poss ib ly  no t  dis t inct)  such  that  

(i) W 1 ~ Wk, 
(ii) w I ~ w  2 a n d w  k _ l  ~ w k  i n L ,  

(iii) f o r  all i =  2 . . . . .  k -  2 e i t h e r w  i ~ w  i+l o r w  i - w  i+1 in L ,  
(iv) there is no  edge in L be tween w k a n d  {wi; 1 < i < k - 2}. 

Then there exists a c o m p l e x  in L conta in ing  w k ~ w k_ 1 c o m p o s e d  o f  nodes  

{wi; 1 < i < k}. 

P r o o f  Cond i t i ons  ( i ) - ( iv )  imply  tha t  w k is d is t inct  f rom the  o t h e r  
nodes .  Similarly,  (i) and  (ii), (iii) imply  tha t  w 1 is d is t inct  f rom the  o t h e r  
nodes  (o therwise  a d i r ec t ed  pseudocyc le  in L exists). T h e  rou te  w I . . . . .  w k 
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can be shor tened  to consist  of distinct nodes  by removing those of its parts  
be tween  different  occurrences  of the same node  [condit ions ( i )-( iv)  are 
preserved by that change]. 

Fu r the r  possible modif icat ions of w 1 . . . . .  w k will ensure  that  for every 
i = 1 . . . .  , k - 2 there is no  edge in L be tween  w i and {Wr; i + 2 <_ r < k} .  

Indeed,  as concerns  Wl, take maximal  2 < l < k such that  {w 1, wt} is an 
edge in L. By (iv) l < k, and  by (ii) and (iii) (as L is a CG)  w I ---> w l in L. 
Thus,  the path w I . . . . .  w k can be shor tened  by possibly replacing the 
section w 1 , . . . ,  w t by this single arrow w 1 --+ w l and by  a na tura l  change of 
no ta t ion  (wl = W l  and w i = w l - 2 + i  for i = 2  . . . . .  k = k - l + 2 ) .  This 
ensures  that  condi t ions  ( i )-( iv)  will be preserved. Then ,  an analogous  
cons idera t ion  can be made  for w 2 (already in the modified path)  with the 
only difference that  one  has ei ther  w 2 ~ w  t or w 2 - w  t in L for the 
cor responding  wt, 3 < l < k. The  result  of the series of modif icat ions is a 
path  w 1 . . . . .  w k, k > 3, satisfying ( i i)-( i i i )  such that no other  edges among  
(w 1 . . . . .  w k} in L exist. Take  the maximal  1 < s < k - 2 with w s ~ % + 1 .  

T h e n  w s ~ %+ ~ wk- 1 *-- wk is a complex in L. • 

3.3. Proof of Correctness of Pattern Recovery 

In  this subsect ion the proof  of T h e o r e m  3.1 is given. 
By L e m m a  3.2 H 0 has the same under ly ing  graph as G, and hence  every 

Hi has the same under ly ing  graph as G. Let us verify by induc t ion  on  
l = 1 . . . . .  card N - 2 the following two condit ions:  

(a) u ~ w in H t implies u ---> w in Go; 
(b) every complex in G of degree at most  l is also a complex in H t. 

To verify (a) for HI,  realize that  u ---, w in H 1 implies the existence of a 
third node  v with u - -  w - -  v in H0, -~(u - -  v) in H 0, and  D M ( u , v  I 

+ w ) .  Hence  {u, w}, {v, w} are edges in G while {u, v} is not  an edge in G, 
and  by L e m m a  3.3 (sufficiency) u ~ w <--- v is a complex in G, which says 

u ~ w in Go. 
To  verify (b) for H 1 suppose that  u ~ w ~ v is a complex in G and  by 

L e m m a  3.3 (necessity) derive D M(u,  v l + w ) .  Moreover ,  evidently u - -  
w - -  v in /40, {u, v} is no t  an edge in H0, and  thus, by the cons t ruct ion  of 
H l , u - - + w ~ v  is a complex in H 1. 

Supposing (a), (b) hold f o r / 4  t_ 1, l > 2, let us verify (a) for H t. If u ---> w 
in H I, then  e i ther  u --* w in H t_ 1 and one  can use the induc t ion  assump- 
tion, or, by the cons t ruct ion  of H t, u - - w  in / / l_  1 and  there exists a 
sequence  of nodes  w 1 , . . . , W l + 2 ,  where w I = u, w 2 = w, such that the 
collect ion of condi t ions  from i tem (ii) of the algori thm is satisfied. As H l_ 1 
has the same under ly ing  graph as G, the first two assumpt ions  of L e m m a  
3.4 for k = l + 2 are fulfilled. The  third assumpt ion  of L e m m a  3.4 then  
follows from condi t ion  (b) for H t 1- Thus,  by L e m m a  3.4 (sufficiency), 
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W 1 "'> W 2 WI+ 1 ~--Wl+ 2 is a complex  in G,  which impl ies  u = 

w 1 ~ w 2 = w in G 0. 
Suppos ing  (a), (b) ho ld  for  H l 1, l > 2, and  (a) holds  for  H l, let  us verify 

(b) for  H l. Let  w 1 ~ w e . . . . .  Ws+ 1 ~ Ws+ 2, s < l, be a complex  in G. 
The  first obse rva t ion  is that  w r - -  wr+ 1 in H t for  r = 2 , . . . ,  s. Indeed ,  

one  can suppose  by con t rad ic t ion ,  for  instance,  wr *-- Wr+ 1 in H l for  some  
2 < r < s; then  by (a) for  H t, w r ~ Wr+ 1 in G o and the re fo re  in G,  which 
con t rad ic t s  the  assumpt ion .  S imi la r  con t r ad i c t i on  can be  o b t a i n e d  if w~ 
w~+~ in H t for  some  2 < r < s. 

Second ,  if 1 _< s < l, then  w I ~ w 2 . . . . .  ws+ 1 <--- ws+ 2 is a complex  
in H t 1 by (b) for  H t_ 1, which is saved in H t by the  p rev ious  observa t ion .  

Thi rd ,  if s = l, t hen  one  der ives  by using (a) for  H t_ 1 tha t  w~ - -  Wr+ 1 in 
Ht 1 for  r = 2  . . . . .  l , w  1 ~ w  2 or  w 1 - w  2 in H l _ l ,  a n d w l +  1 ~ w t +  2 or  
wl+ 1 - - w t +  2 in H t _  ~. Eviden t ly  no o t h e r  edge  exists in Ht_ 1 a m o n g  
{wl . . . . .  wt + 2}, and  L e m m a  3.4 (necessi ty)  says D M (Wl,  wt + 2 I -1- W 2 ) and 
D M ( w l ,  wt+ 2 I + WZ+I). In short ,  the  co l lec t ion  of  condi t ions  f rom the  i tem 
(ii) o f  the  p a t t e r n  recovery  a lgor i thm is satisfied, and,  by the  cons t ruc t ion  
o f  H t, w 1 ---> w 2 and  wt+ 1 ~ wt+ 2 in /4l, and  hence ,  by the  f i r s t -ment ioned  
observa t ion ,  w~ ---> w 2 wt+ 1 ~ w~+ 2 is a complex  in /41. 

Thus,  the  last  i t e ra t ion  H ,  of  the  a lgor i thm has the  same  under ly ing  
g raph  as G,  and,  by (a) for  H , ,  u ~ v  in H ,  impl ies  u ~ v  in G o . 
Converse ly ,  the  fact  u ~ v in G o iml~lies tha t  t he re  exists a complex  in G 
which conta ins  u ~ v, which impl ies  by (b) for  H ,  that  the re  is a complex  
in H ,  con ta in ing  u ~ v and t h e r e f o r e  u ~ v in H , .  Thus,  u --, v in H ,  
i f f u  ~ v i n G  O and  hence  H ,  = G  O . • 

4. T H E  S E C O N D  STAGE:  L A R G E S T  C H A I N  G R A P H  

4.1. Description of the LCG Recovery Algorithm 

T h e  p a t t e r n  G o of  the  cons ide red  class o f  M a r k o v  equiva len t  CGs ,  
o b t a i n e d  in the  p reced ing  sect ion,  should  be  changed  into the  co r r e spond-  
ing larges t  C G  G~. This  is done  by the largest c h a i n  g r a p h  recovery  

a l g o r i t h m ,  or  L C G  recovery  a lgor i thm for short .  

4.1.1. EXTENDED HYBRID GRAPH I t e ra t ions  of  the  p r e s e n t e d  a lgor i thm 
are  not  m e r e  hybr id  graphs ,  but  e x t e n d e d  hybr i d  graphs ,  some  l ines o f  which 
have " f o r b i d d e n "  po ten t i a l  o r i en t a t i ons  (by which we u n d e r s t a n d  or ien ta -  
t ions in fu ture  i t e ra t ions  and  t h e r e f o r e  in G=). Le t  us wr i te  ~ {u <- v}= to 
d e n o t e  that  a l ine u - -  v has  the  o r i en t a t i on  u <--- v fo rb idden .  In  p ic tures ,  
the  fact  -7 {u ~ v}= will be  d e p i c t e d  by a shor t  th ick  p e r p e n d i c u l a r  l ine 
crossing the  l ine u - -  v n e a r  the  node  u. A descend ing  rou te  w 1 . . . . .  w~, 
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k > 2, in such an extended hybrid graph  G will be called s t e a d y  if 
-"l{W i ~-- Wi+l}:~ in G whenever  w i - -  wi+ 1 in G for all i = 1 , . . . , k  - 1. 

DEFINITION 4.1 L e t  H be  a n  e x t e n d e d  hybr id  g raph  o v e r  N ,  a n d  K be  a 

h y b r i d  g raph  o v e r  N .  W e  say  t h a t  H is a m a p  o f  K i f  the  f o l l o w i n g  c o n d i t i o n s  

h o M :  

(a) H a n d  K h a v e  the  s a m e  under l y ing  graph;  

(b) w h e n e v e r  u ~ v in  H ,  t h e n  u ~ v in K ;  

(e) H has  the  s a m e  c o m p l e x e s  as  K ;  

(d) w h e n e v e r  -1 {u ~ v}~ in H ,  t hen  e i ther  u ~ v in  K o r  u - -  v in K .  

Note  that  it may  happen  in an extended hybrid graph that  one  line has 
both  potent ial  or ientat ions  forbidden,  that  is, one  has bo th  --1 {u ~ v}~ and 
-~{v ~ u}~ for a line u - -  v. 

The  starting i teration of  the algori thm will be the pat tern  G O . 

LEMMA 4.1 S u p p o s i n g  G is a C G  o v e r  N ,  the  p a t t e r n  G O is a m a p  o f  G~. 

Proof  We  are to verify (a ) - (d)  f rom Definit ion 4.1 for H = G o and 
K = G~. Owing to T h e o r e m  2.2, the graphs G and G~ have the same 
underlying graph and complexes.  Thus,  both  (a) and (b) are evident f rom 
the definition o f  G o (see Definit ion 3.1). 

As  concerns  (c), to show that  every complex in G~o (= in G)  is a complex 
in G o it suffices to realize that  every line of  a complex in G remains a line 
in G 0. Conversely,  let us consider  a complex v 1 --, v 2 . . . . .  v~_ ~ ~ v k, 
k >  3, in G o . Then  b y ( b )  v I ~ v  2 and v k _ l  ~ V k  in G~, and owing to (a) 
it remains to verify that  v i - -  v i+ 1 in G~ for  i = 2 . . . . .  k - 2. Suppose  by 
contradict ion that  v i ~ vi+ 1 in G~ for  such i, take minimal such i 
{2 . . . . .  k - 2}, and apply L e m m a  3.5 to L = G~ and v a . . . . .  vi+ 1 to derive 
that  v i ~ vi+ 1 is a complex arrow in G~ and therefore  in G o (as we have 
already ment ioned) .  Tha t  contradicts  the assumption that  v i - -  vi+ 1 in G 0. 
A n  analogous  contradic t ion can be derived in case u i ~ Ui+ 1 in Go~ for 
some i ~ {2 . . . . .  k - 2}. Thus,  v 1 ~ v 2 v~_l ~- v~ is a complex 
in G~, and (c) is verified. 

Condi t ion  (d) is empty  for  G 0, as it has no " fo rb idden"  orientations.  • 

4.1.2. BASIC RULES OF THE LCG R E C O V E R Y  A L G O R I T H M  F u r t h e r  
possible i terations G m, m > 1, of  the L C G  recovery algori thm will be 
obta ined f rom previous ones by application o f  three special rules. Each  
rule makes  a single change and leaves the rest o f  the extended graph 
untouched.  The  transitivity rule just forbids potent ial  or ientat ions o f  lines; 
the necessity and the double-cycle rule change lines into arrows. Let  us 
describe the changes  made  by the rules. 

TRANSITIVITY RULE (See Figure 2) Suppose that  w I ~ w 2 . . . . .  w k, 
k > 3, is a slide in an i teration G m (m > 0), such that  no  o ther  edge exists 
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Figure 2. Transitivity rule. 

in G m among  {w 1 . . . . .  Wk}. Then  the transitivity rule changes  that  slide in 
G m into a steady slide in the next i teration G,~ + 1- Equivalently,  one  derives 
-~{w i ~- wi+l}~ in Gm+l for  all i = 2 . . . . .  k - 1. 

Of  course,  the transitivity rule need  not  be applied if the cor responding  
slide is already steady (as it would  not  make  any change).  

LEMMA 4.2 (Soundness  of  the transitivity rule) The appl icat ion o f  the 

transitivity rule to a m a p  o f  a L C G  G~ yields a m a p  o f  G~. 

Proof  One  has to verify that  the resulting graph  Gm+ 1 satisfies the 
condit ions in Definit ion 4.1. Condi t ions  (a ) - (c)  are evident. To  verify 
condi t ion (d) one  has to show that  there  is no  2 < i < k - 1 with w i ~ wi+ 1 

in G~. However ,  in such a case one  takes minimal such i and applies 
L e m m a  3.5 to L = G= and w I . . . . .  wi+ 1 to derive that  wi ~ 14/i+ 1 is a 
complex ar row in Go~. Hence ,  w i ~ wi+ 1 in G,~ by the condi t ion (c) for Gin, 
which contradicts  the assumption.  • 

NECESSITY RULE (See Figures 3 and 4) Suppose that  r 0 . . . . .  r k, r 0, k > 2, 
is a chordless cycle in an i teration G m (m > 0), such that  r k - -  r o in G m 
and 

either r o ~ r 1 r k is a s teady slide in G m (that is the first variant)  

or r o ~ r I in G m and r I ~ r 2 . . . . .  r~ is a steady slide in G m (that is 
the second variant). 

Then  the necessity rule changes  the line r k - - r  o in G m into the arrow 
r k ~ r 0 in the next i teration G m + 1. 

LEMMA 4.3 (Soundness  of  the necessity rule) The appl icat ion o f  the 

necessity rule to a m a p  o f  a L C G  G~ yields a m a p  o f  G~. 

Figure 3. Necessity rule-- the first variant. 
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Figure 4. Necessity r u l e - - t h e  second variant. 

P r o o f  C o n d i t i o n  (a) f r o m  D e f i n i t i o n  4.1 for  Gm+ 1 is ev iden t .  T o  verify 
(b) let  us s u p p o s e  by c o n t r a d i c t i o n  tha t  e i t he r  r k --* r 0 o r  r k - -  r 0 in  G~. 
T h e n  the  a s s u m p t i o n  tha t  G m is a m a p  o f  G~ impl i e s  tha t  r 0 . . . . .  rk, r 0 is a 
d i r e c t e d  cycle in  G~, which  co n t r ad i c t s  the  a s s u m p t i o n  tha t  G~ is a C G .  

Thus ,  r k ~ r 0 in G~. 
T h e  edge  {r0, r k} does  n o t  b e l o n g  to a c o m p l e x  in G~. I n d e e d ,  if r k ~ r 0 

is a c o m p l e x  a r row in  G~, t h e n  by (c) it is a c o m p l e x  a r row  in  Gm,  which  
con t r ad i c t s  the  a s s u m p t i o n .  

T h e  edge  {r0, r k} does  n o t  b e l o n g  to a c o m p l e x  in G m + l .  S u p p o s e  by 
c o n t r a d i c t i o n  t he r e  exists a c o m p l e x  w I ~ w 2 . . . . .  wt 1 = rk ~ r0 = 

w l , l >  3, in Gin+ 1 . T h u s , w  1 ~ w  2 wl 1 - - w t i n G  m . A s  G m i s a  
m a p  of  G~ a n d  w l_ l ~ wl in G~, o n e  can  t ake  m i n i m a l  2 < s < l - 1 wi th  
w s ~ W~+l in  G~ a n d  app ly  L e m m a  3.5 to L = G~ a n d  w 1 . . . . .  w~+ 1 to 
de r ive  tha t  w s ~ w s + 1 is a c o m p l e x  a r row in G~, a n d  t h e r e f o r e  w s ~ w~ + 1 
in Gin, which  con t r ad i c t s  the  fact  above .  

Thus ,  c o n d i t i o n  (c) f r o m  D e f i n i t i o n  4.1 is p r e s e r v e d  in Gm+ ~. C o n d i t i o n  
(d) is ev iden t .  • 

D O U B L E - C Y C L E  R U L E  (See Figure 5) S u p p o s e  tha t  r 0 , . . . ,  r k, r 0, k > 2, is 
a chord le s s  cycle in  an  i t e r a t i o n  G m ( m  >_ 0), such  tha t  r 0 ~ r~ 
. . . . .  rk-1 is a s t eady  sl ide in G m a n d  r 0 - r k ,  r k - r  k j in G m. 

M o r e o v e r ,  s u p p o s e  tha t  s o ~ s~ s t = r 1, l > 1, is a s t eady  sl ide in 
G m such tha t  s 0 ~ r0, a n d  {rk, s o } is a n  edge  in G m b u t  {r 0 , s  o } is n o t  a n  

S\;/o0 o O\o7 .-o 

Figure 5o Double-cycle rule. 
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edge in Gin. Then the double-cycle rule changes the line r k_ 1 - -  rk in G,~ 
into the arrow r k 1 ~ rk in the next iteration G m+l. 

LEMMA 4.4 (Soundness of the double-cycle rule) The application o f  the 
double-cycle rule to a map  o f  LCG G~ yields a map  o f  G~. 

Proof  Condition (a) from Definition 4.1 for Gin+ 1 is evident. To verify 
(b) let us consider by contradiction that either r k_ 1 ~ rk or r k_ 1 - -  rk in 
G~. Then necessarily r,  ~ r 0 in G~, as otherwise r 0 . . . . .  r k, r 0 is a directed 
cycle in G~. Similarly, r k ~ s o in G~, as otherwise s o . . . . .  s t = r 1 . . . . .  r k, s o 
is a directed pseudocycle in G~ (see Lemma  2.1). But then r 0 ~ r,  ,--- s o is 
a complex in G~, and condition (c) for Gm implies that r k ~ r 0 in Gin, 
which contradicts the assumption. 

To verify (c) for Gm+ 1 it suffices to show that the edge {rk_l, r k} does 
not belong to a complex in G~ or in Gm +1. This can be done by the same 
procedure as in the proof  of Lemma  4.3 (where the edge {r 0 , r  k} was 
treated). 

Condition (d) is evident. • 

4.1.3. LCG RECOVERY ALGORITHM The starting iteration of the algo- 
rithm is the pat tern G O of a C G  over N. Then the rules described in the 
preceding subsubsection are applied to produce further iterations Gin, 
m > 0, of the algorithm. The transitivity rule has the highest priority, then 
the necessity rule follows, and the double-cycle rule has the lowest priority. 

That  means that, having iteration Gin, m >_ O, one first tries to apply the 
transitivity rule. It does not matter  which slide satisfying the assumption of 
the transitivity rule is chosen. In case the transitivity rule cannot be 
applied to G m (that means all apposite slides are already steady in Gm), 
one tries to apply the necessity rule to Gin. Again, it does not matter  which 
cycle satisfying the assumptions of the necessity rule is chosen or which 
variant of the rule is considered. In case also the necessity rule cannot be 
applied to G m (that means no apposite cycle exists in Gin), one tries to 
apply the double-cycle rule. It does not mat ter  which cycle and slide 
satisfying the assumptions of the double-cycle rule are considered. If  also 
the double-cycle rule cannot be applied, the algorithm stops and Gm will 
be the last iteration. 

However,  if one succeeds in applying one of the rules as described 
above, a new iteration Gm+ 1 is obtained as a result (necessarily Gm+ 1 
differs f rom Gin). Then one tries to apply to G,,+I the same procedure as 
to G m (that is, one starts by trying to apply the transitivity rule, etc.). 

THEOREM 4.1 Supposing G O is the pattern corresponding to a CG G over 
N ,  the last iteration o f  the L C G  recovery algorithm is the largest CG 
corresponding to G. 



282 Milan Studen~ 

a a o Q 
G10~d I/O G2 

b c b 

e O  eO 
Figure 6. Iterations of the LCG recovery algorithm. 

Of  course, the last iteration of the LCG recovery algorithm is an 
extended graph, and we formally change it into an ordinary hybrid graph 
by ignoring information given by forbidden potential orientations of its 
lines. 

The proof of Theorem 4.1 is given in the following subsection. Let us 
conclude this subsection with an example. 

EXAMPLE 4.1 Let us consider the DAG from Figure l(i). The largest CG 
of the corresponding class of Markov equivalent CGs is in Figure 7(i). It 
can be obtained from the pattern in Figure l(ii) by application of the LCG 
recovery algorithm. First, the transitivity rule for K = 3, w I = a, w 2 = d, 
w 3 = e (or alternatively w I = c) derives --1 {d ~ e}~ in G l - - s e e  Figure 6, 
the left picture. However, neither the transitivity rule nor the necessity 
rule can be applied to G 1. But one can use the double-cycle rule where 
k =  2, l =  1, r 0 = a , r  I = s  1 = d , r  2 = b , s  o = c t o d e r i v e b - - + d i n G 2 - - s e e  
Figure 6, the right picture (alternatively r 0 = c, s o = a). As no rule can be 
applied to G 2, it is the last iteration of the LCG recovery algorithm. Thus, 
the LCG of the mentioned class of Markov equivalent CGs is given by 
Figure 7(i), already without "forbidden" orientations of lines. The corre- 
sponding essential graph, called the "completed pattern" in [21], is given in 

{I 
(i)b 0~! / (ii)b O ~ d "  ! .  /o 

e O  e O  
Figure 7. The largest chain graph versus the essential graph. 
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Figure 8. Cordless cycles--possibilities (A) and (B). 

the  F igu re  7(ii). So the  L C G  and  the  essent ia l  g r aph  c o r r e s p o n d i n g  to a 
D A G  may  differ.  

4.2. Convergence of the Algorithm 

The  fol lowing l e m m a  conta ins  an analysis  of  how a chord less  cycle in a 
C G  looks.  

LEMMA 4.5 Suppose  G is a C G  a n d  a is a chordless cycle in G.  Then  ju s t  

one  o f  the fo l lowing  possibili t ies occurs: 

(A) a is an  undirected cycle in G - - s e e  the illustrative Figure 8(i); 
(B) a conta ins  a c o m p l e x  in G ( a n d  possibly  other  a r r o w s ) - - s e e  Figure 

8(i i ) - ( i i i ) ;  
(C) ot has  the f o r m  r o . . . . .  r k, r o, k >__ 2, where  r o --* q ,  r o - ,  r k, and  

the remain ing  edges o f  t~ are l i n e s - - s e e  Figure 9(i); 

(D) t~ has  the f o r m  t o , . . . ,  r k, r 0, k >_ 2, where  r o --* q ,  r k --, r k_ 1, and  
the remain ing  edges o f  t~ except  {r 0, r k} are l i n e s - - s e e  Figure 
9(i i ) - ( i i i ) ,  which  illustrate two  possible  subcases. .  

P r o o f  In  case a conta ins  no  ar rows in G,  cond i t ion  (A)  holds.  
In  case  ot : r 0 . . . . .  r k, r 0, k _> 2, has  an  a r row in G,  one  can suppose  

wi thou t  loss o f  genera l i ty  tha t  r 0 ~ r l ,  and  by L e m m a  2.1(iv) r s , -  rs+ 1 for  
some  1 < s < k (with the  conven t ion  rk+ 1 ~ r o ) .  T a k e  min ima l  such s. 
M o r e o v e r ,  one  can suppose  tha t  r i - -  r i+ 1 for  all i = 1 . . . . .  s - 1. I nde e d ,  
in case  r i -~ ri+ 1 for  some  1 < i < s - 1 ( the  o r i en t a t i on  r~ , -  r i+l is 

(i) c 3  

o./-"-- 
\ o /  

(iii) (-) 

o J \ _  

Figure 9. Cordless cycles--possibilities (C) and (D). 
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exc luded  owing to the  def in i t ion  o f  s), t ake  maximal  such i and  change  the  
no t a t i on  (=  indexing)  of  nodes  o f  c~ into r0 . . . .  ,7k, f0, whe re  ~ = q with 
t = i + j m o d  k + 1. The  r e indexed  cycle then  has  the  des i r ed  p roper ty .  

Thus,  if s < k - 2 (a f te r  the  modif ica t ion) ,  then  r o -~ r I . . . . .  r s ~- 

rs+ 1 is a complex  in G and  cond i t ion  (B) holds.  In case s = k - 1, case  (D) 
occurs ,  while  s = k l eads  to  cond i t ion  (C). • 

LEMMA 4.6 L e t  G be a C G  over  N ,  and  C be a connect iv i ty  c o m p o n e n t  

o f  G such  that the set A = p a a ( C ) n  f ' l K ~ c )  n ~ p , r ( ~ ) c h c ( v )  is 
nonempty .  L e t  B be a terminal  connect iv i ty  c o m p o n e n t  o f  the induced  graph 

G A. L e t  us m a k e  f r o m  G a hybrid graph H by changing  all arrows f r o m  B to 
C into lines. Then  H is a C G  over  N wh ich  is M a r k o v  equivalent  to G.  

Note  tha t  a na tu ra l  conven t ion  N~ ~ N~. ~ parO¢) c h a ( v )  = N is accep t ed  
in case  ~ ( C )  = •. T h e r e f o r e  in case ~ ( C )  = Q the set A is no th ing  but  

PaG(C) .  

P r o o f  Evident ly  H and G have the  same  under ly ing  graph.  
Le t  K : w  1 ~ w 2 w~_ 1 ~ wk, k > 3, be  a complex  in G. To 

show tha t  K is a complex  in H it suffices to show tha t  wa ~ w 2 
and  w k_ 1 ~ w~ in H.  Tha t  is ev ident  in case K ~ . ~ ( C ) ,  because  then  
w 2 , w k  1 ~ C. However ,  in case K ~ / ( C )  one  has  w l , w  k f~ c h c ( w  1) n 
cho (wk)  = N,,E pa~(~)ch~(v). Thus,  w l , w  k ~ A ,  which impl ies  w l , w l ,  ¢£ B ,  

and the ar rows w 1 --, w 2 and  w~_ ~ ~ w k will be  saved in H.  
L e t  I ~ . : V  1 ~ L' 2 Vl_ 1 ~ Vt, l > 3, be  a complex  in H.  Then  

necessar i ly  v 1 ~ v 2 and v I 1 ,--- v t in G,  and  to show tha t  h is a complex  
in G it suffices to verify tha t  v ~ - - v i +  ~ in G for i = 2  . . . . .  l - 2 .  F o r  
example ,  if v i *-- vi+ ~ in G,  t ake  min ima l  such i ~ {2 . . . . .  l - 2} and apply  
L e m m a  3.5 for  L = G and  v 1 . . . . .  vi+ 1 to der ive  that  v i ~ vi+ 1 belongs  to 
a complex  in G. It  was a l r eady  verif ied tha t  every complex  in G is a 
complex  in H.  This  impl ies  that  v~ ~ vi+ ~ in H ,  which con t rad ic t s  the  
assumpt ion .  Similarly,  the  case v~ ~ v~+ ~ in G for i ~ {2 . . . . .  l - 2} can be  
excluded.  Thus,  H and  G share  complexes .  

To  show tha t  H is a CG,  accord ing  to L e m m a  2.1(iv) it suffices to verify 
that  no chord less  cycle in H is d i rec ted .  W e  a l r eady  know tha t  G and  H 
share  chord less  cycles. Thus,  let  us cons ide r  a chord less  cycle c~ in G and 
dis t inguish the  cases  m e n t i o n e d  in L e m m a  4.5. W e  are  to show that  a is 
not  a d i r ec t ed  cycle in H.  

Suppos ing  (A) holds,  o~ is an und i r ec t ed  cycle in G which is saved in H.  
Suppos ing  (B) holds,  a complex  in G con ta ined  in a r ema ins  in H ,  and  

again  c~ is no t  a d i r ec t ed  cycle. 
In case (C), e i the r  bo th  the  ar rows r 0 ~ r 1 and  r 0 ~ r k a re  changed  into 

l ines in H (in case r 0 ~ B and r 1, r k ~ C)  and o~ is an und i r ec t ed  cycle in 
H ,  or  they  bo th  are  saved in H ( rea l ize  that  r I E C iff r~ ~ C).  In  bo th  
subcases  a is not  a d i r ec t ed  cycle in H.  
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In  case (D), one  can suppose wi thout  loss of general i ty  that  e i ther  

r 0 ~ r k or r 0 - -  r~ in G (otherwise one  can " in t e r change"  r 0 and r k by 

re indexing a into r 0 , . . - ,  rk, r0, where  ~ = r t with t = - j  - 1 mod  k + 1). 
Let us start with the most  compl ica ted  subcase: r 1, r k_  1 ~ C and  r 0 ~ B. 
T h e n  we show that  a is an undi rec ted  cycle in H. 

The  first step is to verify that  every complex in ~ ( C )  has bo th  paren ts  
jo ined  with r k by an edge in G. Suppose  by cont radic t ion  that  there  exists 
K ~ ( C )  and  w ~ par(K)  such that { r ~ , w }  is not  an edge of G. T h e n  one  

also finds A ~ ( C ) ,  with r k ~ par(A). Indeed ,  in case r k ~ w take a path 
in G through C u {w} connec t ing  w and  r~_ 1 which canno t  be shor tened  
- - i t  must  have the form w = w 1 ~ w 2 . . . . .  wl = rk-1, l > 2, where  

w 2 . . . . .  w l ~ C and no  addi t ional  edges amon g  {w 1 . . . . .  w l} exist in G. 
T h e n  take min imal  s such that  {r~, w s} is an edge in G. Necessarily, s > 2, 
r k ~ w s  in G, and  h : r  k ~ w  s w 2 ~ w  1 is a complex in G. 
Evident ly  h ~ J { ( C ) .  However,  r 0 ~ ( ' l , ,~par(a)chc(h) implies r 0 ~ A,  
which contradicts  the assumpt ion  r 0 ~ B. 

The  second step is to show directly r k ~ A. Suppose  by cont radic t ion  
that  there  exists K ~35¢'(C) and  w ~ par(K) with r k ~ w or r k - -  w in G 
[one already knows that  r k ~ p a t ( C ) ] .  But  then,  owing to the assumpt ion  
r 0 ---, r~ or r 0 - -  r~ in G, r 0 is an ances tor  of w in G, which excludes the 
possibility r 0 ~ chc(w) .  This  contradicts  the assumpt ion  r 0 ~ B c A. 

Thus,  the op t ion  r o ~ r k in G is excluded, since then  a node  r 0 ~ B has 
a child r~ ~ A,  which contradicts  the assumpt ion  that  B is a t e rmina l  
c o m p o n e n t  of G A. Therefore  r 0 - - r ~  in G what  implies r k ~ B. This 
means  that  bo th  r 0 ~ r I and  r k ~ r k a are changed into l ines in H,  and  a 
is an undi rec ted  cycle in H. 

Well,  only simple subcases remain.  If r k_ 1 ~ C, then  r 1 ~ C and  both  

r 0 ~ r I and  r~ ~ r k 1 are saved in H. If r l ,  r k 1 ~ C ,  r o ~ B ,  and  r o -~ rg 
in G, then  both  r o -~ r I and  r 0 -~ r k are saved in H. In  case r 1, r k 1 (~ C, 
r 0 ~ B, r 0 - -  rk in G, and  r k ff B, both  r 0 --* r 1 and  r k ~ r k_ ~ are saved in 
H. In  case r l ,  r k_  1 (~" C ,  F 0 ~ B ,  F 0 - -  F k in G, and  r k ~ B ,  the roles of r o 
and rk are exchangeable  (one  can use the already m e n t i o n e d  re indexing of 
a )  and  by their  possible in te rchange  one  obta ins  the f i r s t -ment ioned 
subcase. 

So in every case a is not  a directed cycle in H,  and  we have verified that  
H is a CG. By T h e o r e m  2.2 it is Markov  equiva lent  to G. • 

COROLLARY 4.1 S u p p o s e  G is a L C G  o f  a c l a s s  o f  M a r k o v  e q u i v a l e n t  

CGs o v e r  N .  T h e n  f o r  e v e r y  c o n n e c t i v i t y  c o m p o n e n t  C o f  G t h e  s e t  

A = p a ~ ( C )  n f'l~ ~ ( c )  i ' ) ~  par(r)chG(v) is e m p t y .  

Proof  U n d e r  the s i tuat ion that  A is nonempty ,  one  can take a te rmina l  
connect ivi ty  c o m p o n e n t  B of G A and  define the graph H f rom L e m m a  
4.6. Evidently,  at least one  arrow in G was changed  into a l ine in H. Thus,  
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H is a CG,  M a r k o v  equ iva len t  to G,  which is l a rger  than  G,  bu t  d is t inct  
f rom G. This  con t rad ic t s  the  def in i t ion  of  the  largest  CG.  • 

LEMMA 4.7 Let  G be a C G  over N such that for  every its connectivity 
component  C the set A = p a t ( C )  c3 f'lK ~a-(c) f'l~.~ par(,) c h ~ ( v )  is empty. 
Then the L C G  recovery algorithm (see Section 4.1) applied to the pattern 
G O (corresponding to G)  yields G. 

P r o o f  L e m m a s  4 .1 -4 .4  imply tha t  every i t e ra t ion  of  t h e  L C G  recovery  
a lgor i thm is a m a p  of  Q .  So every a r row in any i t e ra t ion  Gm, m > O, is an 
a r row in G~ (with the  same  o r i en t a t i on )  and  thus  in G. In par t icu la r ,  no 
o t h e r  edge ,  except  an a r row in G,  will be  an a r row in the  last  i t e ra t ion  G .  
of  the  a lgor i thm.  

To  show the  converse  one  needs  to verify tha t  every a r row in G will be  
d i r ec t ed  by one  o f  the  m e n t i o n e d  rules.  Le t  us cons ide r  a connect iv i ty  
c o m p o n e n t  C of  G with p a t ( C )  ~ Q.  T h e n  -g / (C)  e O,  as o therwise  the  
set A is nonempty .  Thus,  t he re  exists a complex  with  a reg ion  in C, and  at  
least  two ar rows in G O are  d i r ec t ed  into  nodes  o f  C. O u r  a im is to  verify 
tha t  every a r row u --* t in G f rom u ~ p a ~ ( C )  into t ~ C will be  d i r ec t ed  
by the  rules  (this is sufficient  to p rove  the  m e n t i o n e d  converse  s t a tement ) .  
Two bas ic  cases  will be  d is t inguished.  

I. There exists K ~ , ~ ( C ) ,  v ~ p a r ( K )  such that {u, v} is not an edge in G 
[in par t i cu la r ,  this inc ludes  the  case when  K ~ g " ( C )  with u 
par(K)] .  W e  can suppose  u 4: v as o therwise  we r ep l aced  v by the  
o t h e r  p a r e n t  of  K. Le t  us cons ide r  a pa th  be tw e e n  v and t in G c u ~vi 
which canno t  be  sho r t ened .  Necessar i ly ,  it looks  like v = r 1 --* r 2 - -  
. . . .  r t = t, l > 2. T a k e  min ima l  1 < i < l such tha t  { u , r  i} is an 

edge  o f  G. T h e n  i > 2, and  A: r I ~ r 2 r i ~ u is a complex  
f rom ,g( (C)  with u ~ par(A).  Thus,  r 1 --, r 2 in Go, and  one  can apply  
the  t ransi t ivi ty  rule  to  r 1 . . . . .  r t to  der ive  --,{r i ,---ri+a}~ for  i = 
2 . . . . .  l - 1  in a fu ture  i t e r a t ion  Gm, m >__0. In case  i = l  one  
a l r eady  has  u ~ r l = t in G 0. O the rwise  t ake  min ima l  i + 1 < j < l 
such tha t  {u, r i} is an edge  in G. Necessar i ly  u ~ rj in G,  and  in case  
u - -  rj in some  i t e ra t ion  Gm (o therwise  it is a l r eady  d i r ec t ed  in Gin) 
one  can use the  necess i ty  rule  ( the first var ian t )  for  the  cycle 
U ~ r i - -  ri+ 1 r j - - u  (it is a chord less  cycle) to der ive  
u ~ rj in a fu ture  i te ra t ion .  In  case  j 4: l, r e p e a t  the  p r o c e d u r e  until  
the  a r row u ---, rt = t is d i r ec t ed  in an i t e ra t ion  G , ,  n > m. 

II .  For every complex K ~ ( C )  and v ~ pa r (K)  the edge {u, v} occurs in 
G. Owing  to the  a s sumpt ion  tha t  the  set  A is empty ,  t he re  exists a 
complex  A : v = w I --* w 2 w~ 1 '--- wk, k > 3, in ~ ( C )  such 
tha t  e i the r  u --* v or  u - -  v in G.  No te  tha t  this  impl ies  tha t  the  
possibi l i ty  u ~ v in Gm is exc luded  for  every m > 0. Let  us again  
cons ide r  the  " sho r t e s t "  pa th  v --- r 0 ~ r I . . . . .  r t = t, l > 1, be -  
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tween  v and  t in G c u t~}" It  was a l r eady  shown tha t  r 0 ~ r 1 in an 
i t e r a t ion  Gin,  m >_ 0 [because  A ~J~,((C) and  v ~ p a r ( A ) - - s e e  I, 
whe re  u = v and  t = r 1 ] .  T h e  app l i ca t ion  of  the  t ransi t ivi ty  rule  then  
al lows us to der ive  -~{r /~- r i+ l}~  for  i = 1 . . . . .  l -  1 in a n o t h e r  
fu ture  i te ra t ion .  T a k e  min ima l  1 < h < l such tha t  {u, r h} is an edge  
of  G. Then  r0, r I . . . . .  rh, U, r o is a chord less  cycle in G.  In  case 
u ~ v in an appos i t e  fu tu re  i t e r a t ion  Gin,  one  can apply  di rec t ly  the  
necess i ty  rule  ( the  second  var ian t  app l i ed  to u, v = r 0, r 1 . . . . .  rh, U) 
in o r d e r  to d i rec t  u ~ r h in the  next  i t e ra t ion  G m + r In case u - -  v 
in the  appos i t e  fu tu re  i t e ra t ion  G m one  can use the  double -cyc le  
rule,  whe re  wk = s o -~ s~ . . . . .  sj = r~ is the  " sho r t e s t "  pa th  in 
G be tween  w~ and  r 1 be long ing  to C u {wk}. O n e  can be  sure tha t  
s o --> s 1 will be  d i r ec t ed  in a fu ture  i t e r a t ion  (see  I), and  -~{s  i ~ Si+l}~ 

for  all i = 1 . . . . .  j - 1 will be  der ived ,  too.  Thus,  the  a r row u --> r h 

will be  d i rec ted .  By the  same  p r o c e d u r e  as in case I one  can show 
tha t  the  app l i ca t ion  of  the  necess i ty  rule  ( the  first var ian t )  will der ive  
u ---> t in the  end.  • 

P r o o f  of  T h e o r e m  4.1 By T h e o r e m  2.3 the re  exists a L C G  for G. 
Because  G and  G= are  M a r k o v  equiva lent ,  the  pa t t e rn  c o r r e spond ing  to G 
and  the  p a t t e r n  co r r e spond ing  to  G~ coincide .  A c c o r d i n g  to Coro l l a ry  4.1 
the  a s sumpt ions  o f  L e m m a  4.7 for  G~ ( ins tead  o f  G )  are  satisfied. • 

4.3. Formal Strengthening of the Rules 

The  or ig inal  f o rmu la t i on  o f  the  rules  used  in the  L C G  recovery  algo-  
r i thm in [19] was much  s t ronger  than  in Sect ion  4.1. Le t  us recal l  it. 

By a s e m i s l i d e  f rom a n o d e  w I to a node  w k in an ( ex tended)  hybr id  
g raph  H will be  u n d e r s t o o d  a descend ing  rou te  w I . . . .  , w k, k > 2, wi th  
w 1 ---> w 2. Evident ly ,  any sl ide is a semis l ide .  

EXTENDED TRANSITIVITY RULE Suppose  tha t  w 1 . . . .  , W k -  1, k >_ 3, is a 
s t eady  semis l ide  in an i t e r a t ion  G m ( m  >_ 0) ,  w k_  1 - -  w k  in G m ,  and  the re  
is no edge  in G m b e t w e e n  w k and  { w l , . . . ,  w k 2}. T h e n  ~ {wk_ 1 <--- Wk}a~ in 
the  next  i t e r a t ion  G, ,+I  is der ived .  

In  short ,  the  p reced ing  rule  der ives  tha t  w 1 . . . . .  wk is a s teady  semis l ide  
in a fu tu re  i te ra t ion .  So a s teady  semis l ide  w 1 . . . . .  W k -  1 is p r o l o n g e d  in the  
next  i te ra t ion .  This  m o t i v a t e d  the  n a m e  " t rans i t iv i ty  ru le ."  

Evident ly ,  if the  a s sumpt ions  of  the  t ransi t ivi ty  rule  f rom Sect ion  4.1 are  
satisfied, t hen  by successive app l i ca t ion  of  the  e x t e n d e d  transi t ivi ty rule  the  
des i r ed  a im of  the  t ransi t ivi ty  rule  is de r ived  in a fu ture  i te ra t ion .  So the  
e x t e n d e d  t ransi t iv i ty  rule  is fo rmal ly  s t ronger .  
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EXTENDED NECESSITY RULE Suppose  that  r 0 , . . . ,  r k, r 0, k > 2, is a 
pseudocycle in an i tera t ion  G m (m > 0), such that (under  the conven t ion  

r~+ 1 = r 0) one  has r 0 --+ r 1 in Gin, rj - -  rj+ 1 in G m for some 1 < j  < k, 
and  for every i ~ {1 . . . . .  k } \ { j }  ei ther  r i ~ ri+ 1 in Gm or [r i - -  ri+ 1 and 
~ { r  i *-- ri+l}~ in Gin]. T h e n  the line r~ - -  rj+ 1 is changed into the arrow 

rj *-- 5+1 in Gin+ 1. 

It is evident  that  the assumpt ions  of the extended necessity rule are 
weaker  than the assumpt ions  of the necessity rule f rom Section 4.1 (both 
v a r i a n t s ) - - e v e r y  chordless cycle is a pseudocycle,  and  one can take j = k 
above. Therefore  it general izes the necessity rule. 

EXTENDED DOUBLE-CYCLE RULE Suppose that  r 0 , . . . ,  rk, r0, k > 2, is 
a pseudocycle in an i tera t ion G m (m > 0), such that  r 0 . . . . .  rk-  1 is a steady 
semislide in Gin, and r k_ 1 - -  rk, rk - -  rk + 1 = r0 in G m. Moreover  let us 
suppose that  s o . . . . .  st, l > 1, is a steady semislide to r~ = s t such that 
s o ¢ r 0 and there  exists 0 < n < l - 1 such that  {r~, s n} is an edge in G m, 

but  there is no edge in G m be tween  r 0 and  {s o . . . . .  sn}. T h e n  the l ine 
rk 1 - - r k  i n G  m is changed into the a r rowr~  l* - - rk  i n G  m+l. 

Note  that the edge {r k_ 1, r~} which is directed by the previous rule 
belongs  to two (pseudo)cycles, namely  to r 0 . . . . .  r k, r 0 and  s . . . . . .  s t = 
r~ . . . . .  rk, s n. This  fact mot ivated  the terminology.  

Again,  the extended double-cycle rule evidently general izes the respec- 
tive rule f rom Sect ion 4.1: a chordless cycle is a pseudocycle,  a slide is a 
semislide, and  it suffices to put  n = 0. Therefore ,  this rule is formally 
stronger.  

However,  all the extended rules are sound.  

LEMMA 4.8 The application o f  the extended transitivity rule, the extended 
necessity rule, and  the extended double-cycle rule to a m a p  o f  a L C G  G~ 

yields a m a p  o f  G~. 

Proof  In  fact, one  can repeat  the same a rguments  which were used in 
the proofs of Lemmas  4.2, 4.3, 4.4; the only p rob lem is that one has to 
consider  a more  complex si tuation.  It is left to the reader  as an exercise. 
Let us give two hints. 

In  the case of the extended necessity rule one shows for condi t ion  (b) 
for Gin+ 1 from Def in i t ion  4.1 that  rj *-- rj+ 1 in G~ and uses L e m m a  2.1(ii) 
for that  purpose.  

In the case of the extended double-cycle rule one  also uses L e m m a  
2.1(ii) to derive r k *-- r 0 in G~. To verify that  it is a complex arrow in G~ 
three  subcases should be dist inguished.  If n = 0, then  one repeats  the 
p rocedure  f rom the proof  of L e m m a  4.4. In  subcase n > 1 and r k --* s,  in 
G~ one  derives a contradictory conclus ion that r~, s . . . . . .  s t = r 1 . . . . .  r k is 
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a directed cycle in G~. However,  in subcase n > 1 and either rk ~ s n or 
rk - -  s n in G~ one applies Lemma  3.5 to L = G= and So, s 1 . . . . .  s , ,  rk, r 0 
to derive that r~ ~ r 0 is a complex arrow in G~. • 

I_~mma 4.8 together with the proof  of  Theorem 4.1 implies that the 
modified L C G  recovery algorithm, where the extended rules are taken into 
account, also yields the largest CG. In short: 

THEOREM 4.2 Supposing G O is a pattern corresponding to a CG G, the 
last iteration of the modified L C G  recovery algorithm (with extended rules) 
is the largest CG corresponding to G. 

The previous result is nothing but Theorem 5.1 f rom [19]. Note for 
explanation that the original (longer) proof  of convergence of the LCG 
recovery algorithm was based on the extended rules. But later, the proof  
was substantially simplified, and this change led to a more  elegant formula- 
tion of the rules. 

5. CHARACTERIZATION OF THE LCG 

The preceding results allow us to derive as a by-product a graphical 
characterization of graphs which are the largest CGs of classes of Markov 
equivalent CGs. 

COROLLARY 5.1 A CG G over N is the largest C G  of a class of Markov 
equivalent CGs iff for every its connectivity component C the set A = 
pa~(C)  N N~ ~srtc) f'l,,~ par(K) chc (v )  is empty. 

Proof  The necessity of the condition follows from Corollary 4.1. For 
sufficiency one realizes that Lemma  4.7 says that the result of the L C G  
recovery algorithm is G, while Theorem 4.1 says that it is G=. Therefore  
G = G ~ .  • 

Moreover  a simple algorithm changing every CG into the corresponding 
largest CG can be obtained. It consists in consecutive application of the 
following rule. 

POOL-COMPONENT RULE Suppose that G is a CG, and C its connectiv- 
ity component  such that the set 

A = p a t ( C )  n ["] ['] c h 6 ( v )  
K ~ " ( C )  v ~par(K) 

is nonempty.  Let us choose a terminal connectivity component  B of the 
induced subgraph GA. Then all arrows in G oriented from B to C will be 
changed into lines in the next iteration (all other  edges will be saved). 
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In fact, the components B and C are pooled in the next iteration. This 
motivated the terminology. 

THEOREM 5.1 Supposing G is a CG over N, the consecutive application 
of the pool-component rule to G yields a sequence of CGs which is finite, 
and the last graph in the sequence is the largest CG of the class of  CGs 
Markov equivalent to G. 

Proof  It follows from Lemma 4.6 that the application of the pool- 
component  rule yields a CG which is Markov equivalent to the original 
graph. So every iteration has that property. The pool-component rule can 
be applied until for every component  (of an iteration) the corresponding 
set A will be empty. As the number of arrows to be changed into lines is 
finite, the procedure has to stop. However, this means by Corollary 5.1 that 
the last iteration is the largest CG of a class of Markov equivalent CGs. 
This class of course contains the last iteration, and therefore it contains 
also the starting iteration G. • 

6. CONCLUSIONS 

Several remarks conclude this contribution. The first remark concerns 
the significance of the concept of largest CG. Markov networks have one 
big advantage: different UGs yield different dependency models. Bayesian 
networks have no such pleasant property: two different DAGs may repre- 
sent the same dependency model, that is, be Markov equivalent. Moreover,  
the class of Markov equivalent DAGs has no natural representative, and 
one has to represent the class by a pattern or by an essential graph. 
However, then the problem arises whether such a representation allows 
one to identify the corresponding dependency model. As patterns and 
essential graphs are not DAGs in general, one cannot use the criteria for 
DAGs to obtain the dependency model. However, the concept of largest 
CG provides a reasonable solution even in the case of Bayesian networks. 
One can represent the class of Markov equivalent DAGs by the largest CG 
of the corresponding class of Markov equivalent CGs (which is, of  course, 
wider, but represents the same dependency model). As the largest CG is a 
real member  of the class of Markov equivalent CGs, one can identify the 
corresponding dependency model by some criterion for CGs, for example 
by the moralization criterion. In fact, the concept of essential graph also 
provides a solution of the mentioned problem, because it also belongs to 
the class of CGs which are Markov equivalent to the considered DAG, and 
one can use the criterion for C G s - - s e e  [1]. 

The second remark concerns the pattern recovery algorithm. It has an 
important feature: it depends only on predicates (u ,  v I - )  and (u,  v I + w )  
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introduced in Definition 3.2. In particular, two CG models which coincide 
on these predicates must be equal. The number of such predicates is 
polynomial in the number of variables, unlike the exponential number of 
triplets in a general dependency model. This may give a more precise 
estimate of the number  of CG models or D A G  models. Perhaps a 
representation of D A G  models in terms of these predicates would be more 
effective. 

The third remark concerns the characterization of largest CGs and the 
pool-c0mponent rule. The simple algorithm described in the fifth section is 
of course more suitable in the considered situation than the combination 
of the moralization criterion for obtaining the induced dependency model 
with the pattern recovery algorithm and with the LCG recovery algorithm. 
It makes it possible to test for the Markov equivalence of CGs in 
alternative way (without finding complexes throughout both graphs- - the  
complexes are " found"  only locally). Evidently, two CGs are Markov 
equivalent iff their corresponding largest CGs coincide-- tha t  is, iff the 
application of the pool-component rule to both CGs gives the same result. 
Another  future application might be a method to find the number of CG 
models over n variables. Perhaps an exact formula for the number of 
Markov equivalence classes will be obtained someday. 

The complexity of all these algorithms remains a topic for further 
research. 

Some final remarks are responses to reviewers' comments on the paper 
[19], which I could not include in that paper owing to space limitation. One 
of the reviewers encouraged me to compare CG models and models 
induced by embedded Bayesian networks treated in [21] and [11]. CGs are 
not a special case of embedded Bayesian networks: they involve UGs, and 
there are U G  models which are not restrictions (I mean restrictions of 
dependency models) of DAG mode l s - - fo r  example, the dependency model 
induced by an undirected cycle of length 4. On the other hand, there exist 
restrictions of D A G  models which are not CG models. Perhaps it will be a 
topic of further research to study embedded CG models, which should 
involve both above-mentioned classes of models. 

Another  reviewer suggested discussing also the question whether essen- 
tial arrows in a D A G  which are lines in the corresponding largest CG carry 
a causal meaning or not (for example, the arrow d ~ e in Figure 7(ii)). 
The reviewer mentioned that some authors (for example [5]) have argued 
that under additional assumptions every essential arrow has a causal 
interpretation. My impression is that such a claim has only relative validity 
- -whe n  one is limited to the framework of D A G  models. Perhaps if one 
allows the use of a wider class of graphs one will find that the conditional 
independence structure of a considered probability distribution can be 
described also by a CG where relationships between some variables are 
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depicted by lines which have the interpretation of symmetrical associa- 
tions. 
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