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Abstract 

Chain graphs {CGs) give a natural unifying 
point of view on Markov and Bayesian net­
works and enlarge the potential of graphi­
cal models for description of conditional in­
dependence structures. In the paper a di­
rect graphical separation criterion for CGs 
which generalizes the d-separation criteri­
on for Bayesian networks is introduced (re­
called). It is equivalent to the classic mo

_
r­

alization criterion for CGs and complete m 
the sense that for every CG there exists a 
probability distribution satisfying exactly in­
dependencies derivable from the CG by the 
separation criterion. Every class of Markov e­
quivalent CGs can be uniquely described by a 
natural representative, called the largest CG. 
A recovery algorithm, which on basis of the 
(conditional) dependency model given by a 
CG finds the corresponding largest CG, is p­
resented. 

1 INTRODUCTION 

Traditional graphical models for description of pro�­
abilistic conditional independence structure use ei­
ther undirected graphs {UGs), named also Markov 
networks, or directed acyclic graphs {DAGs), known 
as Bayesian networks or (probabilistic) influence di­
agrams. In middle eighties Lauritzen and Wermuth 
(1984) introduced the class of chain. graphs (CGs) 
which involves both UGs and DAGs, but not only 
them. In CGs both undirected edges, called lines, and 
directed edges, called arrows, are simultaneously al­
lowed but directed cycles are forbidden (nevertheless, ' . 
undirected cycles are allowed). To establish semantic-
s for CGs Lauritzen (1989) and Frydenberg (1990a) 
generalized so-called moralization criterion for DAGs 
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from (Lauritzen et. a/. 1990) for reading
_ 
indep�nden­

cies from a CG. As in case of DAGs, It conststs of 
3 steps: restriction of the CG to a certain set of n­
odes transforming it properly to an UG (called the 
mor�l graph) , and using the separation criterion for 
UGs with respect to the moral graph. Moreover, they 
conjectured that for every CG there exists a probabil­
ity distribution which exhibits exactly those indepen­
dency statements which can be read from the graph 
according to the moralization criterion. 

On basis of the moralization criterion Frydenberg 
(1990a) characterized Markov equivalent C�s (that �s 
CGs producing the same dependency model) m graphi­
cal terms, namely as CGs having the same underlying 
graph and the same occurencies of comple:::ces .

. 
Note 

that it generalizes an analogous charactenzatwn of 
Markov equivalence for DAGs from {Verma and Pearl 
1991). Moreover, Frydenberg (1990a) showed that ev­
ery class of Markov equivalent CGs has a CG with the 
greatest number of lines (or dually with the least num­
ber of arrows). Thus, every class of Markov equivalent 
CGs can be naturally represented by this distinguished 
CG, called the largest CG. 

Several recent works suggest that CGs attract atten­
tion of researchers. W hittaker (1990) is his book 
gave several examples of use of CGs, Cox and Wer­
muth (1993) stimulated a discussion on them. Ander­
sson, Madigan and Perlman (1995) used special CGs, 
called essential graphs, to represent uniquely classes 
of Markov equivalent DAGs and characterized them 
in graphical terms. Note for explanation that the es­
sential graph for a class of Markov equivalent DAGs 
does not coincide in general with the largest CG for 
the corresponding class of Markov equivalent CGs. In 
UAI'95 conference two papers were dealing with CGs: 
(Buntine 1995) gave an equivalent definition of

_ 
CGs as 

hierarchical combination of Markov and Bayesian net­
works and (Meek 1995) generalized an algorithm from 
(Verma and Pearl 1992) which on basis of the depen­
dency model corresponding to a DAG finds the above 
mentioned essential graph. 

In (Bouckaert Studeny 1995) we have introduced a 
graphical separation criterion, called c-separation ('c' 
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stands for 'chain'), for reading independencies from 
a CG. Unlike the moralization criterion it tests di­
rectly trails in the original CG (i.e. the graph is not 
transformed to an UG) and in this sense it general­
izes the well-known d-separation criterion for DAGs 
from (Pearl 1988). Moreover, we have shown in (Stu­
deny Bouckaert 1996) that the new criterion is equiv­
alent to the moralization criterion and have used it to 
confirm the above mentioned Lauritzen's and Fryden­
berg's conjecture, that is to prove the completeness 
of both criteria. This generalizes analogous results 
for UGs and DAGs from (Frydenberg 1990b) (Geiger 
Pearl 1993) and (Geiger Pearl 1990). In the first part 
of this paper these new concepts and results are re­
called. 

In the second part so-called recovery algorithm is p­
resented. On basis of a dependency model, which is 
supposed to correspond to an unknown CG, it finds 
the largest CG of the corresponding class of Markov e­
quivalent CGs. Like the procedures from (Verma Pearl 
1992) (Spirtes et. a/. 1993) (Meek 1995) it has two 
stages. The first one is strongly related to Fryden­
berg's (1990a) characterization of Markov equivalence 
of CGs. On basis of special 'elementary' statements 
obtained from the dependency model one identifies 
the edges of the underlying graph and the occuren­
cies of complexes and forms so-called pattern of the 
equivalence class. It is a special graph, having the re­
quired underlying graph and only arrows produced by 
the complexes (the other edges are lines). However, 
this graph is not a CG in general (it may have ori­
ented cycles) and some of its lines has to be directed 
to obtain the corresponding largest CG. This is made 
in the second stage by repeated application of certain 
orientation rules. 

The structure of the paper is as follows. In the next 
section basic definitions are recalled and essential re­
sults reviewed. In the third section the concept of 
c-separation is introduced and illustrated by an exam­
ple. The corresponding results are formulated, too. 
The pattern of the corresponding equivalence class is 
constructed in the fourth section. The fifth section 
describes the method of obtaining the largest CG on 
basis of the pattern. In Conclusions several remarks 
on obtained results are given. The Appendix contains 
the proof of the correctness of the algorithm from the 
fourth section. 

2 BASIC CONCEPTS 

2.1 GRAPHS 

A hybrid graph G over a nonempty finite set of nodes 
N is specified by a set of two-element subsets of N, 
called edges, where every edge { u, v} is either a line 
(= undirected edge), denoted by u - v, or an arrow 
(= directed edge) from u to v, denoted by u - v, or 
an arrow from v to u, denoted by u +--- v. An undi­
rected graph (UG) is a graph containing lines only, a 

directed graph is a graph containing arrows only. The 
underlying graph of G is obtained from G by chang­
ing all edges of G into lines. An induced subgraph 
of G on a nonempty set T C N, denoted by Gr, is 
the graph over T which has exactly those edges of G 
which are subsets ofT. Connectivity components of G 
are obtained by removing all arrows of G and taking 
the connectivity components of the remaining undi­
rected graph. A route in G is a sequence of its nodes 
Vt, . . .  , Vk, k � 1 such that { v;, v;+t} is an edge of G 
for every i = 1, . . .  , k - 1. It is called a path, if it 
consists of distinct nodes. It is called a pseudocycle 
if Vt = vk, and a cycle, if moreover v1, ... , v�:-1 are 
distinct. A (pseudo )cycle is directed, if v; ----> Vi+I or 
v;- Vi+1 fori= 1, . . . , k-1, and surely Vj ---+ Vj+l for 
at least one j E { 1, . . . , k -1}. A directed a cyclic graph 
(DAG) is a directed graph without directed cycles. 

A complex in G is its special induced subgraph, namely 
a path vr, . . . , Vk, k;::: 3, such that v1- v2, v;- v;+1 
fori= 2, . . . , k- 2, Vk-1 +- Vk in G, and no additional 
edges between nodes of { Vt, . . . , Vk} exist in G. The 
nodes vr and Vk are called the parents of the complex, 
the set { v2, . . . , Vk-l } the region of the complex and 
the number k - 2 is the degree of the complex. Note 
that the concept of complex is equivalent to Fryden­
berg's (1990a) notion of 'minimal complex'. I decided 
to simplify the terminology: I believe that 'nonmini­
mal complexes' have no reasonable use. 

A chain for G is a partition of N into ordered disjoint 
(nonempty) subsets Bt, . . .  , Bn, n ;::: 1 called blocks 
such that, if { u, v} is an edge with u, v E B; then u­
v, and if { u, v} is an edge with u E B;, v E Bj, i < j 
then u - v. The original definition of CG (which also 
explains the terminology) is the following one. 

DEFINITION 2.1 A chain graph (CG) is a hybrid graph 
which admits a chain. 

However, there are several equivalent definitions of 
CG, whose verification is left to the reader. They im­
ply that CGs involve both UGs and DAGs. 

LEMMA 2.1 The following conditions are equivalen­
t for a hybrid graph G. 

• G is a chain graph, 

• G has no directed pseudocycles, 

• G has no directed cycles, 

• the set of connectivity components of G can be 
ordered to form a chain. 

Note that one CG may admit several chains, but every 
block of a chain is a union of connectivity components 
of the graph. Thus, chains made of connectivity com­
ponents cannot be refined. 

Having nodes u, v with u--> v in G, u is called a parent 
of v and v a child of u. In case u - v they are siblings. 



The set of parents, resp. children of a node u in G is 
denoted by pa0(u), resp. cha(u). The boundary of u, 
denoted by bda( u), is the set of parents and siblings 
of u. The symbol of the graph G is omitted when 
it is clear from context. A path v1, .. . , Vk, k � 1 is 
descending if v; - Vi+l or v; - Vi+l for 1 � i � 
k - I. Especially, an undirected path is considered as 
a descending path. If there exists a descending path 
from a node u to a node v, then u is an ancestor of v, 
or dually v is a descendant of u. Having a set of nodes 
A C Nits ancestral set, denoted by an0(A), is the set 
of all ancestors of nodes in A (it contains A). 

2.2 DEPENDENCY MODELS 

Supposing N is a nonempty finite set of variables let 
us denote by T(N) the class of triplets {X, YIZ) of 
disjoint subsets of N whose first two components X 
and Y are nonempty. A dependency model over a N is 
a decomposition of T(N) into two parts, namely the 
independency part and the complementary dependency 
part. Let's write lM(X, YIZ) if a triplet (X, YIZ) be­
longs to the independency part of a dependency model 
M, otherwise write DM(X, YIZ). 

A probability distribution over N is specified by a col­
lection of nonempty finite sets {X;; i E N} and by a 
function p : niEN X; - [0, I] with 2:{P(x); X E 
TiieN X;} = 1. If P(x) > 0 for all X E ni�N X;' then 
P is called strictly positive. As I consider the concepts 
from Pearl's (1988) book like of (probabilistic) condi­
tional independence, graphoid and semigraphoid to be 
well-known to UAI community, I decided to omit their 
definitions. Nevertheless, I recall some further basic 
concepts, used in formulation of results. A probabilis­
tic dependency model induced by a probability distri­
bution P over N has specified its independency part 
as the collection of all triplets (X, YIZ) E T(N) rep­
resenting valid conditional independencies in P. Note 
that it is a semigraphoid and a graphoid, if induced by 
a strictly positive distribution (Dawid 1979) . A triplet 
t E T(N) belongs to the probabilistic closure of a set 
L C T(N) w .r.t. a class of probability distributions 
P over N, if t represents a valid conditional indepen­
dency in every P E P such that every triplet from L 
represents a valid conditional independency in P. 

Supposing G is a CG, its moral graph is obtained in 
two steps. First , the parents of every complex in G 
are joined by an edge. Second, the underlying graph 
of the resulting graph is taken. (Frydenberg 1990a) 
gave another equivalent definition, namely to join the 
parents of every connectivity component of G which 
are not joined, and then to 'forget' the orientations. 
Note that in (Studeny Bouckaert 1996) we have kept 
the original type of edges in the moral graph and used 
special 'virtual' edges to join the parents of complexes. 
It was very convenient in the context ofthat paper, but 
here it is immaterial. 

A triplet (X, YIZ) E T(N) is represented in a CG G 
according to the moralization criterion if every path in 
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the moral graph of Gan(XuYuZ) from a node of X to 
a node of Y meets Z. Thus, the moralization criteri­
on taken from (Lauritzen 1989) or (Frydenberg 1990a) 
has 3 steps. First, to take the induced subgraph of G 
on the corresponding ancestral set ana ( XU Y U Z). 
Second, to find the moral graph of the induced sub­
graph . Third, to apply the classic separation criterion 
for UGs to that moral graph. 

The dependency model induced by a CG G has speci­
fied its independency part as the class of triplets rep­
resented in G according to the moralization criterion. 
It is not difficult to show that it is a graphoid (Bouck­
aert Studeny 1995). A probability distribution P over 
N is Markovian w.r.t. a CG G if every triplet repre­
sented in G (according to the moralization criterion) 
belongs to the probabilistic independency model in­
duced by P. Two graphs G and Hover N are Markov 
equivalent if their classes of Markovian distributions 
coincide. (Frydenberg 1990a) gave the following char­
acterization which generalizes an analogous result for 
DAGs from (Verma Pearl 1991). 

THEOREM 2.1 Two CGs are Markov equivalent if­
f they have the same underlying graph and complexes. 

Supposing G and H are CGs over the same set of vari­
ables with the same underlying graph, we say that G 
is larger than H, denoted by H -< G, if every arrow of 
G is an arrow in H with the same orientation. Note 
that (Frydenberg 1990a) defined the relation 'larger ' 
for every couple of CGs and I use only a restricted 
definition here. The following theorem reformulates a 
little bit further Frydenberg's (1990a) result. 

THEOREM 2.2 For every CG G there exists a Markov 
equivalent CG G00, such that H -< Goo for every CG 
H which is Markov equivalent to G. 

DEFINITION 2.2 The graph Goo from the previous 
theorem is called the largest CG corresponding to G. 

3 SEPARATION CRITERION 

In (Bouckaert Studeny 1995) we have introduced a di­
rect separation criterion for CGs, which generalizes the 
concept of d-separation for DAGs from (Pearl 1988). 
The c-separation (chain separation) criterion exhibits 
two main differences from the case ofDAGs. First, one 
has to consider a wider class of routes (not only paths 
consisting of distinct nodes). Second, the blocking of 
the route is not defined for nodes of the route, but for 
its maximal undirected subroutes, called sections. 

Thus, every route decomposes uniquely into its sec­
tions, and sections can be classified according to the 
orientations (resp. the existence) of arrows which de­
limit them. A head-to-head section has two incoming 
arrows, a head-to-tail section one incoming arrow only, 
and tail-to-tail section no incoming arrow. A node u 
of a section a of a route p is a tail-terminal node of a 
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w.r.t. p if u is the last node of u (::::: a terminal node 
of t7) and moreover, either u is also the last node of p 
(more precisely u is not limited at u by an arrow of p 
because of p ends at u already) or the corresponding 
arrow of p delimiting t7 at u emanates from u (i.e. it 
is an outgoing arrow from u) . A trail in a CG is such 
a route that no arrow appears twice (or more times) 
in it, and whose every section consists of distinct n­
odes. A slide from a node v1 to a node vk is a path 
Vt, . . . , v �., k ;::: 2 such that v1 -> v2, and v; - v;+l for 
all i = 2, . . . , k - 1. A section u of a trail in a CG is 
blocked by a set of nodes Z C N if one of the following 
two cases occurs: 

either u is a head-to-head section and has no descen­
dant in Z, 

or u is not a head-to-head section, t7 meets Z, and 
moreover for some (at least one) its tail-terminal 
node u, every slide to u in G meets Z. 

A trail is c-separated by a set Z if at least one of its 
sections is blocked by Z, otherwise it is called active 
w.r.t. Z. The reader can verify that in case of DAGs it 
collapses to d-separation. A triplet {X, YIZ} E T{N) 
is represented in a CG according to the separation cri­
terion if every trail from a node of X to a node of 
Y is c-separated by Z. We have proved in (Studeny 
Bouckaert 1996, Consequence 4.1): 

THEOREM 3.1 The moralization criterion and the 
separation criterion for CGs are equivalent. 

The following example shows that one cannot limit 
oneself to paths in the c-separation criterion. On the 
other hand, one should realize that only finitely many 
trails exist between two different nodes in every CG. 

EXAMPLE: 3.1 Let us consider the CG in the figure 1 
and test the triplet (a, ficeg} by the separation crite­
rion. The only path from a to f is a -> c - d --> f. 
Its tail-to-tail section a is not blocked by Z ::::: ceg, 
because of it does not meet Z, similarly its head-to­
tail section f. However, its head-to-tail section c - d 
is blocked (there is no slide to its tail-terminal node 
d which is outside Z). But, c-separation is not lim­
ited to paths and one has to consider also the trail 
a -> c- d- e ,____ b ---+ g ,____ d -> f. It is active: both 
its head-to-head sections c - d- e and g have a de­
scendant in Z and all other sections do not meet Z. 
Thus, {a, flee g) is not represented in the CG accord­
ing to the separation criterion. The reader can obtain 
the same conclusion by the moralization criterion. 

Supposing G be a CG over aN and B1, • • •  , Bn a chain 
for it, the associated input list L is the collection of 
triplets ( u,B1 U . . . U Bk(u) \ bda (u) U {u} I bda(u) ) ,  
where u E N and B�:(u) denotes the block containing 
u. Note that generalizes analogous concepts for DAGs 
from (Verma Pearl 1990) or UGs (Bouckaert 1995). 
We have proved in (Studeny Bouckaert 1996, Theo­
rems 7. 1 and 7.2) the following results. 

aQ O b 

� c d e/ 
•-o-• 

J� •. 

Figure 1: An illustrative example for c-separation 

Figure 2: Example of a DAG and its pattern 

THEOREM 3.2 Supposing G is a CG and L the input 
list associated with a chain for G, the following condi­
tions are equivalent for t E T(N): 

• t is represented in G, 

• t belongs to the graphoid closure of L, 

• t belongs to the probabilistic closure of L w. r.t. the 
class of strictly positive probability distributions. 

THEOREM 3.3 For every CG G over N there exist­
s a strictly positive probability distribution P over N 
such that the dependency models induced by G and P 
coincide. 

4 PATTERN RECOVERY 

The first step of the recovery algorithm is the pattern 
of the corresponding class of Markov equivalent CGs. 

DEFINITION 4.1 Supposing G is a CG, its pattern, de­
noted by G0, is a hybrid graph obtained from the un­
derlying graph of G by directing all edges which are 
arrows in a complex of G (with the same orientation). 

It follows from Theorem 2.1 that two CGs are Markov 
equivalent iff they have the same pattern. However, 
the pattern may not be a CG, as the following example 
shows. 

EXAMPLE 4.1 To illustrate the concept of pattern, let 
us consider the DAG G in the left picture of the figure 



2. It has only one complex a --+ d <- c. The corre­
sponding pattern is in the right picture of the figure. 

To reconstruct the pattern of a CG fr om its induced 
dependency model the following notation is suitable. 

DEFINITION 4.2 Let M b e  a dependency model over 
N and u, v, w E N are distinct. The symbol 
DM{u, vj-) will be used to replace an entire collec­
tion of statements, namely DM (u, viZ) for all Z C 
N \ { u, v }. Similarly, DM (u, vi + w) will substitute 
DM(u, viZ) for all Z C N \ {u, v} with w E  Z. 

The algorithm presented here produces a sequence of 
hybrid graphs H ;  with the same underlying graph as 
G, such that H; has all complexes of G of degree at 
most i. 

PATTERN RECOVERY ALGORITHM Let M be the de­
pendency model ind uce d by an (unknown) CG Gover 
N. 

(i) The starting iteration is an undirected graph Ho 
over N defined by the following rule: u- v in Ho 
iff DM{u, vj-). 

(ii) The next iteration H 1 is made by directing some 
lines of H0, namely for every three distinct nodes 
u, v, w of N such that u- w- v in Ho, -,(u- v) 
in H o, and DM(u, vi+ w} one has u--+ w <- v in 
H 1. Other lines of H 0 remain lines in H 1. 

(iii) For I :::: 2, . . . , card N- 2 the iteration H, is made 
from H,_1 by possible directing of some lines of 
H t-l. Namely, in every situation when some se­
quence of distinct nodes w1, . . .  1 W t+ 2 exists such 
that Wt --+ Wz or w1 - w2 in H1-1, Wt+l <- Wt+2 
or Wf+l - w1+2 in Hr-1, w; - Wi+t in H1-1 
for i :::: 2, ... , /, no other edge exists in H1-1 a-
mong {wt, ... ,Wt+2}1 DM(Wt,W/+21 + w2), and 
DM(wt,wl+21 + w,+!), one has Wt ---+ w2 and 
w1+1 <- W1+2 in H1• Note that these edges may 
be p ossibly directed already in H 1-1· All other 
edges of H 1  keep their type and orientation from 
H t-1· 

The following result is proved in Appendix. 

THEOREM 4.1 The last iteration of the previous al­
gorithm is nothing but the pattern of the considered 
(unknown) CG G. 

5 LARGEST CG RECOVERY 

The obtained pattern Go of the considered class of 
Markov equivalent CGs is to be changed into the cor­
responding largest CG Goo. Iterations of the present­
ed algorithm are not mere hybrid graphs, but hybri d 
graphs, some lines of which have 'forbidden' potential 
orientations in Goo. Let us write -.{u +- v}00 to de­
note that a line u - v has forbidden the orientation 
u <- v in Goo. A feasible semis/ide from a node w1 to a 
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Figure 3: Transitivity principle 

Figure 4: Necessity principle 

node wk in such a graph H is a route w1, ... , Wk, k � 2 
where w1 ___. w2 in H ,  and for i = 2, . . . , k - 1 either 
w;--+ Wi+l in H or [w;- Wi+I and ...,{w; +- w;+doo 
in H]. 

LARGEST CHAIN GRAPH RECOVERY AlGORITHM 
Let Go be a hybrid graph over N which is the pattern 
of a class of Markov equivalent CGs. The algorithm 
alternates 'orientation bans' by a transitivity principle 
and 'edge directing' either by a necessity principle or 
by a doublecycle principle. However, or ientat ion bans 
have priority. 

Transitivity principle (se e the figure 3) means that when­
ever w1, ... , Wk is a feasible semislide in G1 (1 � 0), 
wk - wk+1 in G,, and there is no edge in G, between 
Wk+l and {w11 • • •  , w,�:_r}, then -.{w.�: +- Wt+doo in 
G,+1, i.e. WJ1 • • •  , Wt+l is a fe asible semislide in Gt+l· 

Note that the transitivity principle ensures th at all 
lines in complexes in G will have forbidden both ori­
entations in Goo. 

Necessity principle (see the figure 4) means that when­
ever r0, . . . Tk, k � 2 is a pseudo cycle in G, ( rk+ 1 :::: ro ) 
such t ha t ro ---+ r1 in Gr, ri - ri+1 in G, for some 
1 � j � k, an d for every i E { 1, . . . , k} \ {j} either 
r; - ri+l in G, or [r; - T'i+l and -;{r; ...... r;+t }oo in 
G,], then the line Tj - ri+l is changed into the arrow 
ri +- ri+l in Gt+l. 

Doublecycle principle (see the figure 5) assumes that 
T'Q 1 • • • T'k) k � 2 is a pseudo cycle in a, SUCh that 
ro, . . . rk-l is a feasible semislide in G,, and r.�:_1 - rk. 
r.�: - rk+I = ro in G,. Moreover it supposes that 
s o , ... , Sm, m � 1 is a feasible semislide to r1 :::: Sm 
such that so :j; r0 and there exists 0 � n � m - 1 
such that { r.�:, Sn} is an edge in G,, but there is no 
edge in G1 between ra and {so, ... , sn }. Then the line 
1"/e-1- T'k in a, is changed into the arrow 1"1;-1 <- r�e 
in Gr+t· 

Note that the edge {r.�:_1, rk} which is directed by the 
previous principle belongs to two pseudocycles, namely 
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Figure 5: Doublecycle principle 

Figure 6: An essential graph and largest CG 

to ro, . . . rk and Sn, ... , Sm = r1, ... rk. This motivated 
the terminology. 

THEOREM 5.1 The result of the described algorithm 
is the largest CG of the corresponding class of Markov 
equivalent CGs. 

The proof of the Theorem 5.1 is beyond the scope of a 
conference contribution. It will be given in (Studeny 
1996). Let us conclude the section by an example. 

EXAMPLE 5.1 Let us consider the DAG from figure 
2. The corresponding essential graph, called the 'com­
pleted pattern' in (Verma Pearl 1991), is given in the 
left picture of figure 6. The largest CG of the cor­
responding class of Markov equivalent CGs is in the 
right picture of the same figure. 

6 CONCLUSIONS 

Several remarks conclude the contribution. The first 
remark concerns the significance of the concept of 
largest CG. Markov networks have one big advan­
tage: different UGs yield different dependency model­
s. Bayesian networks have not such pleasant property: 
two different DAGs may represent the same dependen­
cy model, that is to be Markov equivalent. Moreover, 
the class of Markov equivalent DAGs has no natural 
representative and one has to represent the class by a 
pattern or by an essential graph. However, then the 
problem arises whether such type of representation al­
lows to identify back the corresponding dependency 
model. As patterns and essential graphs are not DAGs 
in general one cannot use the criteria for DAGs to ob­
tain the dependency model. However, the concept of 

largest CG provides a reasonable solution even in case 
of Bayesian networks. One can represent the class of 
Markov equivalent DAGs by the largest CG of the cor­
responding class of Markov equivalent CGs (which is, 
of course, wider, but represents the same dependency 
model). As the largest CG is a real member of the class 
of Markov equivalent CGs, one can identify back the 
corresponding dependency model by some criterion for 
CGs, for example c-separation. In fact, the concept of 
essential graph also provides a solution of the men­
tioned problem because of it also belongs to the class 
of CGs which are Markov equivalent to the considered 
DAG- see (Andersson et. al. 1995). I think that this 
result is a good argument why one should not be fixed 
strictly only to DAG-models: a wider perspective of 
CGs may solve simply problems specific for Bayesian 
networks. Thus, both the essential graphs and the 
largest CGs solve the above mentioned problem for 
DAGs, but the use of the largest CG is not limited to 
DAG-models. 

The second remark concerns the significance of the 
separation criterion for CGs. It is more intuitive in 
nature than the moralization criterion and this gave 
the way to the proof of Theorems 3.2 and 3.3 which 
justify completely the use of CGs for the description of 
probabilistic dependency models. Note that Theorem 
3.2 can be interpreted as the statement that graphoid 
properties are complete for input lists - in this respect 
it generalizes an analogous result for DAGs from (Ver­
ma Pearl 1990). 

The third remark concerns the pattern recovery algo­
rithm. It has an important feature: it depends only 
on predicates (u, vi-} and (u, vi+ w} introduced in 
Definition 4.2. Especially, two CG-models which coin­
cide on these predicates must be equal! The number 
of such predicates is polynomial in number of variables 
unlike the exponential number of triplets in a general 
dependecy model. This may give a more precise es­
timate of the number of CG-models or DAG-models. 
Perhaps a representation of DAG-models in terms of 
these predicates would be more effective. 

The fourth remark concerns the largest CG recovery 
algorithm. The orientation rules (principles) are for­
mulated in very general form- for semislides and pseu­
docyles. The reason is that I succeeded to prove their 
completeness just in this general form. However, I 
conjecture that they are complete also when they are 
formulated in a 'narrow' sense: that is the transitiv­
ity principle for feasible slides, the necessity and the 
doublecycle principles for minimal cycles (i.e. without 
a chord) and feasible slides. In all examples I stu­
died, such restricted formulation was sufficient, but 
technical complications hindered me in the proof of 
such a stronger result. The question of computational 
complexity of the algorithm is an interesting question 
which can be a topic of further research. 

Note that in this paper attention was restricted to 
probability distributions on finite sets just for simplic-



ity and clarity. Analogous couc€pts can be considered 
also in continous case. 
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7 APPENDIX 

LEMMA 7.1 Let G be a CG over N, M the dependency 
model induced by G, u, v E N distinct such that { u, v} 
is not an edge of G. Then IM{u,vibda(u)Ubda(v)}. 

Proof: Let us apply the moralization criterion to 
(u, viT) where T = bda(u) U bda(v). Evidently 
ana({u,v}UT) = ana({u,v}) and one is to consider 
the induced subgraph H = Gan({u,v})· Let us verify 
by contradiction that either chH( u) or chH( v) is emp­
ty. Indeed, if u --+ t in H for some t, then owing to 
t E ana( { u, v}) there exists a descending path in G 
from t to { u, v}. It has to lead to v, as otherwise a 
directed cycle in G exists- see Lemma 2.1. Similarly, 
v -+ s in H for some s implies that there is a descend­
ing path from s to u. Thus, if both u-+ t and v _,. s, 
then u --+ t ... v --+ s . . .  u is a directed pseudocycle in 
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G what contradicts Lemma 2. 1. Therefore, one can 
suppose without loss of generality that chn(u) =: 0 .  
This implies that no edge to  u is  added when the moral 
graph of H is made and u has bdc(u) as the set of its 
neighbours in the moral graph. Thus, T meets every 
path between u and v in H .  0 

LEMMA 7 . 2  Let G be a CG over N, M the dependency 
model induced by G, u, v E N distinct. Then { u, v} is 
a n  edge of G iff DM {u, v !-) . 

Proof: For necessity use the separation criterion: the 
edge { u ,  v} is an active path w.r . t .  any Z C N \  {u,  v} .  
The sufficiency follows directly from Lemma 7 .1 . 0 

LEMMA 7 .3 Let G be a CG over N, M the dependency 
model induced by G.  Suppose that u, v, w E N are 
distinct nodes of N such that { u,  w } ,  { v ,  w} are edges 
of G and {u, v} is not an edge of G. Then u -.. w ...._ v 
is a complex in G iff DM (u, v i + w) .  

Proof: For necessity use the separation criterion: the 
path u -.. w +-- v is an active path w .r.t .  any Z C N \ 
{ u ,  v} containing w. For sufficiency one can suppose by 
contradiction that the induced sub graph on { u,  w, v} 
is not a complex in G. Then w E  bdc(u) U bdc(v) and 
Lemma 7.1  leads to contradiction. 0 

LEMMA 7.4 Let G be a CG over N, M the dependency 
model induced by G. Suppose that w1 ,  . . . , Wk 1 k 2: 4 
is a sequ ence of distinct nodes such that 

• {wi , wi+d is an edge of G for i =  1 ,  . . .  , k  - 1, 

• no other edge exists in G among { w1 , . . . , Wk} 1 
• Wi _,. Wi+ l - . . . - Wj -1 +-- Wj is not  a complex 

in G for 1 :::; i :::; j :::; k 1 j - i < k - 1 .  

Th en w1 - w2 - . . .  - wk- 1  <---- W k  i s  a complex in 
G iff [ DM (w1 , wk l + w2} & DM (wl . wk l + wk- 1} ) . 

Proof: For necessity use again the separation crite­
rion: the path w1 ___. w2 - . . . - Wk� 1 ...._ Wk is an 
active path w.r .t .  any Z C N \ { w1 ,  wk} containing ei­
ther w2 or Wk� 1 ·  To show the sufficiency let us verify 
first by contradiction that w1 --+ w2 . Indeed, otherwise 
w2 E bdc(wt )  and one can use Lemma 7.1 for u = w1 ,  
v .  = Wk to  get contradiction with DM (w1 ,  wk l + w2).  
Similarly, DM (wt , wk !  + wk-t )  implies wk�t ...._ Wk 
in G .  Supposing that Wj _1 .-- Wj in G for some 

3 S j S k - 1 let us consider the minimal such j 
and find maximal 1 :::; i :::; j - 1 with w; -.. w;+1  in G. 
Then w; ___. wi+ 1 - . . .  - Wj � 1 +- Wj is a complex in 
G what contradicts the assumption. Thus, no such j 
exists. Similarly, no 2 :::; i :::; k - 2 with Wi ___. Wi+ l  in 
G exists and Wr - Wr+ 1 for r :::: 1, . . . , k - 1 .  0 

Proof of Theorem 4 . 1 : By Lemma 7 .2  Ho has the 
same underlying graph as G, and hence every Hi has 
the same underlying graph as G. Let us verify by 
induction on I = 1 ,  . . . , card N - 2 the following two 
conditions. 

(a) u --. w in Hr implies u -.. w in G0 , 

(b) every complex in G of degree at most l is also a 
complex in Hz . 

To verify (a) for H 1 realize that u ---o w in H 1 implies 
the existence of a third node v with u - w - v in H0 , 
-.(u - v) in Ho , and DM {u, v l  + w) . Hence {u , w} , 
{ v , w} are edges of G while { u ,  v} is not an edge of 
G, and by Lemma 7.3 (sufficiency) u ___. w .-- v is a 
complex in G, which says u ___. w in Go . 

To verify {b) for H 1 suppose that u --+ w .-- v is a 
complex in G and by Lemma 7.3 (necessity) derive 
DM (u, vl +w) .  Moreover, evidently u - w - v in H0, 
{ u ,  v} is not an edge of H 0 and thus, by construction 
of H1 1 u ___. w +- v is a complex in Ht . 

Supposing ( a) ,(b) hold for Hr- 1 ,  l ;::: 2 let us verify (a) 
for Hr . If u ---o w in Hr , then either u -.. w in H1_ 1 
and one can use the induction assump tion, or ,by the 
construction of Hr, there exists w1 , . . .  , wz+2 ,  w1 = u, 
w2 = w such that the collection of conditions from the 
item (iii) of the algorithm is satisfied. As H,_ 1  has 
the same underlying graph as G the first two condi­
tions of Lemma 7.4 for k = l + 2 are fulfilled. The 
third condition of Lemma 7.4 then follows from the 
condition (b) for H1� 1 .  Thus, by Lemma 7.4 (suffi­
ciency) w1 ___. w2 - . . .  - wz+1 ..- wr+2 is a complex 
in G, which implies u = w1 -.. w2 = w in G0 . 

Supposing (a) ,(b) hold for H1� 1 ,  I 2: 2 and (a) holds 
for H, , let us verify (b) for H, . Let w1 -.. w2 - . . .  -
Wo+t  +- Ws +2 , s :::; I, be a comp lex in G. First, let 
us show by contradiction that Wr - Wr+1 in H1 for 
r = 2, . . .  , s. Indeed, if for instance Wr ...._ Wr+l in Hr 
for some 2 :::; r ::; s ,  then by (a) for Hz, Wr .-- Wr+l 
in Go and therefore in G, what contradicts the as­
sumption . Similar contradiction can be obtained if 
Wr ___. Wr+ 1 in Hr for some 2 $ r S s .  Second, if 
1 :::; s < l ,  then Wt -.. W2 - . . .  - w•+l +- w.+2 is 
a complex in H,_ 1 by (b) for H1� 1 which is saved in 
H, by the previous observation. Third , if s = I, then 
one derives by using (a) for H1- 1  that Wr - Wr+1 
in H1� 1  for r = 2 ,  . . .  , l ,  W t  ___. w2 or w 1  - w2 in 
H1� 1 ,  WI+l +- Wf+2 or Wl+t - wl+2 in H1- 1 ·  Evident­
ly no other edge exists in H1� 1  among {w1 , . . .  , w1+2} 
and Lemma 7.4 (necessity) says DM (w1 ,  Wf+2 1 + w2) 
and DM (wt , w1+2 l + Wf+t ) · Shortly, the collection of 
conditions from the item (iii) of the algorithm is sat­
isfied and,  by the construction of H1 , w1 ___. w2 and 
Wf+l +- WI+2 in H1 and hence, by the first mentioned 
observation , w1 --> w2 - . . .  - WI+ l <--- W!+2 is a 
complex in H1 • 

Thus, the last iteration H. of the algorithm has the 
same underlying graph as G, and , by (a) for H. , u -.. v 
in H * implies u ___. v in Go . This fact says that there 
exists a complex in G which contains u -.. v , which 
implies by (b) for H • that there is a complex in H * 

containing it and therefore u --> v in H * .  Thus, u ___. v 
in H. iff u ___. v in Go and hence H. = G0 . D 


