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STRUCTURAL SEMIGRAPHOIDS'

MILAN STUDENY

Institute of Infarmation Theory and Automation, Academy of Sciences of Czech
Republic, Pod vodórenskou věži 4, 182 08, Praha 8, Czech Republic

The new approach to mathematical description of structures of stochastic conditionď independence from
[Sfudený' |993a_c] is related to the classicď approach by means of the notion of structural semigraphoid.
It is shown how to reďize the corresponding deductive mechanism to infer probabilistically vďid con-
sequences of input information about Cl-structure, called facial implication. In the case of 4 attributes
(random variables), structural semigraphoids are characterized in terms of inference rules.

INDEX TERMS: Conditional independence, dependency model, semigraphoid, structural face, skeletal
imset, structural semigraphoid

INTRODUCTION

Although CI 7:rrrúitional independence) was studied in modern statistics many
years ago [Dawid, 1979; Mouchart and Rolin, 1984], its importance for probabilistic
expert systems was explicitly discerned and hightighted relatively lately [Pearl, 1986;
Smith, 1989; Geiger and Pearl, 1989; Spiegelhalter and Lauritzen, 19901. Pearl and
Paz [1985] proposed the concept of dependency model to describe structures of CI
for finite number of random variables" Unfortunately, their original hypothesis (see
also [Pearl, 1986]) that models of Cl-structures coincide with semigraphoids (a spe-
ciď class of dependency models introduced by Pearl and Paz t1985]) was refuted in
[Studený, 1989a]. Later it was even found that models of Cl.structures cannot be
characterized as dependency models closed under finite number of inference rules
lstudený, 1992]. This was lately strengthened by Geiger and Pearl [1993] who showed
that even so-cďled disjunctive inference rules do not help.

These results inspired us to attempt to develop an alternative mathematical de-
scription of Cl-structures for finite number of random variables, namely by means
of so-called strubturalfaces. This theory, presented as a series of 3 papers [Studený,
1993b-dl, provides a deductive mechanism to infer probabilistically valid conse-
quences of input information about Cl-structure. This mechanism, called facial im-
plication is much more poweďul than the semigraphoid mechanism: it includes in-
finite number of inference rules! Nevertheless, it is finitely implementable from
theoretical point of view. Of course, the new approach has its counterpart in the
classical theory of dependency models: a speciď class of structural semigraphoids
was defined as dependency models coÍTesponding to structural faces'

In thís paper we want to show (without mathematical technicalities and proofs
contained in [Studený' l993b_d]) how the practical realization of facial implication

'This research was supported by the internď gÍant n. 27510 of Czechoslovak Academy of Sciences
"Explanatory power of probabilistic expert systems: theoretical background".

'E-mail address: studeny @ cspgasl l.bitnet.
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looks. To compare structural semigraphoids with general semigraphoids they are (in
case of 4 attributes) characterized by means r:f five further inference rules.

NOTATION

Throughout this paper we deal with the following situation. A finite set N having at
least two elements called tbe basic ser is given. The class of nontrivicl subsets of
i/ i.e. subsets having at least two elements will be denoted bv Ó[:

o l t : {SCN  ca rds>2}

The class of all subsets of N will be denoted by exp N
Review the symbols for number sets:

mtegers
: Z O (0, *) nonnegative integers

strictly positive integers (natural numbers)

$1 BASIC CONCEPTS

Let's begin with the concept of dependency model and semigraphoid. The definition
from [Geiger and Pearl, 1989] is slightly modified here.

Drr 1 (dependency model, semigraphoid)
Denote by 7*(M) the set of ordered triplets (A, B, c) where A, B, c are pairwise
disjoint subsets of N and Á, B nonempty. By dependency model over N we will
understand every subset of T*(AD.
A dependency model over N is called semigraphoid iff it is closed under following
four inference rules:

<A, B, C) - (8, A, C>
(A, B u c, D> -n (A, c, D)
(A,BUC,D>--(A,B,cuD,
[(A, C, D) & (A, B, C U D>] -, (A, B U C, D)

In case that r € 7*(N) is derivable from 1 c rx(1ť) by consecutive application of
preceding inference rules we speak about semigraphoid derivabiliry.

Rrvexr Pearl, Paz and Geiger call such inference rules axioms.

Dr;r 2 (model of Cl-structure)
Consider a random vector [é.]'." (where each random varjable á takes its vďues in
a nonempty finite set X,).
Say that [ť.],." obeys a triplet (A, B, C) € 7*(M) iff [ť,]'€Á is conditionďly inde-
pendent of [{]i.a given [{,],=..
A dependency model over N is called the model cf Cl-structure of [ť,],." iff it is
exactly the set of triplets obeyed by [ť,]'=".

Z
Z*
N

symmeŤy
decomposition

weak union
contraction"
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RpueRx Various another phrases were used in literature to say that ̂ ř is the model
of Cl-structure (P denotes the distribution of the vector [š,]'=l,1): 

.1 is induced by P'
in [Ur andPaz, L993),.P is peďect for 1' in [Geiger and Pearl, 1993], .1 is the
conditional independence relation corresponding to P' in [Studený, 1992], ..I is prob-
abilistically representable by P' in [Matúš, 1993].

It is well known that every model of Cl-structure is a semigraphoid (see for ex-
ample lDawid, 1979]), but the converse does not hold [Studený' 1989b].

But semigraphoids have another important advantage. They give a simple deduc-
tive mechanism to infer probabilistically valid consequences of input information
about CI-structure because the semigraphoid derivability implies probabilistic
implication:

DEr 3 (probabilistic implication)
Suppose that I C T*(AD and r E T*(M).
Say that I probabilistically implies r and write I ts r iff every random vector that
obeys / (i.e. all triplets from I) also oboys r.

Rnvaxr Several phrases were used to name the previous situation, e.g. Geiger and
Pearl said .r is logically implied by /' in [1989] or .Í is entailed by /' in t1993].

$2 STRUCTURAL SEMIGRAPHOIDS

Description of Cl-structures by means of finite number of inference rules appeared
not to be perspective (because of infinite number of laws remains unused). Thus,
the aim of the theory of faces was to ďford a finitely implementable deductive mech-
anism which comprehends all (at that time) known properties of CI, especially in-
finite number of inference rules.

This design was realized. Indeed, structurď faces give a class of dependency models
which is much more closer to models of Cl-structures than semigraphoids. These
dependency models were named structural semigraphoids in [Studený, 1993c]' Un-
forťunately, it has lately appeared that even structural semigraphoids do not coincide
with models of Cl-structures. But the theory of faces ďlows modification, perhaps
the latestly found laws of CI could be incorporated.

This section contains the definition of structural semigraphoid. But to reach it we
need to recall severalconcepts from [Studený, 1993b-c]: imset, structural imset and
(structural) face.

DBr 4 (imset, normalized imset)
Any function mapping the class of nontrivial sets rll, into Z wil.| be cďled imset (on
Ólt). An imset u: o|I --> Z is normalized iff the collection of numbers {a(S); s € 6ll}

has no common prime divisor.

RBuanx The word imset is an abbreviation for integer-valued multiset. The term
'multiset' is widely used in combinatorial theory-see [Aigner, 1979)"

The class of ďl imsets is too wide to describe CÍ-structures. Therefore a special
class of structural imsets was introduced for this purpose. Their rather technical def-
inition is below. Two oquivďent characterizations (maybe more lucid for some read-
ers) are mentioned in $3 and $5. Note that the adjective 'structural' was chosen
because these imsets should correspond to Cl-struetures"
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Der 5 (semielementary imset, structural imset)
Having acouple of Sets U,V C ďwith U\V + a * v\U considerthe fol lowine
func t i on  ú:expN- ->Z :

u (U  U  V ) :  r z (U  O  V )  :  +1  u (A :  u (V  =  - I
ú(il) = 0 for remaining W C N'

The restriction of u to ?I is called a semielementary imset cortesponding to the couple
{u, v}.
An imset a is called structural iff there exists a collection of semielementary imsets
(necessarily finite) {,oi o € $, coefficients ko e Z* and n € N such tbaí n.u :
2r.1ko" vo.

As written above, just the concept of face was introduced in [Studený, 1993c] to
describe Cl-structures" The definition is recalled here:

Dpp 6 (structural face)
A set of structural imsets F is called a (structural) face iff it satisfies the following
conditions:

(F.0)0 €F  nontr iv ia l i ty
( F .1 )u , veFžu*ve  F  compos i t i on
(F.2) u, ystructural imsets u * v €F> u,v e F decomposit ion.

Rouem Note that the terminology (the name face) found its motivation in the
theory of convex polytopes, for details see [Studený, |993c).

Dep 7 (structural semigraphoid)
First, introduce a primary mapping i which identifies elements of Za(N) with semi-
elementary imsets: to each triplet (A, B, C) assign the semielementary imset coÍTe-
sponding to the couple {A U C, B U C}.
Then, having a structural face F the corresponding dependency model 1 is defined
as follows:

(A, B, C> e I iff i((A, B, C)) € F.

Any such dependency model will be called a structural semigraphoid.

As indicated by terminology, every dependency model corresponding to a face is
indeed a semigraphoid. Moreover, it holds:

THEonev I Every model of Cl-structure is a structural semigraphoid.

This result is proved in [Studený' 1993c] as Consequence 2.9. However, there
exist semigraphoids which are not structural (see Example 2"I in the same paper).
Moreover, as explained there in Remark 2.3 structural semigraphoids cannot be char-
acterized as dependency models closed under finite number of inference rules. There-
fore difference between (general) semigraphoids and structural semigraphoids is in-
deed qualitative.

$3 SKELETON

The following task is crucial for computer implementation of our theory: to be able
to recognize structural imsets in finitely many steps.

, l i i
. i  I

{ i

irl
:li.

._{:,
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The presented definition (Def 5) is not suitable for this purpose as there is no
limitation for the number n € N. Nevertheless, the follcrwing iesult enables us to
solve this problem from theoretical point of view.

THEonrv 2 There exists the leasty'nite set,S of normalized imsets (which are even
nonegative) such that for every imset a it holds:

[& is structural] <> [Vs E S (s, a) > 0]

where (s, u) : Isers(.S).a(S)"

This result is proved in [Studený, I993c] as Consequence 2.5.

Der 8 (skeleton)
The set s from the preceding theorem is called the (stuctural) skeletorz. their ele-
ments skeletal imsets.

If a computer has all skeletal imsets in its memory, it can easily judge whether
a given imset z is structural: simply to check the nonnegativity oť ňu*Í".s (s, l)
for all skeletal imsets s.

Thus, our task is solved from theoretical point of view. But, from practical point
of view, we still need to find the skeleton. So far, I have no sufficienily conuenie.rt
characterization of skeletal imsets giving an algorithm finding the skeleion for every
cardinality of the basic set. Note (without proof) that this pioblem is equivalent to
the problem of finding extremal convex games from game theory 1for tňis concept
see [Shapley, 1972]).

The number of skeletal imsets increases with the cardinality of the basic set. In
case card N: 3 the skeleton has 5 imsets. The following table gives their list for
ď : {1 ,2,3}, the proof is in [Studený, 1993d] in Examp-le 3.1.

1r, 2j Ir, 3j {2, 3} {r, 2, 3}

In case card N : 4 the skeleton has 37 elements, their list for N : {1, 2,3, 4} is
in the table below.

{ r , 2 }  I t , 3 }  U , 4 }  { 2 , 3 }  { 2 , 4 }  { 3 , 4 }  1 r , 2 , 3 }  { 1 , 2 , 4 }  1 1 , 3 , 4 }  { 2 , 3 , 4 }  N
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0
0
0
1
I

0
0
1
0
I

0,|

0
0
I

J 1

,12

J3

Ja

J5

S ;

0
0
0
t

0
0
I
0

0
I
0
0

. i 2 0 0 0 0 0 0 1
s 3 0 0 0 0 0 0 0
r a O 0 0 0 0 0 0
r 5 0 0 0 0 0 0 0

L

2
2
2

1 6 0 0 0 0 0 0 0
r 7 0 0 0 0 0 0 1
r s O 0 0 0 0 0 1
s e 0 0 0 0 0 0 1
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{ t , 2}  U , r }  U ,4}  12 ,3 \  {2 ,4}  {3 ,4}  U ,2 ,3} u ,2 ,4 j  u , 3 ,4 \  {2 ,3 ,4}  N
0
0
0
I
1
I

0
I
I
0
0
I

I
U
I

I
0

000001
100001
010000
001001
000100
000010

J ro  I
S t r  0
J r z  0
J r :  u
S t r  0
s r s  0

s r o

2
a

2
z
2
2

000
000
000
100
010
001

00
10
0 l
0 0
00
00

J r z  I
. i ra 0
s rp  0
J:o 0
s lr  0
J:: 0

I

I  , .

t ?

l 3

z
2
I
2

z
I
2
z

0 0 1 0 1 1 1
0 1 0 1 0 1 2
1 0 0 1 1 0 2
1 1 1 0 0 0 ? .

Jz:

S:+

S:s

Jzo

L

2
2
z

1
I
2
I

1
z
I
I

110100
101010
011001
000111

s--

szg
Jzs
J:o

a Á

24, ,^

24
1 ^

24

2
z
2
2
L

z

2
2
z
2
r.
2

2
2
2
2
2
?

0
I

I
0

J:r
S:Z
s - .

s:l
Jrs
S:o

J.rr

The completeness of that list is proved in [Studený ' 199 1 ] , but as I recognized lately
in [Shapley,1972] these functions were already determined by S. A" Cook in 1965.

The following easy example illustrates ouÍ method how to recognize nonstructural
ímsets.

Exavpr,E 1 Consider N : 11, 2,3) and imsets u1. u2l

u{U, 2}) :  ur({ l ,  3}) = ur({Z, 3}) = + t

uz({\, 2)) : uz(Il, 3}) : uz(12, 3}) : - t

u r (AD :0

u2(IÝ) :  *|

and the task to judge whether they are structural. To this end make the corresponding
table of numbers (t, u) for skeletal imsets.

3
- l

Thus, according to Theorem 2 the imset ru, is structural while the imset a2 is not.
Indeed, U1Ca;Í:- be written as the sum of semielementary imsets listed in the following
table (the last column contains the corresponding couple of sets-see Def 5).

,S5

t t  0  l  l  l
u " 1 0 0 0
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U, 2j U, 3\ {2, 3} U, 2, 3} coupte
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1
0
0

V1

v2

V3

0
0
I

0
1
I

0

o {l}, {2}
o {l}, {3}
o {2}, {3}

$4 FACIAL IMPLICATION

As mentioned above structural semigraphoids have no finite 'simple' axiomatic char-
acterization. Nevertheless, they can be endowed by another finitely implementable
deductive mechanism, namely they can utilize the facial implication developed for
structural imsets"

Dnn 9 (facial implication)
Having a set of structural imsets Z and another structural imset v say that L facially
implies v and wnteL p v iff there exists afinite subset L' C L and coefficients
k.e z" (w € L,) such that (ž..., k-.w _ v) is a structural imset.

To explain the terminology note that the implication L "-> v can be equivalently
defined as follows: whenever a (structurď) face contains L then v belongs to that
face too (see Lemma 2.2 in [Studený, l993c]). The following result is proved in the
same paper as Consequence 2.8.

Turongu 3 Whenever I c T*(N) and t € ra(N) then

i(I) *> i(t) entails I é t

(i denotes the primary mapping from Def 7).

Thus, the facial implication gives a tool to derive probabilistically valid conse-
quences of input information about Cl-structure. The following example illustrates
how facial implication can be verified using the original definition.

Exeupm 2 Consider N : {I,2,3, 4} and imsets:

u r ( { I , 2 , 3} ) :  *1  u , , ( { I , 3} ) :  u r ( {2 ,3} ) :  - 1  u{D:O  o rhe rw i se
uz ({ I ,3 ,4} ) :  *1  uz ({ l , 4} ) :  u2 ({3 ,4} ) :  - l  u2 (Z ) :  O  o rhe rw i se
us ( { l , 2 , 4} ) :  *1  us (U ,2} ) :4 ( { \4} ) :  - l  4 (Z ) :  A  o the rw i se

and ask whether the imset

uq({I ,2,3}):  * l  uq(U,2|)  :  uo({2,  3})  :  _ l  uÁZ) = O otherwise

is facially implied by {rr, uz, ut}.The following table

t r , 2 I  u ,3 |  I r , 4 \  {2 ,3}  {2 ,41  {3 ,4 \  11 ,2 ,3}  11 ,2 ,4}  U ,3 ,4 )  12 ,3 ,4}  N
t 4 o
u 2 0
u 3  - 1

žt,  l ,  _ l
ua  - l

u 5 0
u 6 0

0  - 1  0  0
- t  0  0  - l

0  0  * l  0
- 1  - 1  - t  - l

0  * r  0  0
- l  0  - l  0

0  0  0  - r

* l

0
0

- l
0
0

- t

0
I
0
I
0
0
I

0
0
1
I
0
I
0

I
0
0
I
I
0
0

00
00
00
00
00
00
00
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shows that (u1 * u2 * ul) : uq * (a' * a6) where U5,lt64Í? evidently semielementary
imsets. Thus, according tcl Def 9 get {u,, u2, h} ř-> ll4'

Nevertheless, the method in preceding example is too clumsy. At first we have
to guess coefficients k. and then we have to be able to "decompose" (I/<, .w - v)
into semielementary imsets. Moreover, it gives no instruction how to refute facial
implication, it can give only positive answer. But in case that the skeleton is at our
disposal it is no problem to use the following easy criterion (it can be derived as a
consequence of Theorem 2, see also [Studený, I993c), Assertion 2.1).

CoNsnquErucE 1 Having a set of structural imsets L and another structural imset v
the implication Z F v takes place iff

V sES ( s ,u )  )  0 )  [ ( s , v )  >0  f o r some  ueL ]

(.S denotes the skeleton)"

This method can be also used to prove that the facial implication does nor take
place. The following example illustrates it.

Exaupm 3 Consider N : U,2, 3, 4\, the following imsets

u l l g :  u ( {3 ,4} ) :  +1 ,  a , ( {1  , 3 , 4+) :  u ( {2 ,3 ,+} )  -  - 1 ,  u r (Z ) :  O  o rhe rw i se

uz (N) :  u l { l , 2 } )  =  +1 ,u2 ({1 ,2 ,3} )  =  r r ( i l  , 2 , 4} )  -  - 1 ,  u z (D :  O  o the rw i se

ut({I,3}) : *1, ur(Z) : 0 otherwise

u.({2,4}) : *1, uo(4 : O otherwise

and ask whether the fifth imset

us ( { l , 2 } )  :  *1 , us(D : O otherwise

is facially implied by {rr, uz, tt3, u.}. lt is no problem to see that (s, ar) > 0 only
for skeletal imsets listed in the following table of numbers (s, a):

\s, u) uj

0
0
0
I

0
0

0
I
0
0
0
0

I
0
0
0
0
0

J ro

s r r
Jzs
Jzo

szt

Jze

Sy.

S::

J:t

J:s

sro
J:r

0
0
I
0
0
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Evidently, the condition from Consequence I is satisfied and therefore {u,, ttz, tt3:
uq} ě a5. on the other hand, {,,, u,, u,} Ý a, since (s,,, tr,) > 0 but (s25, a,) : 0
f o r  i  :  1 , 2 ,3 .

The method described in preceding examples can be used to derive further infer-
ence rules valid for structural semigraphoids and therefore for models of Cl-struc-
tures. Namely, having a hypothesis that a set 1 C Z*(N) implies / c 7*(1ť) firstly
translate elements of 1 and r to semielementary imsets (by means of primary mapping
from Def 7) and then try to verify i(1") " t(D. By Theorem 3 it gives / F t. This
procedure can be used to derive the following 5 inference rules holding for sructural
semigraphoids.

(A.3) [(Á' B, C U D> & (C, D, A) & (C, D, B) & (A, B, O)] <>
.* [(C, D, A U B> & <A, B, C> & (A, B, D> & (C, D, O>]

(A.4) [(Á, B, C U D> & (A, D, B> & (C, D, A> & (B, C, a)) <+
*' [(Á, D, B U C) & (A, B, D> & (B, C, A> & (D, C,a\]

(A.5) [(Á, C, D> & <B, D, C) & (B, C, A) & (Á, D, B)] <->
.' [(Á, D, C) & (B, C, D) & (B, D, A> & (Á, C' B>)

(A.6) [(Á' B, C> & (A, C, D) & (A, D, B)) <->
*-rL(A, C, B> & (A, D, C> & (A, B, D>l

(A.7)  [ (Á,  B ,  C U D> &<C,  D,AU B> &(A,C a> &(B,  D,a\] . .
*' [(Á, C, B U D) & (B, D,Á U C) & (A, B, a> & (C, D, a>]

For instance, in Example 2 we have derived the implication
L<I ,2 ,3 )  &  (1  , 3 , 4>  &  (1 ,  4 , 2> l  -  ( 1 ,  3 , 2 )  i . e .  pa r t  o f  (A .6 ) ,  i n  Examp le  3
[ (1 ,2 ,34]  &  (3 ,  4 ,  12> &  (1 ,  3 ,  A> &  (2 ,  4 ,  A \ l  - -  (1 ,2 ,  O)  i . e .  pa r t  o f  (A .7 ) .
Note that inference rules listed above characterize structural semigraphoids in case

card N : 4. The verification was made by means of a computer. Mention that the
number of all semigraphoids in that case is 26 424 while the number of structural
semigraphoids is 22 108. By the way, in case card N : 3 we have 22 semigraphoids
and every semigraphoid is structural.

$5 REMARKS

As mentioned in $2 there exist structural semigraphoids which are not models of CI-
structures. In particular, facial implication is not equivalent to probabilistic impli-
cation. I must emphasize that the essential step to this discovery was made by my
colleague František Matúš [1993] who found that (said in his terminology) there
exists a matroid which is not probabilisticďly representable. Knowing this I suc.
ceeded to find fuither independent properties of models of Cl-structures which do
not hold for structural semigraphoids:

(8.1) tG, B, C> & (A, B, D) & (8, C, A> & (C, D, A\-- (8, A U C, A>
(B.2) tG, B, D> & (A, C, B) & (8, C, A) & (C, D, O>l- (A U B, C, A>

The proofs of these results are in manuscript still, we (i'e. I and Matúš) plan to
publish it later (hopefully after having examined all models of Cl-structures in the
case card tr/ : 4).

Let us point out to some assets of the theory of faces. This approach makes it
possible to prove further laws for CI, i.e. to verify probabilistic soundness of con-

215
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jectured inference rules (this simple method was outlined in Example 2, more ex-
plicitly see Examp|e 3.7 in [Studený' 1993d])' Moreover' it allows input of infor.
mation about Cl-structure ín various forms (individual Cl-statements, Markov nets,
influence diagrams). Information from different sources can be easily combined without
loss of information about Cl-structure (for details see [Studený, I993d) Examples
3  "  3 -3 .6 ) .

According to the result from [Studený, L993a] every facial model of Cl.structure
can be equivalently described by means of the validity of certain product formula.
This can be understood as the first step to a justified global interpretation of these
models of Cl-strucťures' In fact, some links to well.known hierarchical loglinear
models are made.

In [Studený' 1993d] two possible representations of faces were derived:
Representation by means of generatin7 imsets For every (structural) face F there

exists a structural imset a such that F is the least face containing u i.e. the face F
is generated by u (see Theorem 2.2 there).

Representation in terms of the skeleton Every (structural) face has the form:
F : {ustructural imset; Vs € 7 (", u) : 0} where 7 C s is a subset of the skeleton
(this is treated as Theorem 2.3 there).

Let us mention further equivalent definition of structural imset, namely by means
of the class of so-called completely convex set functions (see fStudený, 1993d],
Theorem 2.4):

[z is structural] <+ [(m, u) > 0 for every completely convex set function ml.
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