
Learning Bayesian network structure: towards the essential graph by integer
linear programming tools

Milan Studenýa,∗, David Hawsb

aInstitute of Information Theory and Automation of the ASCR, Prague, Czech Republic
bIBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA

Abstract

The basic idea of the geometric approach to learning a Bayesian network (BN) structure is to represent every BN
structure by a certain vector. If the vector representative is chosen properly, it allows one to re-formulate the task of
finding the global maximum of a score over BN structures as an integer linear programming (ILP) problem. Such a
suitable zero-one vector representative is the characteristic imset, introduced by Studený, Hemmecke and Lindner in
2010, in the proceedings of the 5th PGM workshop. In this paper, extensions of characteristic imsets are considered
which additionally encode chain graphs without flags equivalent to acyclic directed graphs. The main contribution is
a polyhedral description of the respective domain of the ILP problem, that is, by means of a set of linear inequalities.
This theoretical result opens the way to the application of ILP software packages. The advantage of our approach
is that, as a by-product of the ILP optimization procedure, one may get the essential graph, which is a traditional
graphical BN representative. We also describe some computational experiments based on this idea.

Keywords: learning Bayesian network structure, integer linear programming, characteristic imset, essential graph
2010 MSC: 68T30, 52B12, 62H05

1. Introduction

Learning a Bayesian network (BN) structure is the statistical task of model choice, where the candidate statistical
structural models are ascribed to acyclic directed graphs. A score-and-search approach to this learning task consists
in maximization of a quality criterion Q, also called a score or a scoring function, which is a real function of the
(acyclic directed) graph G and the observed database D. The value Q(G,D) says how much the BN structure defined
by the graph G, that is, the statistical model ascribed to G, fits the database D. Note that some researchers in machine
learning are accustomed to identify a BN structure with the respective equivalence class of graphs and prefer to talk
about learning an equivalence class of Bayesian networks.

Two important technical assumptions on the criterion Q were pinpointed in the literature in connection with com-
putational aspects of the above-mentioned maximization task. Since the goal is to learn a BN structure, Q should be
score equivalent [3], which means it ascribes the same value to equivalent graphs, that is, to graphs defining the same
BN structure. The other assumption is that Q is decomposable, which means Q(G,D) decomposes into contributions
which correspond to factors in the factorization according to the graph G. Typically, it is required that Q is additively
decomposable [5], that is, Q(G,D) is the sum of such local contributions, called local scores.

The geometric approach is to represent every BN structure by a certain vector so that such a criterion Q becomes
an affine function of the vector representative, that is, a linear function plus a constant term. This idea was introduced
by Studený already in 2005 [22] and then deepened by Studený, Vomlel and Hemmecke in 2010 [23]. A suitable
(uniquely determined) zero-one vector BN representative seems to be the characteristic imset, introduced recently by
Studený, Hemmecke and Lindner [24, 12].

∗Corresponding author.
Email addresses: studeny@utia.cas.cz (Milan Studený), dchaws@gmail.com (David Haws)

Preprint submitted to International Journal of Approximate Reasoning September 11, 2013

Jaakkola et al. [13] and Cussens [6, 7] came independently with an analogous geometric approach. The main dif-
ference is that they used certain special zero-one vector codes of (acyclic) directed graphs to represent (non-uniquely)
BN structures. On the other hand, they made much more progress with the practical application of integer linear
programming (ILP) tools. To overcome technical problems with the exponential length of their vectors they utilized
the idea of the reduction of the search space developed by de Campos et al. [9, 10], based on a particular form of
databases and quality criteria occurring in practice.

We have compared [28] both methods of BN structure vector representation and found that the characteristic imset
can be viewed as a (many-to-one) linear function of the above mentioned zero-one codes of directed graphs. We also
found [28] that by transforming the polyhedral approximation used by Jaakkola et al. [13] and Cussens [7] one also
gets a polyhedral approximation for the characteristic imset polytope. However, an unpleasant finding was that, while
there is a one-to-one correspondence for their acyclicity-encoding inequalities, their basic non-negativity and equality
constraints are transformed to much higher number of inequalities. Thus, direct transformation of their inequalities
does not lead to a suitable ILP problem formulation in terms of characteristic imsets.

Lindner [17] in her thesis dealt with the problem of finding a workable LP relaxation of the characteristic imset
polytope, that is, an outer polyhedral approximation such that the only vectors with integer components satisfying the
considered inequalities are the characteristic imsets. To overcome/avoid this problem she used the idea of extending
the characteristic imset with additional components, which is a useful standard trick in combinatorial optimization.
Her additional components allowed her to encode acyclic directed graphs inducing the characteristic imset. She also
reported on some computational experiments based her approach.

This paper is another step on the way to develop a consistent ILP approach based on characteristic imsets. Being
inspired by Lindner [17], we introduce an extended vector BN structure representative which includes the characteris-
tic imset and, moreover, encodes a certain special graph (equivalent to an acyclic directed graph). The main theoretical
result is a polyhedral characterization of the domain of the respective ILP problem. Note that the objective in this
ILP problem only depends on the characteristic imset and the additional components play an auxiliary role; this is
different from the approach based on direct encoding of graphs [13, 7].

More specifically, a set of linear inequalities is presented such that the only vectors with integer components in
the polyhedron specified by those inequalities are the above mentioned extended characteristic imsets. The presented
inequalities are classified in four groups. The number of inequalities in the first two groups is polynomial in the
number of variables, that is, in the number of nodes of the graph, while the number of remaining inequalities is
exponential. However, provided that the length of the vector representatives is limited/reduced to a quasi-polynomial
number by the idea presented by de Campos et al. [10], the number of inequalities in the third group can be reduced
to a quasi-polynomial number as well. The inequalities in the fourth group correspond to acyclicity restrictions. In
general, they cannot be reduced to a polynomial number, but the method of iterative constraint adding may be applied
to solve the respective ILP problem. The overall number of our inequalities is lower than Lindner [17] provided.

The main advantage of our approach is that once an optimal solution is found one can use the obtained (extended)
characteristic imset to get the corresponding essential graph, which is known as a standard (unique) graphical BN
representative [2]. This graph can be obtained as the solution of a secondary ILP problem: it has another objective
but shares with the main ILP problem the first two groups of inequalities. Thus, the second ILP problem has both
polynomial length of vectors and polynomial number of inequalities.

We have also performed some computational experiments whose aim was to verify the feasibility of the approach.
This was confirmed but the experiments also indicated that the number of our inequalities is too high to be able to
compete with the running times presented at GOBNILP web page [32]. On the other hand, the experiments confirmed
the assumption that the second ILP problem, used to get the essential graph, is easily solvable.

In Section 2 we recall basic concepts and some special results on chain graphs we use later in the paper. In Section
3 more details on the ILP approach to learning BN structure are given; specifically, we describe how to compute the
objective in the characteristic imsets case (from local scores) and how to utilize the search space reduction [10] in
the context of characteristic imsets. Section 4 describes the theoretical basis of our specific ILP approach; we say
which graphs are encoded in our extended characteristic imsets, list/comment the inequalities and formulate the main
results. In Section 5 we describe both phases to learn the optimal essential graph. Section 6 deals with two specific
methods to solve the main ILP problem that we tested in our computational experiments, described then in Section 7.
In Conclusions we comment the results and discuss further perspectives. The Appendix contains the proofs.

2

2. Basic concepts

Let N be a finite non-empty set of variables; to avoid the trivial case, assume |N | ≥ 2. In statistical context, the
elements of N correspond to random variables in consideration; in graphical context, they correspond to nodes.

2.1. Graphical concepts
Graphs considered in this paper have N as the set of nodes and they are hybrid in the sense that two types of edges

between (distinct) nodes i, j ∈ N are allowed, namely directed edges, called arrows, and denoted like i → j or j ← i,
and undirected edges, called lines, and denoted like i −− j or j −− i. Multiple edges are not allowed between two
nodes. If there is an edge between nodes i and j, we say they are adjacent. A graph is undirected if it only has lines;
it is directed if it only has arrows.

A cycle of length m ≥ 3 in a graph H is the sequence ρ : i0, i1, . . . , im = i0, where i1, . . . , im are distinct nodes, and,
for each r = 0, . . . ,m − 1, (ir, ir+1) is an edge in H. The cycle ρ is chordless, or minimal, if there is no other edge in
H between nodes in {i1, . . . , im = i0} besides those which form the cycle ρ. An undirected graph is called chordal if it
has no chordless cycle of length m ≥ 4.

The cycle ρ is directed if ir → ir+1 in H for each r = 0, . . . ,m − 1. A directed graph is acyclic if it has no directed
cycle. An equivalent definition of an acyclic directed graph G is that there exists an ordering b1, . . . , b|N | of all nodes
of G which is consistent with the direction of arrows: bi → b j in G implies i < j. The set of parents of a node i ∈ N
in a (directed) graph G is the set paG(i) ≡ { j ∈ N : j→ i in G}.

The cycle ρ is semi-directed if i0 → i1 in H and, for each r = 1, . . . ,m−1 one has either ir → ir+1 in H or ir −− ir+1
in H. We say that a hybrid graph H is 3-acyclic if it has no semi-directed cycle of length 3.

A set of nodes C ⊆ N in a hybrid graph H is connected if, for every pair i, j ∈ C, there exists an undirected
path between i and j, that is, a sequence of (distinct) nodes i = i1, . . . , is = j, s ≥ 1 such that ir −− ir+1 in H for
r = 1, . . . , s − 1. The maximal connected sets (with respect to inclusion) are called the connected components of H.

A hybrid graph H is called a chain graph if (all) its components can be ordered into a sequence C1, . . . ,Cm, m ≥ 1,
called a chain, such that if i → j in H, then i ∈ Cr and j ∈ Cs with r < s. An equivalent definition of a chain graph
is that it is a hybrid graph which has no semi-directed cycle, or alternatively, which has no semi-directed chordless
cycle; see [20, Lemma 2.1]. Thus, chain graphs are, in fact, acyclic hybrid graphs, they involve acyclic directed
graphs. Also, clearly, every chain graph is a 3-acyclic hybrid graph.

An immorality in H is an induced subgraph (over three nodes) of the form i → k ← j, that is, i and j are not
adjacent in H. A flag in a hybrid graph H is an induced subgraph (over three nodes) of the form i → j −− k, which
means that i and k are not adjacent.

2.2. Bayesian network structure
In statistical context, each variable i ∈ N is assigned a finite (individual) sample space Xi (of possible values);

assume |Xi| ≥ 2 for each i ∈ N to avoid technical problems. The joint sample space is the Cartesian product XN ≡∏
i∈N Xi. For A ⊆ N, the projection of an element x = [xi]i∈N of XN to A is the configuration/list of values xA = [xi]i∈A.

The symbol XA will denote the respective projection space. Thus, for A = ∅, the projection space X∅ is a singleton,
consisting of the empty list; for ∅ , A one has XA =

∏
i∈A Xi.

A Bayesian network is a pair (G, P), where G is an acyclic directed graph having N as the set of nodes and P
a Markovian probability distribution (with respect to G) on the joint sample space XN . This means that P satisfies
conditional independence restrictions determined by G; see [15, § 3.2.2] for details. The BN structure defined by an
acyclic directed graph G is the class of Markovian probability distributions with respect to G on (fixed) XN =

∏
i∈N Xi.

However, different graphs with the same set of nodes can be Markov equivalent, which means they define the
same BN structure. The classic graphical characterization of equivalent graphs by Verma and Pearl [30] states that
two graphs are Markov equivalent if and only if they have the same adjacencies and immoralities.

2.3. Essential graphs
A standard (unique) graphical representative of a BN structure is the following one.

Definition 1. Let G be a Markov equivalence class of acyclic directed graphs over N. The essential graph G∗ of G is
a hybrid graph over N defined as follows:

3

f
f

f
f

a

b c

d

?

?
@
@@R

f
f

f
f

a

b c

d

6

?
@
@@R

'

&

$

%

G

f
f

f
f

a

b c

d
?

@
@@R

G∗

Figure 1: An equivalence class G of acyclic directed graphs and the essential graph G∗ of G.

c
c

c
c

c�

J
J
Ĵ

a

d

b

ec

J
J
Ĵ

� c

c
c

c
c� J

J
J]

a

d

b

ec

J
J
Ĵ

�

c
c

c
c

c�

J
J
J

a

d

b

ec

J
J
Ĵ

�

p p p p p p p p p p p ppppppppppp'

&

$

%

G

H

G∗

'

&

$

%
Figure 2: An equivalence classH of chain graphs without flags, containing a Markov equivalence class of acyclic directed graphs G.

• i→ j in G∗ if i→ j in every G from G,

• i −− j in G∗ if there are graphs G1 and G2 in G with i→ j in G1 and i← j in G2.

An illustrative example of this concept is in Figure 1. This particular terminology and the first graphical charac-
terization of essential graphs was given by Anderson, Madigan and Perlman [2]. The characterization implies that
every essential graph is a chain graph and has no flags. Actually, the class of chain graphs without flags appears to be
important in this context. One can introduce a graphical concept of equivalence for such graphs.

Definition 2. Two chain graphs without flags G and H are equivalent if they share nodes, adjacencies and immorali-
ties. Given two such graphs, we say that H is larger than G if, for any i, j ∈ N, i→ j in H implies i→ j in G.

These concepts are illustrated by Figure 2, where the equivalence class H of three chain graphs without flags is
shown. The upper graph is larger then the two lower graphs, which are incomparable from the point of view of this
partial order. The meaning of this equivalence of G and H is that they define the same statistical model; c.f. [21,
Lemma 2]. The following characterization of the essential graphs [21, Corollary 4] will be utilized later.

Lemma 1. Let G be a Markov equivalence class of acyclic directed graphs over N and H the equivalence class of
chain graphs without flags such that G ⊆ H . Then the essential graph G∗ of G is the largest graph inH .

Also Lemma 1 is illustrated by Figure 2: the internal oval embraces Markov equivalence class of two acyclic
directed graphs G. Observe that G consists of the minimal graphs within H with respect to the considered ordering
while G∗ is the largest graph inH . Further, an important observation is that a chain graph H without flags is equivalent
to an acyclic directed graph G if and only if the induced subgraphs of H for its components are chordal undirected
graphs; see [21, Lemma 3].

4

f
f
f fa
b

c

dG
6

@
@@I

�
���

f
f
f fa
b

c

dK ?
@
@@R

�
��	

f
f
f fa
b

c

dL ?
@
@@R

�
��	

- �

ab ac ad bc bd cd abc abd acd bcd abcd
cG 0 0 1 0 1 1 0 0 0 0 0
cK 0 0 1 0 1 1 0 1 1 1 1
cL 1 0 1 1 1 1 1 1 1 1 1

Figure 3: Three acyclic directed graphs and corresponding characteristic imsets.

2.4. Characteristic imset

The concept of a characteristic imset was proposed by Studený, Hemmecke and Lindner as an algebraic repre-
sentative of a BN structure in 2010 [24]. Note that the term imset is an acronym for integer-valued multiset and was
introduced by Studený [22] to name vectors whose components are integers indexed by subsets of a fixed basic set.

For the purpose of this paper, the following equivalent definition of the characteristic imset is suitable.

Definition 3. Let G be an acyclic directed graph over N. The characteristic imset for G can be introduced as the
zero-one vector cG with components cG(S) where S ⊆ N, |S | ≥ 2, such that

cG(S) = 1 ⇐⇒ ∃ i ∈ S such that S \ {i} ⊆ paG(i). (1)

The characteristic imset concept is illustrated in Figure 3. Note that in the figure we use an abbreviated notation
i j for {i, j} and i jk for {i, j, k}; the same notational principle is also applied later to sets (of cardinality two and three)
indexing the components of our vectors. Thus, in the graph G from Figure 3, there is no subset S of cardinality 3 with
S \ {i} ⊆ paG(i). However, for the graph K one has paK(d) = {a, b, c}, which implies that any subset of cardinality 3
except {a, b, c} has cK(S) = 1. In the the graph L one even has cL({a, b, c}) = 1.

The point is that two acyclic directed graphs G and H over N are Markov equivalent if and only if cG = cH; see
[12, § 3]. Moreover, [12, Corollary 2] implies that, for different i, j, k ∈ N,

(i) i and j are adjacent in G iff cG(i j) = 1,

(ii) i→ k ← j is an immorality in G iff cG(i jk) = 1 and cG(i j) = 0.

Thus, it follows from facts (i)–(ii) and the graphical characterization of Markov equivalence of acyclic directed graphs
that the characteristic imset cG is uniquely determined by its values cG(S) for S ⊆ N, 2 ≤ |S | ≤ 3.

However, an important warning for the reader is that the components for sets of cardinality four and more do not
depend linearly on the components of the cardinality two and three. The relation is non-linear: specifically, it was
shown [26, Lemma 4.1] that, cG(S) = 1 for a set S ⊆ N with |S | ≥ 4 if and only if there are at least 3 subsets T of S
of cardinality |T | = |S | − 1 such that cG(T) = 1. Another equivalent condition is that there are at least |S | − 1 subsets T
of S of cardinality |T | = |S | − 1 such that cG(T) = 1. Note that these two equivalent conditions gave us the inspiration
to the below-mentioned extension inequalities (e.1)–(e.2) from § 4.2. The fact that the relation is non-linear means
that the restricted characteristic imset for sets of cardinality two and three is not a suitable vector representative of BN
structure provided one plans to apply the ILP approach; see § 3.1 for an explanation.

It appears to be appropriate to have a formula for the characteristic imset on the basis of any graph H in the class
H from Lemma 1. For this purpose one needs the following auxiliary concept.

5

f
f
f

f
fa

b
c

d eH ?
@
@@R
�

��	 ?

� f fb
c f

f
fa

b

d
?

�

f
f

f
fb

c

d e
?
@
@@R
�
��	 ? f

f
f
fb

c

d e

G @
@@
�
��

Figure 4: Several examples of chain graphs without flags equivalent to acyclic directed graphs.

Definition 4. We say that a hybrid graph H over S ⊆ N has a super-terminal component if there exists non-empty set
K ⊆ S such that

• K is a complete set in H, which means, for each pair of distinct nodes i, k ∈ K, one has i −− k in H,

• ∀ j ∈ S \ K ∀ i ∈ K one has j→ i in H.

It is easy to see that a super-terminal component K, if exists, is uniquely determined.

The concept is illustrated in Figure 4. The graph H there is a chain graph without flags equivalent to an acyclic
directed graph, which can be obtained from H by directing the line d −− e. However, H is not the corresponding
essential graph: the essential graph can be obtained from H by replacing the arrow b → a by a line. The induced
subgraph of H for S = bc has no adjacency and, therefore, does not have a super-terminal component. Neither the
induced subgraph for S = abd has such a component. However, the induced subgraph for S = bcde already has the
super-terminal component, namely K = de. Another example of such a graph is the graph G from Figure 4: the whole
node set bcde is complete in G, and, therefore, a super-terminal component of G.

The following result follows directly from a former result [12, Theorem 2].

Lemma 2. Let H be a chain graph without flags equivalent to an acyclic directed graph G. For any S ⊆ N, |S | ≥ 2
one has cG(S) = 1 if and only if the induced subgraph of H for S (denoted by HS) has a super-terminal component.

Lemma 2 is illustrated in later Table 1, where the characteristic imset corresponding to the graph H from Figure 4
is included.

2.5. Straightforward codes of graphs
Jaakkola et al. [13] and Cussens [6, 7] used a special method for vector encoding (acyclic) directed graphs over

N. The vector ηG encoding G has components indexed by pairs (i|B), where i ∈ N and B ⊆ N \ {i}. Specifically, it is
defined as follows:

ηG(i|B) =

{
1 B = paG(i),
0 otherwise.

(2)

In their paper [13], Jaakkola et al. mentioned special inequalities for ηG, which they called the cluster inequalities.
These inequalities correspond to sets S ⊆ N, |S | ≥ 2:

1 ≤
∑
i∈S

∑
B⊆N\S

ηG(i|B) . (3)

The meaning of the inequality (3) is that there exists at least one node i in the set S with paG(i) ∩ S = ∅. In other
words, the induced subgraph GS has at least one initial node, that is, a node i ∈ S with no j ∈ S such that j → i in
GS . Because GS is an acyclic directed graph over S , the existence of such a node i ∈ S is obvious. That is why (3)
holds for every acyclic directed graph G.

Recently, we have established the relation of the characteristic imset to this straightforward code of G [28]. Actu-
ally, cG is a linear function of ηG given by

cG(S) =
∑
i∈S

∑
B, S \{i}⊆B⊆N\{i}

ηG(i|B) for S ⊆ N, |S | ≥ 2. (4)

Indeed, (4) follows directly from Definition 3: clearly, at most one node i ∈ S with S \ {i} ⊆ paG(i) exists in an acyclic
directed graph GS .

6

2.6. Learning a BN structure
The task of learning a BN structure is to determine the structure on the basis of an observed (complete) database

D, which is a sequence x1, . . . , xd of elements of the joint sample space XN =
∏

i∈N Xi (d ≥ 1 is the length of the
database). The projection of D to A ⊆ N is the sequence of respective projections x1

A, . . . , x
d
A, denoted by the symbol

DA. Given a database D of length d ≥ 1 and y ∈ XA, A ⊆ N we use a special notation d[y] ≡ |{l : 1 ≤ l ≤ d, xl
A = y}|

for the number of occurrences of y in the database projection DA. In particular, for the empty list y ∈ X∅, one always
has d[y] = d. The concatenation of two configurations y ∈ XA and z ∈ XB for disjoint A and B will be denoted by [y, z];
it belongs to XA∪B.

Learning a BN structure is often done by maximizing some quality criterion, also called a score, which is a
bivariate real function (G,D) 7→ Q(G,D), where G is an acyclic directed graph over N and D a database. The value
Q(G,D) should say how the statistical model defined by G is good to explain the occurrence of D. For a formal
definition of the relevant concept of statistical consistency we refer to Neapolitan’s book [18].

Given the observed database D, the goal is to maximize G 7→ Q(G,D). Since the aim is learn a BN structure,
a natural assumption is that the criterion Q we are going to maximize should be score equivalent, which means, for
every database D and acyclic directed graphs G and H,

Q(G,D) = Q(H,D) whenever G and H are Markov equivalent.

The crucial technical assumption is that Q should be additively decomposable, which means, it has the form

Q(G,D) =
∑
i∈N

qD(i | paG(i)) , where the summands qD(∗|∗) are called local scores. (5)

Moreover, it is required by Chickering [5] in his definition that each local score term qD(i|B), for i ∈ N and B ⊆ N \ {i},
only depends on the database projection D{i}∪B. This is a natural requirement from the computational point of view,
implying that the score for sparse graphs can be computed from low-dimensional projections of the database. One
can re-write (5) in terms of ηG:

Q(G,D) =
∑
i∈N

∑
B⊆N\{i}

qD(i|B) · ηG(i|B), (6)

which allows one to interpret Q as (the restriction of) a linear function of ηG.

A well-known example of such a score is Schwarz’s [19] Bayesian information criterion (BIC), whose local scores
are given as follows:

bicD(i|B) =
∑
y∈XB

∑
z∈Xi

d[y,z] · ln
d[y,z]

d[y]︸ ︷︷ ︸
mllD(i|B)

−
ln d
2
· {r(i) − 1} ·

∏
j∈B

r(j)︸ ︷︷ ︸
dim(i|B)

for i ∈ N, B ⊆ N \ {i} , (7)

where r(i) = |Xi|, i ∈ N are the cardinalities of the individual sample spaces. In that formula, the conventions 0·ln 0
∗
≡ 0

and
∏

j∈∅ r(j) ≡ 1 are applied. The first term here is the local score of the maximized log-likelihood (MLL) criterion;
what is subtracted is a penalty term reflecting the length of the database d and the local contribution to the dimension
(DIM). The penalty term is to quantify the complexity of the statistical model given by G.

Another common example is the Bayesian Dirichlet equivalence (BDE) score [11], whose local scores are given
by the following formula:

bdeD(i|B) =
∑
y∈XB

 ln
Γ(α[y])

Γ(α[y] + d[y])
−

∑
z∈Xi

ln
Γ(α[y,z])

Γ(α[y,z] + d[y,z])

 for i ∈ N, B ⊆ N \ {i} , (8)

where Γ denotes the Gamma function and the α-terms are so-called hyper-parameters. The usual assumption is that
the hyper-parameters are given by the formula α[y] = α∗ · (|XB|)−1 = α∗ · (

∏
j∈B r(j))−1 for y ∈ XB, with some fixed

α∗ > 0, called the equivalent sample size. In this special case, the criterion is called Bayesian Dirichlet equivalence
uniform score and abbreviated as BDEU or BDeu [11]. Setting of hyper-parameters is often a hard problem, however,
a modification of the Bayesian Dirichlet score has recently been proposed [4], which prevents a wrong setting of
hyper-parameters.

7

3. Integer linear programming approach

The task to maximize a quality criterion Q can be re-formulated as an integer linear programming (ILP) problem.
Indeed, by (6), every decomposable criterion Q can be interpreted as a linear function of ηG, where G falls within the
class of acyclic directed graphs over N.

Jaakkola et al. [13] gave a finite list of valid linear constraints on ηG’s, namely the evident non-negativity inequal-
ities, the basic equality constraints

∑
B⊆N\{i} ηG(i|B) = 1 for i ∈ N and the cluster inequalities (3). These constraints

characterize the vectors ηG in the sense that the only vectors with integer components satisfying them are the codes
of acyclic directed graphs. Such a domain description, in terms of polyhedral geometry called an LP relaxation (of
the respective polytope), allows one to turn the learning task into an ILP problem: to optimize a linear function over
vectors with integer components within a polyhedron.

To overcome the technical problem with exponential length (in |N |) of vectors ηG the idea of pruning of their
components was applied. The idea taken from de Campos et al. [9] is that a particular form of scoring criteria used in
practice, namely BIC and BDeu, allows one to conclude (on the basis of an observed database) that the optimal graph
G has no node i ∈ N with large |paG(i)|. Therefore, one can exclude from consideration the respective components of
the vector ηG because they vanish for optimal G. This pruning procedure is time demanding, but useful: as reported
by de Campos et al. [10, § 6], in practical cases it typically results in the reduction of the parent set cardinality to at
most 5, only in a few cases the maximal cardinality was 7 or 8.

To overcome the problem with the exponential number of cluster inequalities (3) Jaakkola et al. [13] used the
method of iterative constraint adding, where they employed the dual formulation (of their approximate LP problems)
to guide the choice of a newly added cluster constraint.

Cussens [6] was interested in pedigree learning, in which case the parent set cardinality is bounded by 2. However,
to ensure the acyclicity of the graph G he used another trick: the idea of extending the vector BN representatives.
He added some additional components to the (shortened) vector ηG which allowed him to encode the total order
of nodes consistent with the direction of arrows in the graph G. Then he introduced easily an LP relaxation for
these extended vector representatives. Actually, the number of the added components and the number of inequalities
ensuring acyclicity were both polynomial in |N |.

The later paper by Cussens [7] was partly inspired by Jaakkola et al. [13]: he considered non-extended ηG-codes
and the same collection of inequalities as Jaakkola et al. The goal was unrestricted BN structure learning and to
overcome the problem with the exponential number of these inequalities Cussens used the cutting plane approach.

3.1. ILP with characteristic imsets
A basic observation by Hemmecke, Lindner and Studený [12, Lemma 1] is that every score equivalent and addi-

tively decomposable criterion Q has the form

Q(G,D) = Q(G∅,D) +
∑

S⊆N, |S |≥2

rQD(S) · cG(S) , (9)

where G∅ is the empty graph over N, that is, a graph without adjacencies, and rQD a uniquely determined vector,
depending on the database D only, called the revised data vector (relative toQ). Note that, whileQ is an affine function
of the characteristic imset, this is not true for the restriction of the characteristic imset to sets of cardinality two and
three. This can be observed as the consequence of the non-linear relation between components of characteristic
imsets mentioned in § 2.4. In particular, such shortened characteristic imset cannot be utilized in the context of linear
programming approach.

Given Q, one is usually able to derive a mathematical formula for the components of the data vector rQD. An
alternative way is to compute rQD(S) for S ⊆ N, |S | ≥ 2 directly from local scores.

Lemma 3. Let Q be a score equivalent and additively decomposable criterion with local scores qD(∗|∗). Then, for
any S ⊆ N, |S | ≥ 2, one has

rQD(S) =
∑
K⊆R

(−1)|R\K| · qD(j|K) where j ∈ S and R = S \ { j} . (10)

In particular, the right-hand side of (10) does not depend on the choice of j ∈ S .

8

Proof. The idea is to prove rQD(S) =
∑

K⊆R (−1)|R| · (−1)|K| · qD(j|K), which is a different form of (10), by induction on
|S |. Given S ⊆ N, |S | ≥ 2 and j ∈ S , put R ≡ S \ { j} and consider the graph G with paG(j) = R and paG(i) = ∅ for any
i ∈ N \ { j}. Observe∑

T⊆S , |T |≥2, j∈T

rQD(T)
(1)
=

∑
T⊆N, |T |≥2

rQD(T) · cG(T)
(9)
= Q(G,D) − Q(G∅,D)

(5)
= qD(j|R) − qD(j|∅) ,

which implies
rQD(S) = qD(j|R) − qD(j|∅) −

∑
T⊂S , |T |≥2, j∈T

rQD(T) . (11)

If |S | = 2 then (11) directly gives (10). If |S | ≥ 3 then by (11) and the induction premise

rQD(S) − qD(j|R) = −qD(j|∅) −
∑

T⊂S , |T |≥2, j∈T

∑
L⊆R∩T

(−1)|R∩T | · (−1)|L| · qD(j|L)

= −qD(j|∅) +
∑

T⊂S , |T |≥2, j∈T

∑
L⊆R∩T

(−1)|T | · (−1)|L| · qD(j|L)

= −qD(j|∅) +
∑
L⊂R

(−1)|L| · qD(j|L) ·
∑

T, |T |≥2, L∪{ j}⊆T⊂S

(−1)|T |

= −qD(j|∅) + qD(j|∅) · [1 + (−1)|R|] +
∑
∅,L⊂R

(−1)|L| · qD(j|L) · (−1)|R|

where we used (for L = ∅) ∑
T, |T |≥2, { j}⊆T⊂S

(−1)|T | =
∑

T, { j}⊆T⊆S

(−1)|T |︸ ︷︷ ︸
=0

−(−1)|{ j}| − (−1)|S | = 1 + (−1)|R|

and, analogously, for ∅ , L ⊂ R,
∑

T, L∪{ j}⊆T⊂S (−1)|T | = (−1)|R|. Hence,

rQD(S) =
∑
L⊆R

(−1)|L| · qD(j|L) · (−1)|R| ,

which was desired.

The formula (9) means that the criterion Q can be interpreted as an affine function of the characteristic imset cG,
which is a unique BN representative. Thus, to employ the methods of ILP, one has to come with an LP relaxation for
characteristic imsets. We transformed [28] the above-mentioned LP relaxation by Jaakkola et al. [13] through (4) into
the framework of characteristic imsets. A pleasant finding was that the cluster inequality (3) takes a neat form∑

T⊆S , |T |≥2

c(T) · (−1)|T | ≤ |S | − 1 . (12)

Another non-trivial observation was that the transformed linear inequalities define an LP relaxation of the charac-
teristic imset polytope. However, since the number of resulting inequalities is super-exponential in |N |, which is
an unpleasant consequence of the many-to-one transformation, this LP relaxation does not seem to be suitable for
practical purposes.

3.2. Search space reduction for characteristic imsets
Search space reduction described by de Campos et al. [10] is based on the following simple idea, mentioned

already by Teyssier and Koller [29, § 3.2]: provided that, for some i ∈ N and C ⊂ B ⊆ N \ {i}, the observed database
D is such that qD(i|C) > qD(i|B), then (5) implies that no acyclic directed graph G maximizing G 7→ Q(G,D) has
paG(i) = B. In other words, there is no optimal graph G with ηG(i|B) = 1 and the optimality search can be limited to
the graphs G with ηG(i|B) = 0.

9

In particular, if Q is a decomposable criterion and S ⊆ N, |S | ≥ 2 such that

∀ i ∈ S ∀ B, S \ {i} ⊆ B ⊆ N \ {i} ∃C ⊂ B qD(i|C) > qD(i|B) , (13)

then (4) implies that there is no optimal (acyclic directed) graph G with cG(S) = 1. In this case, the search for the
optimal graph can be limited to graphs G with cG(S) = 0.

We have implemented a certain heuristic procedure for pruning components of the characteristic imset based on
the above principle. The result of the procedure is the class of sets T ⊆ {S ⊆ N : |S | ≥ 2} such that

• cG(R) = 0 for any R ⊆ N, R < T and optimal graph G,

• T is closed under subsets: S ∈ T , T ⊆ S , |T | ≥ 2 implies T ∈ T .

Note that the second technical condition is not necessary, but simplifies things. It is also partially justified by (1).
Indeed, realize that T has the interpretation of the class of sets S such that it might be the case that cG(S) = 1 for an
optimal graph G. Provided cG(S) = 1, the condition (1) implies that cG(T) = 1 for quite many subsets T of S with
|T | ≥ 2. Therefore, if S ∈ T , it makes sense to allow T ∈ T for any T ⊆ S , |T | ≥ 2.

The aim of the procedure is, of course, to get T consisting of sets of small cardinality, that is,

• there exists a low upper bound t ∈ N such that |S | ≤ t for any S ∈ T .

Note that in practical situations one can expect massive pruning of components of ηG. Thus, by (4), if the components
of ηG were pruned up to the maximal parent set cardinality t − 1, for some t ∈ N, then one can assume cG(S) = 0
for S ⊆ N with |S | > t in any optimal graph G. This upper cardinality bound t, or more precisely |T |, is crucial
for efficiency of the subsequent ILP procedure (see § 5.1). Nevertheless, (many technical) details of this pruning
procedure are omitted in this paper; we plan another paper devoted particularly to this topic.

An important note is that one can utilize a previously performed search space reduction in local scores and easily
transform it to a search space reduction in characteristic imsets. As reported by de Campos et al. [10], they applied
their software to several databases and obtained caches of values of already pruned local scores. If we are in such a
situation, then we can obtain T as the class of sets S ⊆ N, |S | ≥ 2 such that there exists a local score qD(i|B) in the
considered cache of pruned local scores with S ⊆ {i} ∪ B. Then we only need the values rQD(S) for S ∈ T and these
can be computed by means of Lemma 3. However, if the cache of pruned local scores has “holes” in the sense that it
contains qD(i|B) but not qD(i|C) for some C ⊂ B, then one has to compute qD(i|C) directly so that (10) can be applied.

4. Two phases to get the essential graph

In this section we describe the theoretical basis of our specific ILP approach. Note we describe here the general
case, that is, without considering the search space reduction mentioned in § 3.2. The pure version of the obtained
ILP problem is still too complex to be solved by standard ILP software packages: this is because of both exponential
length of vector codes and of the exponential number of inequalities (in |N |). We describe later, in § 5, how things are
simplified as the result of pruning (components of the characteristic imset).

The final aim of the learning procedure proposed in this paper is to get a zero-one vector, which is an extension of
the characteristic imset and, simultaneously, encodes the essential graph. Therefore, the considered vectors have two
kinds of components:

• c(S) for sets S ⊆ N, |S | ≥ 2, intended to encode the values of the characteristic imset,

• a(i→ j) for ordered pairs i, j ∈ N, i , j, intended to encode the presence of an arrow i→ j in a graph; in other
words, these are the codes of arrowheads.

However, it seems to be convenient and advantageous, in the first phase, to allow a wider class of graphs. The idea is
to consider a certain class of graphs which includes both the essential graphs and acyclic directed graphs; see below
§ 4.1. What is presented in this section is the LP relaxation of the respective polytope, that is, of the convex hull of

10

a
→

b

b
→

a

a
→

c

c
→

a

a
→

d

d
→

a

a
→

e

e
→

a

b
→

c

c
→

b

b
→

d

d
→

b

b
→

e

e
→

b

c
→

d

d
→

c

c
→

e

e
→

c

d
→

e

e
→

d

aH 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0
ab ac ad ae bc bd be cd ce de ab

c

ab
d

ab
e

ac
d

ac
e

ad
e

bc
d

bc
e

bd
e

cd
e

cH 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1

ab
cd

ab
ce

ab
de

ac
de

bc
de

ab
cd

e

cH 0 0 0 0 1 0

Table 1: The extended characteristic imset for the graph H from Figure 4.

the set of considered vector codes; see § 4.2. This allows one to specify properly the domain of the respective ILP
problem; see § 5.1.

Then, in the second phase, when the solution of the first ILP problem is already found and the characteristic imset
c determined, another ILP problem is formulated. The second ILP problem is based on the same LP relaxation and
its solution is the desired simultaneous code of the essential graph and the characteristic imset c. The second ILP
procedure is much simpler than the first one (clearly polynomial in |N |); it can be viewed as an LP version of the
reconstruction algorithm for the essential graph on the basis of the characteristic imset. Morerover, the second ILP
procedure can be modified in such a way that the solution will be one of the respective acyclic directed graphs; see
§ 5.2.

4.1. The class of graphs and encoding
The output of the first phase should be a graph over N which falls within the class of

chain graphs without flags that are equivalent to acyclic directed graphs.

Now, we introduce special zero-one vector codes for even more general graphs, because this appears to be convenient.

Definition 5. Let H be a hybrid graph over N which is 3-acyclic and has no flags. Then we ascribe to H a zero-one
vector (aH , cH) with components determined as follows:

aH(i→ j) =

{
1 i→ j in H,
0 otherwise, for distinct i, j ∈ N, (14)

cH(S) =

{
1 HS has a super-terminal component,
0 otherwise, where S ⊆ N, |S | ≥ 2. (15)

The a-part of the vector encodes the presence of the arrows i → j in the graph H, while the c-part is, by Lemma
2, the respective characteristic imset. Note that the number of added components |N| · (|N | − 1) is polynomial in |N|.
The above concept is illustrated by the example from Table 1.

Observe, that in case |S | = 2, HS has a super-terminal component if and only if the nodes in S are adjacent in H.
Thus, the relation (15) means that, for distinct i, j ∈ N,

cH(i j) = 1 ⇔ (i, j) is an edge in H. (16)

In case |S | = 3, as H is 3-acyclic, HS has a super-terminal component if and only if either HS is quasi-complete, that
is, every pair of distinct nodes in S is adjacent in H, or HS is an immorality. In particular, for distinct i, j, k ∈ N,

cH(i jk) = 1 ⇔
{

either (i, j),(i, k),(j, k) are all edges in H,
or, up to a permutation of i, j, k, one has i→ k ← j in H. (17)

11

4.2. The list of inequalities

In this section we formulate our inequalities and show that none of them is superfluous. Note that one can give
graphical interpretation to (most of) the inequalities; for details see Appendix A.3. The inequalities are classified in
four groups. The basic non-negativity inequalities are as follows:

(b.1) ∀ i, j ∈ N distinct 0 ≤ a(i→ j),

(b.2) ∀ S ⊆ N, |S | = 3, 4 0 ≤ c(S).

The consistency inequalities mainly relate the a-part of the vector with its c-part:

(c.1) ∀ i, j ∈ N distinct a(i→ j) + a(j→ i) ≤ c(i j),

(c.2) ∀ i, j ∈ N distinct c(i j) ≤ 1,

(c.3) ∀ i, j, k ∈ N distinct 2 · c(i jk) ≤ 2 · c(i j) + a(i→ k) + a(j→ k),

(c.4) ∀ i, j, k ∈ N distinct a(i→ j) + c(jk) ≤ 1 + c(i jk) + a(j→ k),

(c.5) ∀ i, j, k ∈ N distinct a(i→ j) + c(jk) + c(ik) ≤ 2 + a(i→ k) + a(k → j).

The extension inequalities ensure the c-part to be determined by c(S) for 2 ≤ |S | ≤ 3:

(e.1) ∀ S ⊆ N, |S | ≥ 3
∑

i∈S c(S \ {i}) ≤ 2 + (|S | − 2) · c(S),

(e.2) ∀ S ⊆ N, |S | ≥ 4 (|S | − 1) · c(S) ≤
∑

i∈S c(S \ {i}).

Finally, the acyclicity inequalities only concern the c-part and ensure that the solution is the graph in the considered
class. In fact, these are just the transformed cluster inequalities (12):

(a.1) ∀ S ⊆ N, |S | ≥ 4
∑

T⊆S , |T |≥2 c(T) · (−1)|T | ≤ |S | − 1.

As concerns the number of inequalities:

• the number of the basic non-negativity constraints is polynomial in n ≡ |N |, namely 2 ·
(

n
2

)
+

(
n
3

)
+

(
n
4

)
,

• the number of the consistency inequalities is also polynomial, namely 2 ·
(

n
2

)
+ 15 ·

(
n
3

)
,

• the number of the extension inequalities is exponential, namely 2 · 2n −
(

n
3

)
− 2 ·

(
n
2

)
− 2 · n − 2, but there is a fair

hope that one can in practice reduce their number substantially (see § 5.1),

• the number of the acyclicity inequalities is also exponential, namely 2n−
(

n
3

)
−

(
n
2

)
−n−1, and one cannot reduce

it to a polynomial amount in general, but can possibly design a reasonable way of avoiding the use of all of
them; see § 5.1.

Now, we show that none of the above inequalities is a consequence of the others. For each inequality an example of a
vector is given which does not fulfill that particular inequality but satisfies all the other inequalities from the list.

(b.1) take N = {i, j} and a(i→ j) = −1 while a(j→ i) = c(i j) = 0,

(b.2) take N = S and put c(S) = −1 while a ≡ 0 and c(T) = 0 for T ⊂ S ,

(c.1) take N = {i, j} and c(i j) = a(i→ j) = a(j→ i) = 1,

(c.2) take N = {i, j} and c(i j) = 2 while a(i→ j) = a(j→ i) = 1,

(c.3) take N = {i, j, k} and c(i jk) = c(ik) = c(jk) = 1 while c(i j) = 0 and a ≡ 0,

(c.4) take N = {i, j, k} and a(i→ j) = c(jk) = c(i j) = 1 but c(ik) = c(i jk) = 0 and a vanishes in other components,

12

(c.5) take N = {i, j, k} and a(i→ j) = 1, c ≡ 1 while a vanishes in other components,

(e.1) in case |S | = 3 take N = {i, j, k} and c(i j) = c(ik) = c(jk) = 1, while c(i jk) = 0 and a ≡ 0; if |S | ≥ 4 take
N = S , choose distinct i, j ∈ S and put a(i → k) = a(j → k) = 1 for every k ∈ S \ {i, j}, a vanishing for other
components, c(i j) = c(S) = 0, while c(T) = 1 for T ⊂ S , T , {i, j},

(e.2) take N = S and c(S) = 1, while c(T) = 0 for T ⊂ S , a ≡ 0,

(a.1) take N = S , consider a total order i1, . . . , is, s = |S | of elements of S and put c({i1, is}) = 1, c({ir, ir+1}) = 1 for
r = 1, . . . s − 1, while c vanishes for remaining components and a ≡ 0.

4.3. Main results

We show (in Appendix) the following theoretical result.

Theorem 1. Given a finite non-empty set N, |N | ≥ 2, a vector (a, c) with integer components satisfies the inequalities
(b.1)–(b.2), (c.1)–(c.5), (e.1)–(e.2) and (a.1) if and only if there exists a (uniquely determined) chain graph H over N
without flags equivalent to an acyclic directed graph such that (a, c) = (aH , cH).

In fact, a strengthened result is derived in the Appendix stating that, if (a.1) is omitted, one still gets a code of a
certain graph H.

Theorem 2. Given a finite non-empty set N, |N | ≥ 2, a vector (a, c) with integer components satisfies the inequalities
(b.1)–(b.2), (c.1)–(c.5) and (e.1)–(e.2) if and only if there exists a (uniquely determined) 3-acyclic hybrid graph H
without flags such that (a, c) = (aH , cH).

Another comment is that the acyclicity inequalities (a.1) can be modified. Specifically, they can be replaced by a
simplified version

(a.1*) ∀ S ⊆ N, |S | ≥ 4
∑

T⊆S , |T |=2 c(T) −
∑

T⊆S , |T |=3 c(T) ≤ |S | − 1,

which may appear to be easier to implement. However, this change formally leads to a different LP relaxation of
the same polytope, which is the convex hull of the considered set of codes. Note that Lindner [17] called (a.1*) the
DAG inequalities and included them in the LP relaxation of her polytope, which was different (from the polytope
considered here). The proof of the claim that (a.1) can be replaced by (a.1*) can be found in a research report [27].

5. The whole procedure and complexity considerations

Recall that a pre-processing step should be the search space reduction procedure mentioned in § 3.2. Its result is a
cache of values rQD(S) for S ∈ T , where T ⊆ {S ⊆ N : |S | ≥ 2} is a class of sets closed under subsets such that

cG(R) = 0 for any R < T and optimal graph G.

The hope is there is a small upper bound t ∈ N on the cardinality of sets in T . This is also the situation when we deal
with the problem of restricted learning with a prescribed upper bound t ∈ N for the size of cliques in the moral graph
of G.

5.1. First phase: getting the characteristic imset

Therefore, having such a class T , by (9), the maximization of Q is equivalent to the task to maximize the function

cG 7→
∑

S⊆N, |S |≥2

rQD(S) · cG(S),

over the class of characteristic imsets c = cG of acyclic directed graphs G over N satisfying

c(R) = 0 for R ⊆ N, |R| ≥ 2, R < T . (18)

13

Clearly, on the linear subspace specified by (18) this linear objective coincides with the function

cG 7→
∑
S∈T

rQD(S) · cG(S),

which is fully determined by the values rQD(S) for S ∈ T . Thus, the first ILP problem to be solved is to maximize the
function

(a, c) 7→
∑
S∈T

rQD(S) · c(S) (19)

over the domain of vectors with integral components specified by the inequalities from § 4.2 and the equality constraint
(18). By Theorem 1, this is equivalent to maximization of (19) over the codes (aH , cH) of chain graphs without flags
equivalent to acyclic directed graphs. The function (19) only depends on the characteristic imset cH , because cH = cG

for some (equivalent) acyclic directed graph G. Therefore, the solution of (19) maximizes Q in the domain of acyclic
directed graphs over N. A possible modification would be to replace (a.1) by (a.1*) in the list of inequalities from
§ 4.2; see the comment concluding § 4.3.

The effective length of considered vectors (a, c) is |T | + 2 ·
(

n
2

)
, which is O(|N |t), where t ≥ 2 is the cardinality

limit for sets in T . The number of non-negativity and consistency inequalities is polynomial in |N|. As concerns the
extension inequalities (e.1)–(e.2), provided |T | is small, most of them can be omitted, as they involve zero values and
are trivially valid. Indeed, it is enough to consider only the following inequalities:

(e.1?) ∀ S ⊆ N, |S | ≥ 3, S ∈ T ? ∑
i∈S c(S \ {i}) ≤ 2 + (|S | − 2) · c(S),

(e.2?) ∀ S ⊆ N, |S | ≥ 4, S ∈ T (|S | − 1) · c(S) ≤
∑

i∈S c(S \ {i}),

with T ? = {S ⊆ N : ∃ i ∈ S S \ {i} ∈ T }. Thus, the number of inequalities (e.1)–(e.2) is, in fact, reduced to at most
O(|N |t+1) size.

The number of acyclicity inequalities (a.1), respectively (a.1*), cannot be reduced to a polynomial amount, even
if t = 2. Realize that (a.1) for S ⊆ N, |S | ≥ 4 has the meaning of a forbidden chordless cycle (either undirected or
semi-directed) composed just of the nodes in S in the respective graph H (see Appendix A.3). One can always have a
chordless cycle of arbitrary high length in a sparse graph, for which reason it is not possible, in general, to reduce the
number of inequalities in (a.1) to a polynomial number in |N |.

However, one can apply the idea of iterative constraint adding. In the first iteration, the acyclicity inequalities
are omitted. The solution of the respective ILP problem corresponds, by Theorem 2, to a graph H with possible
semi-directed/undirected chordless cycles. One can identify minimal sets S of nodes in H forming those cycles. The
corresponding acyclicity inequalities are incorporated in the current list of inequalities and a revised ILP problem is
solved. This procedure is repeated until either a solution without those cycles is found or one runs out of memory.

Note that if there is R < T with |R| = 2 then one can prune even more, namely in the a-part of the vector. Since
the goal is to force the validity of (c.1), provided that R ≡ {i, j} < T , we can also omit the components a(i → j)
and a(j → i), assuming they vanish. Then the respective inequalities (b.1) and (c.4)–(c.5) can be either omitted or
simplified – see Appendix C for details.

5.2. Second phase: reconstruction of the essential graph
Assume that the first ILP problem has been successfully solved and a solution (a, c) found, which is a vector code

for a chain graph H without flags equivalent to an acyclic directed graph over N. The graph H need not be an essential
graph, but we are already sure that the vector c = cG is the characteristic imset for an optimal acyclic directed graph
G over N. The task is now to get the corresponding essential graph.

The idea is to fix c and search through all a′ such that (a′, c) satisfies the inequalities from § 4.2. This, in fact,
means to search through all codes of chain graphs without flags equivalent to the optimal acyclic directed graph G. By
Lemma 1, the classH of these graphs has the largest graph, namely the essential graph G∗ of the Markov equivalence
class G of acyclic directed graphs containing G. The largest graph in H can be characterized as the graph with the
minimal amount of arrowheads inH . Thus, it minimizes the function

H ∈ H 7−→
∑

i, j∈N, i, j

aH(i→ j) .

14

Therefore, the second ILP problem is to minimize

a 7−→
∑

i, j∈N, i, j

aH(i→ j) (20)

within the domain specified by c and the inequalities from § 4.2. Since c is now fixed, most of the inequalities can
be omitted (as they are automatically valid) and the number of remaining ones is already polynomial in |N |. We only
need the values c(S) for 2 ≤ |S | ≤ 3 and use (b.1), (c.1) and (c.3)–(c.5).

Note that an alternative to this ILP reconstruction procedure is the graphical procedure for reconstructing the
essential graph from the characteristic imset suggested by Hemmecke, Lindner and Studený [12, § 4.2]. However, the
advantage of the ILP reconstruction procedure is that we stay in the ILP frame and can utilize the ILP software for
this purpose. We also believe that this ILP reconstruction is much more elegant from the mathematical point of view.

The ILP approach also offers some additional utility, which can be appreciated by users, in particular if BN
structure learning is made for the purpose of application in some other area, for example, medicine or biology. In such
scenarios the statistician co-operates with an expert from that area and offers him/her a suitable representative of the
BN structure which has been learned (by the first ILP procedure). The expert may not be interested in the essential
graph but would like to see an acyclic directed graph, which he/she may be able to interpret. There could be several
such graphs and the task is to choose from the Markov equivalence class that graph which is preferred by the expert
according to his/her taste. For example, the expert would like, if possible, to have an arrow a→ b instead of the arrow
b→ a because he/she thinks the symptom a is more likely to influence the symptom b than conversely.

This can be solved easily in the ILP framework: one can offer a modified reconstruction procedure, which on basis
of the optimal characteristic imset, finds a preferred acyclic directed graph from the respective Markov equivalence
class G. This is because, in the context of Lemma 1, the elements of G can be viewed as the elements in H with
the maximal amount of arrowheads. Thus, the co-operating expert can ascribe different positive weights w(i → j) to
possible arrowheads and, determine in that way his/her criterion for the choice of the graph from G, which takes into
account his/her preference of directions of arrows. Then our aim should be to maximize the function

a 7−→
∑

i, j∈N, i, j

aH(i→ j) · w(i→ j) .

5.3. Summary of the procedure
1. A pre-processing step is the pruning components of the characteristic imset mentioned in § 3.2.
2. The first ILP task is to

maximize the function (a, c) 7→
∑
S∈T

rQD(S) · c(S) (21)

over the integer vectors within the polyhedron specified by (18) and the inequalities from § 4.2. By Theorem
1 we know that the c-parts of these vectors are nothing but the characteristic imsets for acyclic directed graphs
over N. In § 6 we describe two methods we used to solve this ILP task.

3. Provided that we succeed to solve the first ILP task we obtain as the solution a vector (aH , cH), where H is a
chain graph over N, which has no flag and is equivalent to an acyclic directed graph. To find the corresponding
essential graph we establish the second ILP task, namely to

minimize the function (a, c) 7→
∑

i, j∈N, i, j

a(i→ j) (22)

with fixed c = cH , as described in § 5.2. The solution should be the simultaneous code of the respective optimal
essential graph G∗ and the characteristic imset.

6. Two methods to solve the first ILP problem

In our computational experiments, whose aim was just to verify feasibility of our approach, we developed two
methods to solve the first ILP task (21) and compared them. The methods are described in this section, after some
preliminaries.

15

6.1. The original aim

Our original intention from the PGM’12 conference paper by Studený [25], which was the basis of the present
paper, was as follows.

• As the first iteration, we relax (21) and consider only the inequalities (b.1?)–(b.2?), (c.1?)–(c.5?), (e.1?)–
(e.2?) from Appendix C. The solution of the starting ILP problem should be the code (aH , cH) of a hybrid
3-acyclic graph H without flags, by Theorem 2.

• We check whether H is a chain graph equivalent to an acyclic directed graph by searching for chordless semi-
directed/undirected cycles in H.

– If there is no such a cycle, the graph H encodes the solution.

– If not, we find all such chordless cycles in H, take the respective acyclicity inequalities (a.1), incorporate
them in the considered system of inequalities and run a new ILP problem, that is, come to the previous
step with an extended class of inequalities.

• Provided we do not get stuck with memory overload, the solution will be a vector (aH , cH), where H is a chain
graph over N, which has no flag and is equivalent to an acyclic directed graph.

However, this particular idea was not implemented, but led to the current approach.

6.2. The idea of a sub-ILP problem to find violated constraints

To avoid the graphical procedure of searching for chordless semi-directed/undirected cycles and remain in the ILP
frame, we came to the idea to find violated cluster inequalities by solving a sub-ILP problem. This idea was inspired
by a similar sub-ILP approach applied by Cussens [7].

Assume we have found a solution z to the inequalities (b.1?)–(b.2?), (c.1?)–(c.5?) and (e.1?)–(e.2?). Thus, z
may be fractional and may violate the cluster inequalities (a.1). The goal here is to form an ILP problem to find the
most violated cluster inequalities (a.1) with respect to z. For the sub-ILP task we consider variables d(i) for i ∈ N and
d(T) for all T ∈ T . We include the following inequalities:

(f.1) d(i) ≥ 0 for i ∈ N,

(f.2) d(i) ≤ 1 for i ∈ N,

(f.3) d(T) ≥ 0 for T ∈ T ,

(g.1) d(T) ≤ d(i) for all T ∈ T and i ∈ T ,

(g.2) 1 − |T | +
∑

i∈T d(i) ≤ d(T) for all T ∈ T ,

(g.3)
∑

i∈N d(i) ≥ 4.

Now, consider the following ILP task, namely to

maximize the function d 7→
∑
T∈T

z(T) · d(T) · (−1)|T | −
∑
i∈N

d(i) (23)

subject to the constraints (f.1)–(f.3) and (g.1)–(g.3). The point is that any integer solution satisfying those constraints
is a zero-one code of a subset S ⊆ N, such that |S | ≥ 4, d(i) = 1 if and only if i ∈ S , and d(T) = 1 if and only if T ⊆ S .

Lemma 4. Given a real vector z with components z(T) for T ∈ T , all sets S ⊆ N, |S | ≥ 4 such that the inequality
(a.1) for S is violated by the zero extension c of z correspond to integral vectors in the polyhedron given by (f.1)–(f.3)
and (g.1)–(g.3) for which the objective in (23) strictly exceeds −1.

16

Proof. The inequalities (g.1) and (f.2) imply d(T) ≤ 1 for any T ∈ T . Thus, any integral vector d in the considered
polyhedron is a zero-one vector. Given such d put S = {i ∈ N : d(i) = 1}. The inequality (g.3) implies |S | ≥ 4. The
condition (g.1) implies that if T ∈ T satisfies d(T) = 1 then T ⊆ S and the converse implication follows from (g.2).
Hence, we write∑

T∈T

z(T) · d(T) · (−1)|T | −
∑
i∈N

d(i) =
∑

T∈T ,T⊆S

z(T) · (−1)|T | − |S |
(18)
=

∑
T⊆S , |T |≥2

c(T) · (−1)|T | − |S | ,

which exceeds −1 if and only if
∑

T⊆S , |T |≥2 c(T) · (−1)|T | > |S | − 1; cf. (a.1) on p. 12.

Thus, by solving the ILP task (23) one can find all violated (a.1) inequalities for the zero extension c of z. In
case z is an integer vector, it finds the desired chordless semi-directed/undirected cycles in the graph H with c = cH .
Provided the aim is to find at least one cut, for example the maximally violated (a.1) inequality, the size of the sub-ILP
task (23) can be reduced by only considering variables d(T) corresponding to non-zero values in the current solution z.
That is, let Q :=

⋃
T∈T , z(T)>0 T , and consider only creating variables d(i) for i ∈ Q, and d(T) for T ∈ T with z(T) > 0.

This can considerably speed up the computation when |Q| small.

6.3. The first method

The first method performs row-generation, also called lazy constraints, on the acyclic inequalities (a.1).

1. As the first iteration, we solve the LP problem (21) under constraints (b.1?)–(b.2?), (c.1?)–(c.5?) and (e.1?)–
(e.2?).

2. The solution z of the starting LP problem is checked for violated (a.1) inequalities by the sub-ILP method
described in § 6.2. If there are violated cluster inequalities then they are incorporated to the current list of
constraints and a new LP problem is solved.

3. Provided we find a solution z satisfying all cluster inequalities two cases may occur:

• z is an integer vector and we stop as z is the final solution,

• if z is fractional we solve an ILP problem (21) with the current list of inequalities.

4. If we find the solution z′ of that ILP problem, it is checked for violated (a.1) inequalities by the sub-ILP method
described in § 6.2. Then two cases may occur:

• if z′ satisfies all (a.1) inequalities, it is the final solution,

• if there are violated cluster inequalities for z′ then they are incorporated to the current list of constraints
and a new ILP problem is solved.

6.4. The second method

The second approach is based on augmenting the branch-and-cut ILP method [1, 14, 16] in the ILOG CPLEX
software [31]. The idea is to call the CPLEX ILP solver only once to solve the ILP problem (21) under constraints
(b.1?)–(b.2?), (c.1?)–(c.5?) and (e.1?)–(e.2?), but add the (a.1) inequalities as user cuts (cut sub-LP solutions during
branch-and-bound), and respectively to add (a.1) inequalities as lazy constraints. The ILP solver is augmented in two
ways:

• The ILP solver is augmented such that during the branch-and-cut process whenever a sub-LP is considered at a
branch node, violated cluster inequalities (a.1) are added as global cuts.

• The ILP solver is augmented such that when a feasible integer solution is found, violated cluster inequalities
(a.1) are added as lazy constraints.

7. Software and experiments

In this section we give some details on software and experiments which explored the validity of the approach
described in the paper and the two methods mentioned in § 6.3 and § 6.4, with some sub-variants.

17

Name

Num.Vars.

Num.Obs.

ParentSize

|PaSet|

|cimset|

|a|

|c.1?|

|c.3?|

|c.4?|

|c.5?|

|e.1?|

|e.2?|

Total#Ineq.

M
ild

ew
35

10
0

3
35

20
49

17
10

64
53

2
62

73
32

29
4

30
57

6
12

03
2

22
94

84
00

1
M

ild
ew

35
10

00
3

16
1

85
13

0
65

60
77

6
34

2
58

0
13

01
M

ild
ew

35
10

00
0

3
46

3
30

3
23

0
16

5
39

0
43

66
30

06
58

6
8

85
21

Pi
gs

44
1

10
0

2
26

92
17

28
25

26
12

63
13

95
24

79
0

62
88

10
59

0
34

79
5

Pi
gs

44
1

10
00

2
15

84
7

14
09

5
13

50
6

67
53

22
02

6
77

77
92

42
08

34
—

0
—

Pi
gs

44
1

10
00

0
2

30
42

19
24

92
57

68
97

0
34

48
5

64
43

16
15

16
84

16
—

—
—

—
W

at
er

32
10

0
3

48
2

34
4

29
0

14
5

39
0

35
14

25
80

55
7

69
72

55
W

at
er

32
10

00
3

57
3

28
1

35
2

17
6

25
2

44
86

31
08

55
7

21
86

00
W

at
er

32
10

00
0

3
96

1
67

6
54

6
27

3
92

7
93

40
67

44
15

47
94

18
92

5
al

ar
m

37
10

0
3

90
7

14
62

83
0

41
5

22
71

18
67

8
13

02
6

34
19

29
0

38
09

9
al

ar
m

37
10

00
3

19
28

18
65

75
6

37
8

27
96

16
22

6
12

15
0

46
03

55
5

36
70

8
al

ar
m

37
10

00
0

3
64

73
57

97
10

10
50

5
71

16
28

41
4

24
71

4
20

24
2

29
20

83
91

1
as

ia
8

10
0

8
41

29
36

18
33

14
6

11
4

23
0

33
4

as
ia

8
10

00
8

11
2

85
54

27
13

8
31

2
30

0
10

5
30

91
2

as
ia

8
10

00
0

8
16

9
99

54
27

13
2

31
2

30
0

11
1

39
92

1
ha

ilfi
nd

er
56

10
0

3
24

4
18

3
19

4
97

20
1

10
20

70
8

14
1

19
21

86
ha

ilfi
nd

er
56

10
00

3
76

1
51

3
43

0
21

5
68

4
40

22
27

60
78

8
70

85
39

ha
ilfi

nd
er

56
10

00
0

3
37

68
31

82
10

78
53

9
40

29
23

35
2

15
91

2
92

53
13

00
54

38
5

in
su

ra
nc

e
27

10
0

3
27

9
26

5
29

8
14

9
31

5
33

98
20

10
37

2
11

62
55

in
su

ra
nc

e
27

10
00

3
77

4
68

7
47

0
23

5
11

55
83

50
65

70
17

90
67

18
16

7
in

su
ra

nc
e

27
10

00
0

3
36

52
32

82
68

8
34

4
47

40
16

87
6

16
57

8
11

24
9

13
58

51
14

5

Ta
bl

e
2:

Sh
ow

n
ar

e
th

e
nu

m
be

r
of

va
ri

ab
le

s
in

th
e

pr
ob

le
m

(N
um

.V
ar

s.
),

th
e

nu
m

be
r

of
ob

se
rv

at
io

ns
in

th
e

da
ta

ba
se

(N
um

.O
bs

.),
th

e
lim

it
on

pa
re

nt
se

ts
iz

e
fo

r
lo

ca
ls

co
ri

ng
(P

ar
en

tS
iz

e)
,t

he
nu

m
be

r
no

n-
pr

un
ed

pa
re

nt
se

ts
(|P

aS
et
|),

th
e

nu
m

be
r

of
no

n-
pr

un
ed

co
m

po
ne

nt
s

of
ch

ar
ac

te
ri

st
ic

im
se

ts
(|c

im
se

t|)
,t

he
nu

m
be

r
of

co
m

po
ne

nt
of

th
e

a-
ve

ct
or

(|a
|)

an
d

th
e

re
m

ai
ni

ng
co

lu
m

ns
ar

e
th

e
nu

m
be

rs
of

in
eq

ua
lit

ie
s

of
th

e
ty

pe
lis

te
d

an
d

th
e

to
ta

ln
um

be
ro

fi
ne

qu
al

iti
es

.

18

7.1. Software developed

In order to explore the feasibility of the approach, software was developed in C++ which used the IBM ILOG
CPLEX Optimizer via the C API. Firstly, although the inequalities (c.1)–(c.5) are polynomial in size we can exploit
the non-pruned sets in T to further reduce the size of the inequalities; see Appendix C. Moreover, in (e.1?) we need
only add the constraint if on the left-hand-side there are more than two terms in T .

7.2. The first series of experiments

The first series of computational experiments was performed shortly before the original submission. Selected data
sets were taken from GOBNILP web page [32], which most appeared in Cussen’s 2011 paper [7]. These data sets had
an artificial limit of two or three set on the size of parent sets of nodes. Note, that the time to compute the class of sets
T and the revised data vector rQD from a set of non-pruned local scores qD(i|B) for all these data sets (see § 3.1) took a
matter of seconds and is not reported.

Table 2 contains 21 ILP problems with their node set cardinality, the limit on parent set size, number of non-pruned
parent set variables η(i|B), the number of non-pruned components of characteristic imsets (|T |) and the number of
inequalities produced for (c.1?)–(c.5?) and (e.1?)–(e.2?). Notice that often the number of components of c-vector
is smaller than the number of non-pruned parent sets but, combined with the a-components, the length of the (a, c)-
vector exceeds the length of the corresponding η-vector for these examples. We conjectured that this is mostly due
to the low parent set size limit of three and with a higher parent set size limit the (a, c)-vector should become shorter
than the η-vector. However, our later simulation experiments reported in § 7.3 indicate that this phenomenon seems
to be a paradoxical consequence of the pruning procedure from § 3.2. Also the number of inequalities we generated
appears to be quite high. In some cases the full set of inequalities could not be constructed (see dashes in Table 2).

The software implementation of the sub-ILP task from § 6.2 attempts to solve the problem by only branching on
the variables d(i) for i ∈ N, and always trying the d(i) = 1 branch first. Moreover, an option was added to disable
internal CPLEX cuts when solving this sub-ILP, which for many cases led to a significant improvement. When we
solved the sub-ILP we also asked the CPLEX solver to return all known integral solutions to the problem. In this
way we can add multiple violated cluster inequalities. An additional option was explored where the cluster sub-ILP
returns the first solution which violates the cluster inequality (and not the most violated cluster inequality). In most
cases this improves the sub-ILP speed, but overall degrades to performance of learning the BN structure as more cuts
are needed. Additionally a constraint (with a small ε > 0) can be added to sub-ILP such that the only solutions are
indeed violated cluster inequalities. In practice the time to learn a BN structure using our approach is dominated by:

1. the time to solve linear relaxations of the problem,
2. the time to find violated cluster inequalities.

The former is greatly effected by the number of inequalities contained in the system. The latter is dominated by the
number of variables in the original learning problem.

We also explored adding some or all of constraints (c.1?)–(c.5?) and (e.1?)–(e.2?) as lazy constraints to CPLEX.
Although this did speed up the time to solve any sub-LP problem, it almost always lead to poorer overall performance.
We also explored using inequalities (a.1?) (see § 4.3) instead of (a.1), which also led to poorer performance, usually
requiring many more cuts and many more iterations of Method 1, or nodes explored while performing branch-and-cut
in Method 2. For some small problems, it was possible to initially add all cluster inequalities (a.1) for all T ∈ T at the
beginning. In these cases, it was just as fast as applying the sub-ILP method to add cluster inequalities.

In Table 3 we give running times using Method 1 and Method 2. Included in the table is the number of seconds
to solve the main ILP optimization problem, the number of LP loops, number of ILP loops, the number of cycle
cuts added in Method 2 and lastly the time to compute the essential graph and the running times of GOBNILP. In
most cases Method 1 outperformed Method 2. What is interesting is the few number of ILP loops required for many
of the problems. However, the comparison with GOBNILP times shows that our 1st ILP solving method (§ 5.1) is
not competitive from the point of view of running times. We pondered on the reasons for the computational speed
differences and came to the conclusion that this is partly influenced by our longer vectors but the main reason is
probably that the number of non-acyclicity inequalities we have to deal with is too high. Indeed, a detailed comparison
of Tables 2 and 3 reveals that we were not able to finish some computations when the number of inequalities exceeds
9000. On the other hand, our computational experiments confirmed the hope that the 2nd ILP method (§ 5.2) is

19

N
am

e

M
et

ho
d

1
tim

e

N
um

be
rL

P
L

oo
ps

N
um

be
rI

L
P

L
oo

ps

M
et

ho
d

2
tim

e

N
um

be
rC

yc
le

C
ut

s

Ti
m

e
E

ss
en

tia
lG

ra
ph

G
O

B
N

IL
P

Ti
m

e

Mildew100 14400† 19 1 14400† - - 2
Mildew1000 1 15 1 1 18 5 1
Mildew10000 9 15 3 9 59 1 3
Pigs100 333 81 1 308 272 8 100
Pigs1000 14400† 36 - 14400† - - 2226
Pigs10000 14400† - - 14400† - - 1025(3.35%)
Water100 5694 40 1 14400† - 1 5
Water1000 35 48 1 27 530 1 6
Water10000 14400† 137 - 14400† - - 26
alarm100 14400† 65 - 14400† - - 3
alarm1000 14400† 81 1 14400† - - 5
alarm10000 14400† 52 - 14400† - - 836
asia100 1 2 1 1 1 1 1
asia1000 2 8 1 2 20 1 1
asia10000 3 8 1 93 68 1 1
hailfinder100 8 12 3 28 104 1 1
hailfinder1000 162 49 2 1214 789 1 9
hailfinder10000 14400† 166 1 14400† - - 92
insurance100 18 31 1 7 182 1 1
insurance1000 61 38 1 49 278 1 4
insurance10000 14400† 121 1 14400† - - 10

Table 3: Shown are the running times in seconds for Method 1 and Method 2 including the number of LP loops and ILP loops done by Method 1
and the number of inequalities added for Method 2. Data sets with † symbol did not complete after 4 hours. The third column reports on the time
to find the essential graph then. Lastly the running times for GOBNILP taken from http://www.cs.york.ac.uk/aig/sw/gobnilp/.

fast at finding the essential graph. Note that to choose some acyclic directed graph from the equivalence class takes
essentially the same time.

7.3. The second series of experiments: simulated network

Before the revised version submission we performed the second series of computational experiments. One of the
goals was to explore the influence of (the limit on) the parent set size, the second goal was to confirm/refuse our
opinion that the number of inequalities practically handled by the (I)LP solver is the most influential factor to the
computational efficiency.

We decided to test it by means of a simulated Bayesian network. More precisely, we generated an acyclic di-
rected graph over 17 nodes shown in Figure 5, which has the maximal parent size 7. Three (joint binary) Markovian
probability distributions with respect to the graph in Figure 5 were created and databases with 10000 data points
were simulated from those distributions. The database denoted by bn17 came from a distribution whose conditional
probability tables were made manually, the database bn17b was based on random sampling of conditional probability
tables, as well as bn17-noisyor, where, the conditional probability tables were additionally required to satisfy cer-
tain special functional dependencies. To test the influence of the database length we considered shortening to 100 and
1000 data points, as well as considering the full database of 10000 points.

We then applied our software to compute and prune the local scores both for BDeu criterion with α∗ = 1 and
the BIC criterion. We were interested in whether the characteristic imset c generated from the pruned η-vector by the
procedure mentioned in the end of § 3.2 becomes shorter in these cases. This appeared not to be the case. Recall that
the components of c are indexed by the class of sets T = {S ⊆ N : |S | ≥ 2, ∃ non-pruned qD(i|B) with S ⊆ {i} ∪ B},

20

D4

C4C3

B5B4B3B2B1

A4A2A1 A3

D3D2D1

C1 C2

Figure 5: An acyclic directed graph used for our simulation experiments.

which is closed under subsets. We realized that the requirement on T being closed under subsets is unnecessarily
restrictive, causing that one cannot utilize fully the result of the search space reduction procedure in our framework.
Therefore, we explored what is the maximal possible reduction of the length of the c-vector in the considered cases,
that is, we considered the class of sets T ′ = {S ⊆ N : |S | ≥ 2, ∃ non-pruned qD(i|B) with S ⊆ {i} ∪ B and i ∈ S },
which need not be closed under subsets. In this instance, we finally got slightly shorter vectors than the η-vector.

The results are reporter in Table 4, where we give the length of the pruned η-vector (η), the length of the maximally
pruned characteristic imset (mset) and the length of the c-vectors for the class T closed under subsets (cimset). In the
BDE case, when the sample size is small we can see a large increase in the length of characteristic imsets, however
when the sample size is large the length of characteristic imsets can be smaller than the length of η. The length of
the vectors nicely reflects what is the artificial parent size limit. We also observe the stabilization of the length of the
vectors for longest databases when the maximal parent set size 7 is reached.

Tables D.5, D.6 and D.7 in Appendix D gather the results of the simulation experiments. Each table is devoted
to one of the tested databases and gives both the numbers of inequalities required for our ILP approach, the number
added cluster inequalities, the running times of Method 2 and the running times of GOBNILP. The subcases in each
table correspond to different database length and quality criterion, that is, BDE with α∗ = 1 and BIC. A maximum
running time of one hour was set and when available the gap to the optimal is given. The simulation experiments
again confirmed that this particular ILP approach of ours is not competitive from the point of view of computational
times when compared with GOBNILP [32].

However, the simulation certainly led to several useful observations, significant for future research. We believe that
the main reason for inefficiency was revealed. We observe that the influence of the parent set size limit is mediated,
through the number of inequalities. The simulation experiments confirmed our expectation from the first series of
experiments that the number of inequalities handled is a crucial factor for computational efficiency. We were not able
to finish the computation when this number was too high. This happened for the most of databases with 10000 points
but also for BDE and short databases with 100 points. The exception was the network bn17 with BDE score and
database length 10000 and the parent size limit above 7 (see Table D.5). The solution found indeed corresponds to the
“generating” graph from Figure 5. An interesting point here is that for smaller parent size limit 6, we failed to finish
the computation.

21

b
n
1
7

(B
D

E
)

10
0

10
00

10
00

0
pl

im
η

m
se

t
ci

m
se

t
η

m
se

t
ci

m
se

t
η

m
se

t
ci

m
se

t
2

48
32

34
14

1
87

99
37

1
21

6
22

9
3

51
45

56
16

4
11

3
13

7
78

4
57

8
68

2
4

52
55

74
16

6
11

9
14

7
12

09
10

81
13

41
5

52
55

74
16

6
11

9
14

7
14

00
13

47
17

22
6

53
11

3
18

3
16

6
11

9
14

7
14

47
14

23
18

31
7

56
39

8
72

5
16

6
11

9
14

7
14

54
14

34
18

47
8

89
44

32
75

15
16

6
11

9
14

7
14

54
14

34
18

47
9

13
3

11
68

8
18

76
7

16
6

11
9

14
7

14
54

14
34

18
47

10
17

6
25

30
0

36
77

9
16

6
11

9
14

7
14

54
14

34
18

47

b
n
1
7
b

(B
D

E
)

10
0

10
00

10
00

0
pl

im
η

m
se

t
ci

m
se

t
η

m
se

t
ci

m
se

t
η

m
se

t
ci

m
se

t
2

58
29

31
15

1
87

10
7

42
5

25
5

28
8

3
62

36
43

18
5

13
2

18
0

89
3

65
3

77
7

4
63

44
58

18
8

13
7

18
8

12
70

10
62

13
47

5
63

44
58

18
8

13
7

18
8

13
87

12
12

15
60

6
63

44
58

18
8

13
7

18
8

14
05

12
45

16
11

7
67

47
5

86
2

18
8

13
7

18
8

14
07

12
57

16
19

8
78

20
35

36
85

18
8

13
7

18
8

14
07

12
57

16
19

9
13

1
13

32
0

20
48

8
18

8
13

7
18

8
14

07
12

57
16

19
10

47
6

46
55

9
58

03
3

18
8

13
7

18
8

14
07

12
57

16
19

b
n
1
7
-
n
o
i
s
y
o
r

(B
D

E
)

10
0

10
00

10
00

0
pl

im
η

m
se

t
ci

m
se

t
η

m
se

t
ci

m
se

t
η

m
se

t
ci

m
se

t
2

42
7

29
2

32
9

10
20

58
5

60
5

15
93

72
8

73
2

3
59

9
50

1
62

8
21

41
14

29
15

55
55

35
26

44
26

64
4

64
2

63
5

83
3

25
69

19
18

21
75

11
04

0
61

83
63

54
5

64
7

69
3

92
8

26
01

19
74

22
56

14
12

0
92

04
98

13
6

65
4

91
4

12
84

26
02

19
82

22
66

14
60

9
10

00
9

10
83

8
7

66
8

14
27

22
15

26
03

20
14

23
18

14
62

5
10

05
7

10
90

3
8

74
8

20
99

34
92

26
03

20
14

23
18

14
62

5
10

05
7

10
90

3
9

74
8

20
99

34
92

26
03

20
14

23
18

14
62

5
10

05
7

10
90

3
10

74
8

20
99

34
92

26
03

20
14

23
18

14
62

5
10

05
7

10
90

3

b
n
1
7

(B
IC

)
10

0
10

00
10

00
0

η
m

se
t

ci
m

se
t

η
m

se
t

ci
m

se
t

η
m

se
t

ci
m

se
t

2
58

43
45

17
0

11
2

13
0

38
8

22
4

23
6

3
58

43
45

21
4

16
4

20
4

87
1

64
1

74
2

4
58

43
45

22
0

17
9

22
6

14
38

12
75

15
95

5
58

43
45

22
0

17
9

22
6

17
79

17
50

22
56

6
58

43
45

22
0

17
9

22
6

18
79

19
27

25
29

7
58

43
45

22
0

17
9

22
6

18
94

19
56

25
74

8
58

43
45

22
0

17
9

22
6

18
94

19
56

25
74

9
58

43
45

22
0

17
9

22
6

18
94

19
56

25
74

10
58

43
45

22
0

17
9

22
6

18
94

19
56

25
74

b
n
1
7
b

(B
IC

)
10

0
10

00
10

00
0

pl
im

η
m

se
t

ci
m

se
t

η
m

se
t

ci
m

se
t

η
m

se
t

ci
m

se
t

2
65

35
38

16
7

98
11

9
45

6
27

6
30

5
3

67
38

44
21

9
16

5
21

7
10

04
72

7
84

6
4

67
38

44
23

1
19

9
27

6
15

51
13

08
16

31
5

67
38

44
23

1
19

9
27

6
18

06
16

78
21

55
6

67
38

44
23

1
19

9
27

6
18

60
17

66
22

86
7

67
38

44
23

1
19

9
27

6
18

62
17

67
22

87
8

67
38

44
23

1
19

9
27

6
18

62
17

67
22

87
9

67
38

44
23

1
19

9
27

6
18

62
17

67
22

87
10

67
38

44
23

1
19

9
27

6
18

62
17

67
22

87

b
n
1
7
-
n
o
i
s
y
o
r

(B
IC

)
10

0
10

00
10

00
0

pl
im

η
m

se
t

ci
m

se
t

η
m

se
t

ci
m

se
t

η
m

se
t

ci
m

se
t

2
37

9
25

6
29

0
99

7
58

5
60

4
16

01
73

1
73

4
3

39
8

28
7

33
2

18
72

12
77

13
80

55
93

26
92

27
05

4
39

8
28

7
33

2
19

84
13

98
15

52
10

77
8

61
18

62
62

5
39

8
28

7
33

2
19

84
13

98
15

52
12

73
4

82
19

86
38

6
39

8
28

7
33

2
19

84
13

98
15

52
12

78
3

83
01

87
33

7
39

8
28

7
33

2
19

84
13

98
15

52
12

78
3

83
01

87
33

8
39

8
28

7
33

2
19

84
13

98
15

52
12

78
3

83
01

87
33

9
39

8
28

7
33

2
19

84
13

98
15

52
12

78
3

83
01

87
33

10
39

8
28

7
33

2
19

84
13

98
15

52
12

78
3

83
01

87
33

Ta
bl

e
4:

Fo
r

bo
th

sc
or

in
g

cr
ite

ri
a

(n
am

el
y

B
D

E
w

ith
α
∗

=
1

an
d

B
IC

),
ea

ch
co

ns
id

er
ed

da
ta

se
ts

,t
he

nu
m

be
rs

of
sa

m
pl

es
an

d
th

e
pa

re
nt

se
ts

iz
e

lim
it

(p
lim

)
up

to
10

gi
ve

n
ar

e
th

e
nu

m
be

r
of

no
n-

pr
un

ed
pa

ir
s

(i
|B

)(
η
),

nu
m

be
ro

fm
in

im
al

ly
re

qu
ir

ed
ch

ar
ac

te
ri

st
ic

im
se

ts
(m

se
t)

,a
nd

th
e

nu
m

be
ro

fc
ha

ra
ct

er
is

tic
im

se
ts

.

22

Another interesting observation is that the database bn17-noisyor, the one with special functional dependency
in generating conditional probability tables, was difficult to handle in comparison with the other two databases (see
Table D.7). In this case we solved our ILP problems only for short databases and BIC criterion. Of course, due to the
short database length, the solution was not the “generating” graph from Figure 5. In the case of the bn17-noisyor

instances, even GOBNILP failed – as did our method – on the sub-instance of 10000 observations and BDE scoring
for a parent set limit greater than three.

Conclusions

The theoretical advantage of the presented approach (in comparison with the other ILP approaches) is that the
solution is a unique BN representative and the vector representatives are more compressed. The augmentation does
not kill this comparative advantage because the extended characteristic imsets are still more than |N |

3 -times shorter
than the straightforward graph codes. However, as the computational experiments showed, the situation is reversed
as the result of usual pre-processing procedure, namely the search space reduction described in § 3.2. This procedure
seems to be particularly advantageous for the straightforward graph codes because it allows one to better exploit the
results of the pruning. Our experiments confirmed that typically our pruned c-vector (as suggested in § 3.2) is longer
the respective pruned η-vector. On the other hand, additional experiments (see § 7.3) suggested that if one considers
maximally shortened pruned characteristic imset then one can obtain a shorter vector than the pruned η-vector in
practice, as well.

The contribution of the paper is mainly theoretical, motivated by the aim to develop a consistent ILP approach
to learning BN structure based on characteristic imsets. We reformulated the BN structure learning task as a special
ILP optimization problem and derived the formula for the respective objective (see § 3.1). We have also extended the
characteristic imset, our unique vector BN structure representative, by additional components with the aim to encode
certain relevant graphs (§ 4.1). Finally, we came with polyhedral characterization of the domain of the respective
ILP optimization problem, which includes as an option the case of graphs with possible cycles (see § 4.2 and § 4.3).
Our approach is particularly suitable for getting the essential graph, the standard unique graphical BN structure
representative, as the solution of a simple additional ILP optimization problem. Note that this second ILP problem is,
in fact, independent of the main ILP problem, that is, of the task of finding optimal BN structure and be utilized as an
extension to other ILP methods for BN structure learning. Thus, the main practical benefit of the presented approach
is that it allows one to get directly the essential graph as the result of solving a secondary ILP problem, that is, to
avoid in this way the need for additional graph-reconstruction procedure.

Motivated by the aim at practical solving of our main ILP optimization problem by the method of iterative con-
straint adding (see § 6, specifically § 6.2) we performed two series of computational experiments. The goal of the
experiments was just to verify the ability to learn the BN structure, not to compete in running times with other, more
developed, approaches. We fairly admit that, in our experiments, we have not succeeded to get better running times
than reported by Cussens and Bartlett [32]. The experiments, mainly the second series, seem to confirm our opinion
that the main reason for the comparative inefficiency of our approach is the large number of our non-acyclicity inequal-
ities to handle. Although the number of these inequalities is theoretically polynomial in |N |, namely O(|N |3), in the
tested cases, it was much higher in comparison with simple linear number of non-negativity and equality constraints
for the η-vector. Note that the exponential class of acyclicity cluster inequalities is the same for both approaches.

On the other hand, the experiments confirmed that the secondary ILP procedure to find the essential graph on basis
of the characteristic imset (see § 5.2) is fast. Thus, provided we find an optimal acyclic directed graph by some other
method, the LP relaxation proposed in this paper can be used to get by a simple ILP procedure the respective essential
graph or an equivalent acyclic directed graph with a prescribed preference of arrow directions.

One of the questions raised in Conclusions of the original PGM’12 conference paper [25] was whether, for the
efficiency of learning, a smaller number of inequalities is better than a tighter LP relaxation. It seems that the ex-
periments gave us a clear answer that to get an efficient ILP BN learning procedure one surely has to avoid large
number of inequalities or come with a clever way to iteratively add them. Therefore, our future theoretical effort will
be directed to finding an LP relaxation for characteristic imsets with a small number of inequalities. We hope there
is a way of avoiding the exponential number of acyclicity inequalities, perhaps even by combining our approach with
other ILP learning approaches. For example, Cussens et al. [8] recently came in the context of pedigree learning with
a method of ruling out cycles based on |N | additional integral components to the η-vector and O(|N |2) inequalities.

23

An alternative research direction could be to apply the idea of iterative constraint adding to the collection of our
non-acyclicity inequalities and find a way to handle the constraints by a specialized user cut detection algorithm.

Acknowledgements

We thank the reviewers for their comments and suggestions which helped to improve the quality and readability
of the paper. We are grateful to Raymond Hemmecke for giving us some inspiration and to James Cussens for giving
us useful advice concerning the formulation of the second method to solve our main ILP problem via cuts and lazy
constraints, and the sub-ILP idea to find violated cluster inequalities. Moreover, we also thank James for providing us
with working latest GOBNILP version we utilized for comparison in the second series of experiments and Jirka Vomlel
for generating the simulated databases, on which these experiments were based. The research of Milan Studený has
been supported by the grant GAČR n. 13-20012S.

Appendix A. Necessity of the inequalities

In this section, we show that the inequalities from § 4.2 are necessarily valid for the vector codes from Definition
5. This allows us to interpret the inequalities in graphical terms.

Appendix A.1. Auxiliary observations

To verify the necessity of the extension inequalities we will need the next technical lemma.

Lemma 5. Let H be a hybrid graph over N and S ⊆ N, |S | ≥ 3.

(a) If HS has a super-terminal component, then for at least |S | − 1 subsets T ⊂ S with |T | = |S | − 1, the graph HT has
a super-terminal component.

(b) Provided H is 3-acyclic, if, for at least 3 subsets T ⊂ S with |T | = |S | − 1 the graph HT has a super-terminal
component, then HS has a super-terminal component.

Proof. (a) If HS has a super-terminal component K (see Definition 4), then for each j ∈ S \ K, the graph HS \{ j} has K
as a super-terminal component. If |K| ≥ 2, then, for every i ∈ K, HS \{i} has K \ {i} as a super-terminal component.
(b) Assume that k,m, ` ∈ S are such that, for each i ∈ {k,m, `}, HS \{i} has a super-terminal component. Since H{k,m,`}
has no directed cycle, it has a node with no arrow directed towards it in H{k,m,`}. Thus, without loss of generality
assume that k has the property that ¬(m→ k in H) and ¬(` → k in H). Now,

let K be a super-terminal component in HS \{k}.

If K ∩ {m, `} , ∅ then we can assume without loss of generality that ` ∈ K. Thus, we distinguish three cases:

A. K ∩ {m, `} = ∅,

B. K = {`},

C. ` ∈ K and |K| ≥ 2.

In case A. we have K ⊆ S \ {k,m, `} and K is a super-terminal component in HS \{k,m,`}. Let L be a super-terminal
component in HS \{`}. Then, because there exists i ∈ K ⊆ S \ {k,m, `} with m→ i in H, necessarily m < L. Also, k < L,
as otherwise, for m < L, we observe m → k in H, which contradicts the choice of k. Hence, L ⊆ S \ {k,m, `} and L
is a super-terminal component in HS \{k,m,`}. By its uniqueness, we get L = K. This implies that K is a super-terminal
component in HS .

In case B. , that is K = {`}, let M be a super-terminal component in HS \{m}. Then, because for every j ∈ S \ {k, `}
one has j → ` in H, necessarily M ⊆ {k, `}. Necessarily ` ∈ M, for otherwise M = {k} and ` → k in H, which
contradicts the choice of k. Then we have two options:

24

• M = {`}, in which case k → ` in H and K = M = {`} is a super-terminal component in HS ,

• or M = {k, `}, in which case k −− ` in H. To show that M = {k, `} is a super-terminal component in HS , it remains
to verify m → k in H. To this end, consider a super-terminal component L in HS \{`}. As ∀ j ∈ S \ {k,m, `} one
has j → k in H, we have L ⊆ {k,m}. This implies that (k,m) is an edge in H. Because H is 3-acyclic and
m→ ` −− k in H, it implies m→ k in H, which was desired.

Finally, in case C. the assumption |K| ≥ 2 implies that the set K \ {`} is a super-terminal component in HS \{k,`}.
Now, let L be a super-terminal component in HS \{`}. We distinguish two subcases:

C.1. If k < L, then L is a super-terminal component in HS \{k,`}, and, by its uniqueness, L = K \ {`}. To show that K
is a super-terminal component in HS it remains to verify k → ` in H. To this end, consider a super-terminal
component M in HS \{m}. Because ∀ j ∈ S \ ({k} ∪ K) one has j → ` in H, we have M ⊆ {k} ∪ (K \ {m}). As
K \ {m} is complete in H, there are three options for M, namely M = {k}, M = K \ {m} and M = {k} ∪ (K \ {m}).
In each of these 3 cases, (k, `) is an edge in H. There is at least one i ∈ L ⊆ K, and one has then k → i −− ` in
H. Because H is 3-acyclic, it implies k → ` in H, which was needed.

C.2. If k ∈ L, then necessarily m ∈ L, for otherwise one has m → k in H, which contradicts the choice of k. Hence,
L \ {k} is a super-terminal component in HS \{k,`}, and, by its uniqueness, K \ {`} = L \ {k} = K∩L. As m ∈ K∩L,
we have k −− m and m −− ` in H. Let M be a super-terminal component in HS \{m}. Observe that M ⊆ K ∪ L,
because, ∀ j ∈ S \ (K ∪ L), one has j→ k in H. The next observation is that k ∈ M. Indeed, otherwise for some
i ∈ M ⊆ (K ∪ L) \ {m} one has k → i in H, which means that k → i −− m −− k in H contradicting that H is
3-acyclic. Analogously, we derive ` ∈ M (exchange of k and `). Because k, ` ∈ M, we have k −− ` in H, which
implies that K ∪ L is complete in HS . This allows us to derive that K ∪ L is a super-terminal component in HS .

Thus, in all cases (and subcases) we showed that HS has a super-terminal component.

Appendix A.2. Necessity proof

We show now that the inequalities from § 4.2 are valid for vector-codes introduced in § 4.1.

Lemma 6. Let H be a hybrid graph over N which is 3-acyclic and has no flags.

(i) Then the inequalities (b.1)–(b.2), (c.1)–(c.5) and (e.1)–(e.2) are valid for the vector (aH , cH) defined in (14)–(15).

(ii) If H is a chain graph without flags equivalent to an acyclic directed acyclic graph, then, moreover, the inequalities
(a.1) hold.

Proof. The inequalities (b.1)–(b.2) and (c.2) are evident from (14)–(15).

(c.1) If both terms on the left-hand side (LHS) of aH(i → j) + aH(j → i) ≤ cH(i j) vanish, then one has LHS =

0 ≤ RHS, where RHS means the right-hand side. Assume that at least one term on LHS is non-zero, say
aH(i → j) = 1. Then i → j in H, and because H is a hybrid graph, ¬(j → i in H). Thus, the other term on
LHS vanishes: aH(j → i) = 0. However, (i, j) is an edge in H then, which means, by (16), cH(i j) = 1. Hence,
LHS = 1 = RHS.

(c.3) If the LHS of 2 · cH(i jk) ≤ 2 · cH(i j) + aH(i → k) + aH(j → k) vanishes, the inequality clearly holds. If
cH(i jk) = 1 = cH(i j) then LHS = 2 ≤ RHS. Only in case cH(i jk) = 1 and cH(i j) = 0 we observe by (16) and
(17) that i→ k ← j is an immorality in H. Hence, LHS = 2 = RHS.

(c.4) If at least one term on the LHS of aH(i → j) + cH(jk) ≤ 1 + cH(i jk) + aH(j → k) vanishes LHS ≤ 1 ≤ RHS.
Assume aH(i → j) = cH(jk) = 1, that is, i → j in H and (j, k) is an edge in H. If aH(j → k) = 1 then
LHS = 2 ≤ RHS. If aH(j → k) = 0, then, since H is a hybrid graph, either j ← k in H or j −− k in H.
Because H has no flag (of the form i → j −− k), in both these sub-cases one has cH(i jk) = 1 by (17). Thus,
LHS = 2 = RHS.

25

(c.5) If at least one term on the LHS of aH(i → j) + cH(jk) + cH(ik) ≤ 2 + aH(i → k) + aH(k → j) vanishes then
LHS ≤ 2 ≤ RHS. If all three of them equal 1 then i → j in H and (j, k),(k, i) are both edges in H. As H is
3-acyclic one necessarily has either i→ k in H or k → j in H. In particular, LHS = 3 ≤ RHS.

(e.1) If at most two terms on the LHS of
∑

i∈S cH(S \ {i}) ≤ 2 + (|S | − 2) · cH(S) are non-zero then LHS ≤ 2 ≤ RHS. If
at least three of them are non-zero then, by (15), for at least 3 subsets T ⊂ S with |T | = |S | −1, the graph HT has
a super-terminal component. By Lemma 5(b), HS has a super-terminal component, and, therefore cH(S) = 1.
Hence, LHS ≤ |S | = RHS.

(e.2) If the LHS of (|S | − 1) · cH(S) ≤
∑

i∈S cH(S \ {i}) vanishes then LHS = 0 ≤ RHS. However, if cH(S) = 1 then,
by (15), HS has a super-terminal component. By Lemma 5(a) observe that there exists at least |S | − 1 subsets
T ⊂ S with |T | = |S | − 1 with cH(T) = 1. Thus, by (15), LHS = |S | − 1 ≤ RHS.

Thus, the part (i) of Lemma 6 was proved. To verify the part (ii) assume that H is a chain graph without flags equivalent
to an acyclic directed acyclic graph G. If follows from (15) and Lemma 2 that cH equals to the characteristic imset cG

for G. Thus, we need to verify the inequality

(a.1)
∑

T⊆S , |T |≥2 cG(T) · (−1)|T | ≤ |S | − 1 for any acyclic directed graph G over N.

Let us fix S ⊆ N, |S | ≥ 4. As GS is acyclic, there exists a total order ρ of all nodes in S consistent with the direction
of arrows in GS . For every j ∈ S let us put

T (j) = {T ⊆ { j} ∪ Bρj : |T | ≥ 2, j ∈ T },

where Bρj is the set of predecessors of j in ρ. Clearly, the classes T (j), j ∈ S define a partitioning of the class
{T ⊆ S : |T | ≥ 2}; one has T (i) = ∅ for the first node i in ρ, that is, the one with Bρi = ∅. The point is that, for every
j ∈ S \ {i}, one has ∑

T∈T (j)

cG(T) · (−1)|T | ≤ 1 . (A.1)

Indeed, by (1), observe that, for T ∈ T (j), one has cG(T) = 1 if and only if T = { j} ∪ K, where K ⊆ paG(j) ∩ S . In
particular, the sum on the LHS of (A.1) is∑

∅,K⊆paG(j)∩S

(−1)|K|+1 =

{
0 if paG(j) ∩ S = ∅,

1 if paG(j) ∩ S , ∅.

Clearly, (a.1) can be obtained by summing (A.1) for j ∈ S \ {i}.

Appendix A.3. Interpretation of the inequalities

It follows from the above proof of Lemma 6 what is the graphical interpretation of the inequalities from § 4.2:

(c.1) aH(i→ j)+aH(j→ i) ≤ cH(i j) means that if i→ j or j→ i are (encoded in aH as) arrows then (i, j) is (encoded
in cH as) an edge,

(c.2) cH(i j) ≤ 1 means, together with (c.1), that there is no bi-directed edge between i and j; in other words, one
cannot have simultaneously i→ j in H and j→ i in H,

(c.3) 2 · cH(i jk) ≤ 2 · cH(i j) + aH(i → k) + aH(j → k) and its permutated versions allow one to conclude that if
cH(i jk) = 1 then Hi jk has a super-terminal component,

(c.4) aH(i→ j) + cH(jk) ≤ 1 + cH(i jk) + aH(j→ k) prevents H to have a flag i→ j −− k,

(c.5) aH(i → j) + cH(jk) + cH(ik) ≤ 2 + aH(i → k) + aH(k → j) says that H has not a semi-directed 3-cycle of the
form i, j, k, i with i→ j,

26

(e.1)
∑

i∈S cH(S \ {i}) ≤ 2 + (|S | − 2) · cH(S) encodes the implication in Lemma 5(b),

(e.2) (|S | − 1) · cH(S) ≤
∑

i∈S cH(S \ {i}) encodes the implication in Lemma 5(a),

(a.1)
∑

T⊆S , |T |≥2 cH(T) · (−1)|T | ≤ |S | −1 means, loosely said, that the graph HS has at least one initial node. The point
is that all inequalities (a.1) together ensure the existence of an equivalent acyclic directed graph G, as shown in
the following section (Lemma 9).

Another interpretation of (a.1) is that it excludes the existence of a chordless undirected or semi-directed cycle com-
posed just of nodes of S . Indeed, in that case the LHS of (a.1) is |S | because the summands are |S |-times 1 and 0
otherwise, which contradicts the validity of (a.1).

Appendix B. Sufficiency of the inequalities

In this section, we prove that the inequalities from § 4.2 provide an LP relaxation for (the convex hull of) the set
of codes of chain graphs without flags equivalent to acyclic directed graphs.

Appendix B.1. Auxiliary lemmas

We start with a couple of auxiliary observations.

Lemma 7. Let (a, c) be a vector with integer components satisfying the inequalities (b.1)–(b.2), (c.1)–(c.5) and (e.1)–
(e.2). Then (e.2) also holds for |S | = 3, that is,

2 · c(i jk) ≤ c(i j) + c(ik) + c(jk) , (B.1)

and (a, c) is a zero-one vector.

Proof. To show (B.1) let us fix the set S = i jk and sum up all three corresponding inequalities (c.3) and then use
three-times (c.1):

6 · c(i jk) ≤ 2 · c(i j) + 2 · c(ik) + 2 · c(jk) + a(i→ j) + a(j→ i)
+a(i→ k) + a(k → i) + a(j→ k) + a(k → j) ≤ 3 · c(i j) + 3 · c(ik) + 3 · c(jk) .

Divide it by 3 and get (B.1). The next observation is that (a, c) is non-negative. The inequality 0 ≤ c(S) for |S | = 2
follows from (b.1) and (c.1). The inequality 0 ≤ c(S) for |S | ≥ 5 can be derived by induction on |S | from (b.2) and
(e.1): if |S | ≥ 5 then by the induction premise and (e.1) one has

0 ≤ 2 + (|S | − 2) · c(S), which implies − 1 <
−2
|S | − 2

≤ c(S) .

However, because c(S) ∈ Z, it implies 0 ≤ c(S).
Finally, we show that the components of (a, c) are at most 1. As concerns the a-part, by (b.1), (c.1) and (c.2) one

has a(i → j) ≤ a(i → j) + a(j → i) ≤ c(i j) ≤ 1. As concerns the c-part, we prove c(S) ≤ 1 by induction on |S | from
(c.2) using (e.2) for |S | ≥ 3, which involves (B.1). Specifically, consider |S | > 2 and write by (e.2) and the induction
premise

(|S | − 1) · c(S) ≤
∑
i∈S

c(S \ {i}) ≤
∑
i∈S

1 = |S | . Hence, c(S) ≤
|S |
|S | − 1

< 2 .

However, because c(S) ∈ Z, it implies c(S) ≤ 1.

Lemma 8. Let c,c′ be zero-one vectors satisfying (e.1)–(e.2). Provided c(S) = c′(S) for S ⊆ N with 2 ≤ |S | ≤ 3 one
has c = c′.

27

Proof. We prove c(S) = c′(S) by induction on |S |. Since they are both zero-one vectors and exchangeable, it it
enough to show, for |S | ≥ 4, the implication c(S) = 1 ⇒ c′(S) = 1. First, by (e.2) applied to c, we observe
3 ≤ |S | − 1 = (|S | − 1) · c(S) ≤

∑
i∈S c(S \ {i}). By the induction premise the same holds for c′ and one can write using

(e.1) applied to c′:

3 ≤
∑
i∈S

c′(S \ {i}) ≤ 2 + (|S | − 2) · c′(S) . That means 0 <
1

|S | − 2
≤ c′(S) ,

which, because c′(S) ∈ {0, 1}, implies c′(S) = 1.

Appendix B.2. Sufficiency proof
Here is the desired result.

Lemma 9. Given a finite non-empty set N, let (a, c) be a vector with integer components satisfying the inequalities
(b.1)–(b.2), (c.1)–(c.5) and (e.1)–(e.2).

(i) Then there exists a (unique) hybrid graph H over N which is 3-acyclic and has no flags such that a = aH and
c = cH .

(ii) If, moreover, the inequalities (a.1) hold for c then H is a chain graph without flags equivalent to an acyclic
directed graph over N.

Proof. Note that the uniqueness of the graph H follows from (14) and (16). By Lemma 7, (a, c) is a zero-one vector.
Let us define a hybrid graph H over N:

i→ j in H ⇔ a(i→ j) = 1, (B.2)
i −− j in H ⇔ c(i j) = 1 & a(i→ j) = 0 & a(j→ j) = 0 .

The definition is correct, since, by (c.1) and (c.2), a(i→ j) + a(j→ i) ≤ c(i j) ≤ 1. Note

c(i j) = 1 ⇔ (i, j) is an edge in H ⇔ Hi j has a super-terminal component. (B.3)

Observe that H is 3-acyclic (see § 2.1). Indeed, assume for a contradiction that H has a semi-directed cycle ρ : i, j, k, i
with i→ j. Hence, by (B.2), (B.3) and (c.5) we have

3 = a(i→ j) + c(jk) + c(ik) ≤ 2 + a(i→ k) + a(k → j),

saying 1 ≤ a(i → k) + a(k → j), which implies, by (B.2), that either i → k in H or k → j in H. This contradict the
assumption ρ is a semi-directed cycle.

The next step is to show that, for distinct i, j, k ∈ N,

c(i jk) = 1 ⇔ Hi jk has a super-terminal component. (B.4)

For this purpose, realize that, because H is 3-acyclic, the graph Hi jk has a super-terminal component iff it is either
quasi-complete or an immorality. For⇒ direction, if c(i jk) = 1 and Hi jk is not quasi-complete, then at least one edge
in Hi jk is missing. Assume without loss of generality that it is (i, j), which means, by (B.3), c(i j) = 0. Write by (c.3)

2 = 2 · c(i jk) ≤ 2 · c(i j) + a(i→ k) + a(j→ k) = a(i→ k) + a(j→ k) .

This implies that both a(i→ k) = 1 and a(j→ k) = 1; by (B.2), i→ k ← j is an immorality. For⇐ direction, in case
Hi jk is quasi-complete, write by (B.3) and (e.1) for S = i jk:

3 = c(i j) + c(ik) + c(jk) ≤ 2 + c(i jk),

which implies the desired conclusion c(i jk) = 1. If Hi jk is an immorality, say i → j ← k, then realize ¬(j → k in H)
and observe by (B.2) that a(i→ j) = 1 and a(j→ k) = 0; while c(jk) = 1 by (B.3). This allows us to write by (c.4)

2 = a(i→ j) + c(jk) ≤ 1 + c(i jk) + a(j→ k) = 1 + c(i jk),

28

implying c(i jk) = 1. Thus, (B.4) has been verified.
The next observation is that H has no flag. Assume for a contradiction it has a flag i→ j −− k. As ¬(j→ k in H),

by (B.2), a(i→ j) = 1 and a(j→ k) = 0. By (B.3) and (c.4)

2 = a(i→ j) + c(jk) ≤ 1 + c(i jk) + a(j→ k) = 1 + c(i jk).

Hence, c(i jk) = 1, which, by (B.4), contradicts the assumption i→ j −− k is a flag in H.
Thus, consider the 3-acyclic hybrid graph H without flags defined in (B.2). By Lemma 6(i) the vector cH given

by (15) is a zero-one vector satisfying the conditions (e.1)–(e.2). By (B.3) and (B.4), we have c(S) = cH(S) for any
S ⊆ N, 2 ≤ |S | ≤ 3. As c also satisfies (e.1)–(e.2), by Lemma 8, we have c = cH . By (14) and (B.2), we also have
a = aH , which concludes the proof of the (i)-part of Lemma 9.

As concerns the (ii)-part, assume c satisfies (a.1). As mentioned in § 2.1, to show that H is a chain graph, it is
enough to verify it has no semi-directed chordless cycle. Since H is 3-acyclic, we already know it has no semi-directed
cycle of length 3. Thus, assume for a contradiction it has a semi-directed chordless cycle ρ : i0, i1, . . . , im = i0 of length
m ≥ 4 with i0 → i1 in H. Because H has no flag, we observe that ρ has to be a directed cycle, that is, ir → ir+1 in
H for r = 0, 1, . . . ,m − 1. Put S = {i1, . . . , im}. By the (i)-part, c = cH; thus, using (15) observe that the only subsets
T ⊆ S , |T | ≥ 2 with c(T) = 1 are the edges of the cycle ρ. In particular, if we substitute into (a.1) we get

|S | =
∑

T⊆S , |T |≥2

c(T) · (−1)|T | ≤ |S | − 1 ,

which is a contradiction. Thus, H cannot have a semi-directed cycle of length m ≥ 4.
As mentioned in (the end of) § 2.3, to show that H is equivalent to an acyclic directed graph, it is enough to show

it has no undirected chordless cycle of length m ≥ 4. The proof by a contradiction is analogous to the case of a
semi-directed cycle. If ρ : i0 −− i1 −− . . . −− im = i0 is such a cycle, put S = {i1, . . . , im} and get a contradiction with
(a.1) in the same way.

Thus, by combining Lemmas 6(i) and 9(i) we get Theorem 2, by using Lemmas 6(ii) and 9(ii) we get Theorem 1.

Appendix C. Reduced inequalities

Just as the inequalities (e.1)–(e.2) can be reduced to (e.1?) and (e.2?) (see § 5.1), the set T can occasionally be
used to further reduce the length of the vector (a, c) and the inequalities (b.1)–(b.2), (c.1)–(c.5). One needs components
a(i→ j) and c(i j) only if {i, j} ∈ T , which gives an obvious reduction of basic non-negativity inequalities:

(b.1?) ∀ {i, j} ∈ T 0 ≤ a(i→ j),

(b.2?) ∀ S ∈ T , |S | = 3, 4 0 ≤ c(S).

As concerns the consistency inequalities, since we assume c(R) = 0 for all R < T and, also, a(i→ j) = 0 for {i, j} < T ,
they get the following form:

(c.1?) ∀ {i, j} ∈ T a(i→ j) + a(j→ i) ≤ c(i j),

(c.2?) ∀ {i, j} ∈ T c(i j) ≤ 1,

(c.3?) ∀ {i, j, k} ∈ T 2 · c(i jk) ≤ 2 · c(i j) + a(i→ k) + a(j→ k),

(c.4?) ∀ i, j, k ∈ N distinct with {i, j}, { j, k} ∈ T a(i→ j) + c(jk) ≤ 1 + c(i jk) + a(j→ k),

(c.5?) ∀ i, j, k ∈ N distinct with {i, j}, { j, k}, {i, k} ∈ T a(i→ j) + c(jk) + c(ik) ≤ 2 + a(i→ k) + a(k → j).

Appendix D. Results of simulation experiments

29

bn17:100 (BDE)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 26 24 150 60 10 0 2 1 1
3 35 54 298 156 29 3 2 1 1
4 39 78 362 204 43 9 2 1 1
5 39 78 362 204 43 9 2 1 1
6 51 177 666 420 145 73 31 33 1
7 85 495 1708 1254 689 475 — 3600(199.20%) 1
8 133 1758 3902 3816 10408 6796 — 3600(NA) 1
9 136 2007 4080 4080 27314 17962 — 3600(NA) 1

10 136 2040 4080 4080 54345 35963 — 3600(NA) 1

bn17:100 (BCI)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 34 33 242 120 20 0 6 1 1
3 34 33 242 120 20 0 6 1 1
4 34 33 242 120 20 0 6 1 1
5 34 33 242 120 20 0 6 1 1
6 34 33 242 120 20 0 6 1 1
7 34 33 242 120 20 0 6 1 1
8 34 33 242 120 20 0 6 1 1
9 34 33 242 120 20 0 6 1 1

10 34 33 242 120 20 0 6 1 1

bn17:1000 (BDE)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 61 114 848 462 85 0 139 42 1
3 68 171 1060 648 129 12 60 16 1
4 68 180 1060 648 136 19 60 16 1
5 68 180 1060 648 136 19 60 16 1
6 68 180 1060 648 136 19 60 16 1
7 68 180 1060 648 136 19 60 17 1
8 68 180 1060 648 136 19 60 17 1
9 68 180 1060 648 136 19 60 17 1
10 68 180 1060 648 136 19 60 17 1

bn17:1000 (BCI)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 75 165 1264 798 154 0 346 161 1
3 83 282 1560 1086 258 27 218 151 1
4 83 303 1560 1086 272 42 38 11 1
5 83 303 1560 1086 272 42 38 11 1
6 83 303 1560 1086 272 42 38 11 1
7 83 303 1560 1086 272 42 38 11 1
8 83 303 1560 1086 272 42 38 11 1
9 83 303 1560 1086 272 42 38 10 1
10 83 303 1560 1086 272 42 38 11 1

bn17:10000 (BDE)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 97 396 2118 1680 440 0 — 3600(5.10%) 9.69
3 118 975 3118 2808 1393 239 — 3600(NA) 15.67
4 121 1221 3268 2988 2479 813 — 3600(NA) 12.28
5 121 1251 3268 2988 2884 1184 — 3600(3.98%) 2.74
6 121 1251 3268 2988 2950 1293 — 3600(2.80%) 0.95
7 121 1251 3268 2988 2954 1309 487 2076 0.66
8 121 1251 3268 2988 2954 1309 487 2079 0.69
9 121 1251 3268 2988 2954 1309 487 2121 0.63

10 121 1251 3268 2988 2954 1309 487 2124 0.64

bn17:10000 (BCI)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 98 414 2164 1728 462 0 — 3600(11.33%) 14.24
3 120 1029 3212 2916 1549 279 — 3600(28.92%) 14.61
4 124 1332 3412 3156 3023 1027 – 3600(NA) 21.20
5 125 1386 3464 3222 3857 1669 — 3600(6.66%) 4.91
6 125 1389 3464 3222 4088 1941 — 3600(3.31%) 4.67
7 125 1389 3464 3222 4126 1986 — 3600(0.69%) 0.94
8 125 1389 3464 3222 4126 1986 — 3600(0.69%) 0.99
9 125 1389 3464 3222 4126 1986 — 3600(0.69%) 0.97
10 125 1389 3464 3222 4126 1986 — 3600(0.69%) 0.98

Table D.5: Running times in seconds (cimset) of our ILP approach (method 2), the number of acyclic inequalites generated (# (a.1)), and the
running time of GOBNILP version 1.3 with SCIP version 3.0.0 using CPLEX Studio 12.5 for data sets bn17 using BDeu (α = 1.0) and BIC. Data
sets are further partitioned by the number of samples used in the training data base (100, 1000, 10000) and the parent set size limit (plim). Data sets
were run for a maximum of one hour (3600 seconds) and the percentage gap (y − x)/x of the current best LP objective value y to the best current
integer objective value x is given if terminated before a final solution was found and if available.

30

bn17b:100 (BDE)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 24 21 132 48 8 0 1 1 1
3 27 39 180 84 17 3 2 1 1
4 31 57 242 132 30 8 5 1 1
5 31 57 242 132 30 8 5 1 1
6 31 57 242 132 30 8 5 1 1
7 88 558 1868 1482 876 588 — 3600(352.50%) 1
8 122 1317 3316 3042 4162 3124 — 3600(NA) 1
9 136 2037 4080 4080 29202 19673 — 3600(NA) 1

10 136 2040 4080 4080 — — — 3600(NA) 1

bn17b:100 (BCI)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 28 30 186 72 12 0 3 1 1
3 29 39 206 84 16 2 3 1 1
4 29 39 206 84 16 2 3 1 1
5 29 39 206 84 16 2 3 1 1
6 29 39 206 84 16 2 3 1 1
7 29 39 206 84 16 2 3 1 1
8 29 39 206 84 16 2 3 1 1
9 29 39 206 84 16 2 3 1 1

10 29 39 206 84 16 2 3 1 1

bn17b:1000 (BDE)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 63 132 912 570 115 0 45 10 1
3 73 246 1234 846 210 25 41 7 1
4 73 252 1234 846 215 31 47 8 1
5 73 252 1234 846 215 31 47 8 1
6 73 252 1234 846 215 31 47 8 1
7 73 252 1234 846 215 31 47 7 1
8 73 252 1234 846 215 31 47 8 1
9 73 252 1234 846 215 31 47 7 1
10 73 252 1234 846 215 31 47 8 1

bn17b:1000 (BCI)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 67 156 1040 702 146 0 76 23 1
3 78 312 1412 1038 285 35 87 33 1
4 79 366 1440 1068 340 75 74 50 1
5 79 366 1440 1068 340 75 74 48 1
6 79 366 1440 1068 340 75 74 49 1
7 79 366 1440 1068 340 75 74 48 1
8 79 366 1440 1068 340 75 74 50 1
9 79 366 1440 1068 340 75 74 49 1
10 79 366 1440 1068 340 75 74 48 1

bn17b:10000 (BDE)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 113 525 2860 2490 696 0 — 3600(4.77%) 9.07
3 124 1101 3416 3168 1773 286 — 3600(27.10%) 15.97
4 127 1266 3576 3378 2747 798 — 3600(4.11%) 19.27
5 127 1278 3576 3378 2954 1007 — 3600(2.22%) 6.15
6 127 1278 3576 3378 2984 1058 — 3600(0.75%) 5.21
7 127 1278 3576 3378 2984 1066 — 3600(0.81%) 3.75
8 127 1278 3576 3378 2984 1066 — 3600(0.83%) 3.72
9 127 1278 3576 3378 2984 1066 — 3600(0.81%) 3.60
10 127 1278 3576 3378 2984 1066 — 3600(0.81%) 3.65

bn17b:10000 (BCI)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 114 573 2912 2556 755 0 — 3600(8.87%) 8.10
3 125 1173 3468 3234 1974 330 — 3600(43.40%) 16.25
4 130 1380 3738 3594 3408 1041 — 3600(7.18%) 38.27
5 130 1404 3738 3594 4092 1557 — 3600(2.76%) 12.21
6 130 1404 3738 3594 4190 1688 — 3600(1.49%) 2.83
7 130 1404 3738 3594 4190 1689 — 3600(0.75%) 3.86
8 130 1404 3738 3594 4190 1689 — 3600(0.75%) 3.95
9 130 1404 3738 3594 4190 1689 — 3600(0.75%) 3.89
10 130 1404 3738 3594 4190 1689 — 3600(0.76%) 3.96

Table D.6: Running times in seconds (cimset) of our ILP approach (method 2), the number of acyclic inequalites generated (# (a.1)), and the
running time of GOBNILP version 1.3 with SCIP version 3.0.0 using CPLEX Studio 12.5 for data sets bn17b using BDeu (α = 1.0) and BIC. Data
sets are further partitioned by the number of samples used in the training data base (100, 1000, 10000) and the parent set size limit (plim). Data sets
were run for a maximum of one hour (3600 seconds) and the percentage gap (y − x)/x of the current best LP objective value y to the best current
integer objective value x is given if terminated before a final solution was found and if available.

31

bn17-noisyor:100 (BDE)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 119 630 3162 2856 781 0 751 593 3.70
3 131 1017 3790 3660 1309 158 — 3600(5.38%) 5.51
4 133 1164 3902 3816 1629 312 — 3600(8.52%) 3.04
5 134 1233 3960 3900 1777 383 — 3600(10.20%) 5.62
6 136 1425 4080 4080 2394 673 — 3600(NA) 5.86
7 136 1584 4080 4080 3636 1551 — 3600(NA) 6.23
8 136 1707 4080 4080 5514 2787 — 3600(NA) 5.77
9 136 1707 4080 4080 5514 2787 — 3600(NA) 5.74
10 136 1707 4080 4080 5514 2787 — 3600(NA) 5.73

bn17-noisyor:100 (BCI)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 114 528 2920 2544 646 0 93 15 3.31
3 117 591 3062 2706 711 18 95 16 2.79
4 117 591 3062 2706 711 18 95 16 2.79
5 117 591 3062 2706 711 18 95 16 2.83
6 117 591 3062 2706 711 18 95 15 2.79
7 117 591 3062 2706 711 18 95 16 2.79
8 117 591 3062 2706 711 18 95 17 2.82
9 117 591 3062 2706 711 18 95 16 2.74
10 117 591 3062 2706 711 18 95 17 2.69

bn17noisyor:1000 (BDE)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 136 1407 4080 4080 1971 0 2902 3372 5.69
3 136 1839 4080 4080 3884 806 — 3600(55.48%) 6.74
4 136 1851 4080 4080 4758 1422 — 3600(NA) 4.76
5 136 1851 4080 4080 4811 1503 — 3600(18.29%) 5.65
6 136 1851 4080 4080 4824 1513 — 3600(NA) 5.05
7 136 1851 4080 4080 4878 1565 — 3600(NA) 4.64
8 136 1851 4080 4080 4878 1565 — 3600(NA) 4.65
9 136 1851 4080 4080 4878 1565 — 3600(NA) 4.61
10 136 1851 4080 4080 4878 1565 — 3600(NA) 4.47

bn17-noisyor:1000 (BCI)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 136 1404 4080 4080 1979 0 — 3600(0.92%) 6.51
3 136 1749 4080 4080 3480 661 — 3600(NA) 4.56
4 136 1749 4080 4080 3661 833 — 3600(NA) 5.83
5 136 1749 4080 4080 3661 833 — 3600(NA) 5.79
6 136 1749 4080 4080 3661 833 — 3600(14.12%) 5.84
7 136 1749 4080 4080 3661 833 — 3600(14.12%) 5.78
8 136 1749 4080 4080 3661 833 — 3600(14.12%) 5.65
9 136 1749 4080 4080 3661 833 — 3600(14.12%) 5.52

10 136 1749 4080 4080 3661 833 — 3600(NA) 5.56

bn17-noisyor:10000 (BDE)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 136 1788 4080 4080 2513 0 — 3600(8.69%) 7.02
3 136 2040 4080 4080 7306 1848 — 3600(NA) 291.07
4 136 2040 4080 4080 14155 5538 — 3600(NA) 3600(0.22%)
5 136 2040 4080 4080 19373 8997 — 3600(NA) 3600(0.12%)
6 136 2040 4080 4080 20422 10022 — 3600(NA) 3600(0.20%)
7 136 2040 4080 4080 20473 10087 — 3600(NA) 3600(0.19%)
8 136 2040 4080 4080 20473 10087 — 3600(NA) 3600(0.17%)
9 136 2040 4080 4080 20473 10087 — 3600(NA) 3600(0.17%)

10 136 2040 4080 4080 20473 10087 — 3600(NA) 3600(0.18%)

bn17-noisyor:10000 (BCI)
plim c.1∗ c.3∗ c.4∗ c.5∗ e.1∗ e.2∗ # (a.1) cimset GOBNILP

2 136 1794 4080 4080 2522 0 — 3600(NA) 4.95
3 136 2040 4080 4080 7468 1889 — 3600(NA) 311.74
4 136 2040 4080 4080 13960 5446 — 3600(NA) 3114.74
5 136 2040 4080 4080 17562 7822 — 3600(NA) 3367.72
6 136 2040 4080 4080 17645 7917 — 3600(NA) 2408.75
7 136 2040 4080 4080 17645 7917 — 3600(NA) 2401.67
8 136 2040 4080 4080 17645 7917 — 3600(NA) 2355.90
9 136 2040 4080 4080 17645 7917 — 3600(NA) 2216.08

10 136 2040 4080 4080 17645 7917 — 3600(NA) 2213.02

Table D.7: Running times in seconds (cimset) of our ILP approach (method 2), the number of acyclic inequalites generated (# (a.1)), and the
running time of GOBNILP version 1.3 with SCIP version 3.0.0 using CPLEX Studio 12.5 for data sets bn17-noisyor using BDeu (α = 1.0)
and BIC. Data sets are further partitioned by the number of samples used in the training data base (100, 1000, 10000) and the parent set size limit
(plim). Data sets were run for a maximum of one hour (3600 seconds) and the percentage gap (y − x)/x of the current best LP objective value y to
the best current integer objective value x is given if terminated before a final solution was found and if available.

32

References

[1] T. Achterberg, T. Koch, A. Martin, Branching rules revisited, Operations Research Letters 33 (2005) 42–54.
[2] S.A. Andersson, D. Madigan, M.D. Perlman, A characterization of Markov equivalence classes for acyclic digraphs, Annals of Statistics 25

(1997) 505–541.
[3] R.R. Bouckaert, Bayesian belief networks: from construction to evidence, PhD thesis, University of Utrecht 1995.
[4] A. Cano, M. Gómez-Olmedo, A.R. Masegosa, S. Moral, Locally averaged Bayesian Dirichlet metrics for learning the structure and the

parameters of Bayesian networks, International Journal of Approximate Reasoning 54 (4) 526–540.
[5] D.M. Chickering, Optimal structure identification with greedy search, Journal of Machine Learning Research 3 (2002) 507–554.
[6] J. Cussens, Maximum likelihood pedigree reconstruction using integer programming, in Proceeedings of the Workshop on Constraint Based

Methods for Bioinformatics (WCBMB) 2010, pp. 9–19.
[7] J. Cussens, Bayesian network learning with cutting planes, in Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence

(UAI) 2011, pp. 153–160.
[8] J. Cussens, M. Bartlett, E.M. Jones, N.A. Sheehan, Maximum likelihood pedigree reconstruction using integer programming, Genetic Epi-

demiology 37 (1) 69–83.
[9] C.P. de Campos, Z. Zeng, Q. Ji, Structure learning Bayesian networks using constraints, in Proceedings of the 26th International Conference

on Machine Learning (ICML) 2009, pp. 113–120.
[10] C.P. de Campos, Q. Ji, Efficient structure learning Bayesian networks using constraints, Journal of Machine Learning Research 12 (2011)

663–689.
[11] D. Heckerman, D. Geiger, D.M. Chickering, Learning Bayesian networks: the combination of knowledge and statistical data, Machine

Learning 20 (1995) 194–243.
[12] R. Hemmecke, S. Lindner, M. Studený, Characteristic imsets for learning Bayesian network structure, International Journal of Approximate

Reasoning 53 (2012) 1336–1349.
[13] T. Jaakkola, D. Sontag, A. Globerson, M. Meila, Learning Bayesian network structure using LP relaxations, in Proceedings of the 13th

International Conference on Artificial Intelligence and Statistics (AISTATS) 2010, pp. 358–365.
[14] A. Land, S. Powell, Computer codes for problems of integer programming, Annals of Discrete Mathematics 5 (1979) 221–269.
[15] S. L. Lauritzen, Graphical Models, Clarendon Press 1996.
[16] J.T. Linderoth, M.W.P. Savelsbergh, A computational study of search strategies for mixed integer programming, INFORMS Journal on

Computing 11 (1999) 173–187.
[17] S. Lindner, Discrete optimization in machine learning: learning Bayesian network structures and conditional independence implication, PhD

thesis, TU Munich 2012.
[18] R.E. Neapolitan, Learning Bayesian Networks, Pearson Prentice Hall 2004.
[19] G.E. Schwarz, Estimation of the dimension of a model, Annals of Statistics 6 (1978) 461–464.
[20] M. Studený, A recovery algorithm for chain graphs, International Journal of Approximate Reasoning 17 (1997) 265–293.
[21] M. Studený, Characterization of essential graphs by means of the operation of legal merging of components, International Journal of Uncer-

tainty, Fuzziness and Knowledge-Based Systems 12 (2004) 43–62.
[22] M. Studený, Probabilistic Conditional Independence Structures, Springer 2005.
[23] M. Studený, J. Vomlel, R. Hemmecke, A geometric view on learning Bayesian network structures, International Journal of Approximate

Reasoning 51 (2010) 578–586.
[24] M. Studený, R. Hemmecke, S. Lindner, Characteristic imset: a simple algebraic representative of a Bayesian network structure, in Proceedings

of the 5th European Workshop on Probabilistic Graphical Models (PGM) 2010, pp. 257–264.
[25] M. Studený, Integer linear programming approach to learning Bayesian network structure: towards the essential graph, in Proceedings of the

6th European Workshop on Probabilistic Graphical Models (PGM) 2012, pp. 307–314.
[26] M. Studený, D. Haws, R. Hemmecke, S. Lindner, Polyhedral approach to statistical learning graphical models, in Harmony of Gröbner Bases

and the Modern Industrial Society: the 2nd CREST-SBM International Conference (T. Hibi ed.), World Scientific 2012, pp. 346–372.
[27] M. Studený, LP relaxations and pruning for characteristic imsets, research report n. 2323, Institute of Information Theory and Automation of

the ASCR, Prague, June 2012; also available through http://staff.utia.cas.cz/studeny/f18.html.
[28] M. Studený, D. Haws, On polyhedral approximations of polytopes for learning Bayesian networks, Journal of Algebraic Statistics 4 (2013)

59–92.
[29] M. Teyssier, D. Koller, Ordering-based search: a simple and effective algorithm for learning Bayesian networks, in Proceedings of the 21st

Conference on Uncertainty in Artificial Intelligence (UAI) 2005, pp. 584–590.
[30] T. Verma, J. Pearl, Equivalence and synthesis of causal models, in Proceedings of the 6th Conference on Uncertainty in Artificial Intelligence

(UAI) 1991, pp. 220–227.
[31] ILOG CPLEX, reference manual, 2013; http://www.ilog.com/products/cplex.
[32] GOBNILP, a web page, 2013; http://www.cs.york.ac.uk/aig/sw/gobnilp.

33

