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An algebraic approach to learningBayesian networks

Milan Studen�yInstitute of Information Theory and AutomationAcademy of Sciences of the Czech Republic, Prague
Graphical models of conditional independence (CI) structures are pop-ular both in the area of arti�cal intelligence (AI) and in statistics.This contribution concerns the problem of learning graphical modelsdescribed by acyclic directed graphs, known as Bayesian networks in AI.Some of Bayesian approaches to learning Bayesian networks from data arebased on the idea of maximalization of a score metric and some of themuse the method of local search for its maximalization.In this contribution an algebraic point of view on this method is pre-sented. The main idea is as follows: every Bayesian network model can berepresented by a certain integral vector, named standard structural imsetand the value of a (reasonable) score metric is then a linear function of thisvector and of another real vector depending on data only.Moreover, (reasonable) moves to neighbouring (Bayesian network) mod-els used in the method of local search can also be represented by very simpleintegral vectors, named elementary imsets , which correspond to elementaryCI statements.



Bayesian networks IEvery Bayesian network can be viewed as a speci�c statisticalmodel, that is a class of probability distributions.G acyclic directed graph having N as the set of nodes(N 6= ; �nite)Commonly used (but grammatically misleading) phrase directed acyclicgraph leads to generally accepted abbreviation DAG.Supposing Xi; i 2 N are respective sample (measurable) spacesthe respective classM(G) of probability distributions on the jointsample space XN can be introduced in two (typically) equivalentways.A Using recursive factorization formula� 8A � N XA =Qi2AXi the sample space for A� Given xN 2 XN the symbol xA denotes the projection of xN onto XA� Let f denote the density of a probability distribution P on XN with respect toa suitable dominating product measure. According to a common convention themarginal and conditional densities will be denoted by the same symbol and theirarguments will indicate what is actually meant.For example, if A;B � N are disjoint then f(xAjxB) is used to denote the value ofthe conditional density on XA given xB (= the con�guration xB 2 XB of values forB) in the con�guration xA 2 XA.� 8 i 2 N pa (i) = fb 2 N ; b! i in Gg parents of a node i (in G)If it necessary to indicate the graph one writes pa G(i).M(G) = fP on XN ; 8xN 2 XN f(xN) =Yi2N f(xijxpa (i)) g :In case of �nite Xi's the values of conditional densities serve astraditional parameters for parametric description of M(G).



Bayesian networks IIB Models of conditional independence structure� T (N) = f hA;BjCi ; A;B;C � N pairwise disjoint gthe class of (disjoint) triplets over N� A ?? B jC [P ] denotes respective CI statement relative toP , i.e. the statement saying that for a random vector [�i]i2Non XN having distribution P its subvectors [�i]i2A and [�i]i2Bare conditionally independent given [�i]i2C .Graphical separation criteria There are two traditionalequivalent criteria which ascribe to a DAG G the respective formalindependence model. One of them is the moralization criterion[Lauritzen et.al. 1990], the other one is the d-separation criterion[Pearl 1988] (here d� means 'directional').� A node c is a descendant of a node i in G if there exists a directedpath i = d1 ! d2 : : : ! dn = c, n � 1 in G from i to c (possiblyi = c).� Given hA;BjCi 2 T (N) one says that C d-separates between A andB in G if for every path in G (not necesarily a directed path) from anode in A to a node in B there exists a node i on the path such that{ either i is a collider on the path: a ! i  b and none of itsdescendants belongs to C{ or i is not a collider on the path and belongs to C.� Formal independence modelI(G) = fhA;BjCi 2 T (N) ; C d-separates between A and B in G g :M(G) = fP on XN ; A ?? B jC [P ] if hA;BjCi 2 I(G) g :



Score metricsOne of the approaches to learning Bayesian networksfrom data (in the form of a sequence of elements ofXN assumed to be a 'realization' of an i.i.d. sequenceof random variables with a shared distribution P ) usesthe idea of score metric.However, there are other approaches, for example approaches based onstatistical tests of CI statements.The idea is that a statistician chooses a function Swhich ascribes a real number S(G;D) to every DAGG 2 DAGS (N) (= the collection of acyclic directedgraphs having N as the set of nodes) and every dataD 2 DATA (N; d) (= the collection of all sequences ofelements of XN of length d � 1) which measures howsuitable is the statistical model determined by G for ex-planation of the occurence of data D, shortly how theDAG G �ts the data D. This function is here namedthe score metric.The basic aim is clear: the higher the value of S(G;D) is the betterthe statistical model determined by G should �t the data D. How-ever, some usual score metrics have also penalization terms whichsomehow (negatively) re
ect the complexity of a model (measuredfor example by the 'number' of free parameters). Therefore, from amathematical point of view the resulting task to maximize S(G;D)over G's for �xed D.



Equivalence of DAGsSince the aim is to �nd 'the best' statistical modelM(G) it is not reasonable to distinguish between equiv-alent DAGs, that is DAGsK andL for whichM(K) =M(L).
Note that if the sample spaces are non-trivial (and thedistribution framework is su�ciently wide) then this ischaracterized by the condition that the induced formalindependence models coincide: I(K) = I(L).The situation I(K) = I(L) can be characterized directly in graphical termsas well.
Therefore, a natural assumption is that the metric S isscore-equivalent which means S(K;D) = S(L;D) forevery data D 2 DATA (N; d) and K;L 2 DAGS (N)such that I(K) = I(L).



Decomposable criteriaFurther reasonable assumption is that the score met-ric factorizes according to the DAG in a way which isanalogous to the (recursive) factorization formula - see[Chickering 2002].� 8A � N D 2 DATA (N; d) DA denotes the projection of D onto XAx1; : : : ; xd 7! x1A; : : : ; xdAA score metric S is called decomposable if there exists a collectionof real functions sijB on DATA (fig [ B; d) where i 2 N andB � N n fig such that 8G 2 DAGS (N) D 2 DATA (N; d)S(G;D) =Xi2N sijpa (i) (Dfig[pa (i)) :I myself advocate for the following concept. A score metric is reg-ular if there exists a collection of real functions tA on DATA (A; d)where A � N such that8G 2 DAGS (N) D 2 DATA (N; d)S(G;D) =Xi2N tfig[pa (i)(Dfig[pa (i)) � tpa (i)(Dpa (i)) :
Observation 1 A score metric is regular i� it is score-equivalent and decomposable.



Examples of score metrics ITypical method of derivation of a suitable score metric is themethod of maximized likelihood [Cowell et.al. 1999]. This leadsto maximum log-likelihood criterion which is the maximum of thelogarithm of the likelihood function l(D;P ) (= the probability ofoccurence of data D provided that P 'generates' the data) over allprobability distributions P 2M(G) in the model:MLL (G;D) = max f ln l(D;P ) ; P 2M(G) g :If one has discrete data (i.e. �nite Xi's) and the order of items in datais important (that is one distinguishes between data x1 = y, x2 = z andx1 = z, x2 = y) then a direct formula can be written.Conventionsi code of a node i 2 Nk code of a value of a variable i 2 N k = 1; : : : ; r(i), r(i) = jXijj code of a value of a parent con�guration for i 2 N j = 1; : : : ; q(i; G),q(i; G) = jXpa (i)jThen MLL (G;D) =Xi2N q(i;G)Xj=1 r(i)Xk=1 dijk � ln dijkdij ;where dijk respectively dij denotes the number of occurences of the respec-tive con�guration in data D 2 DATA (N; d).Penalized derived criterion is Akaike's Information Criterion :AIC (G;D) = MLL (G;D)� d(G) ;where d(G) denotes the number of free parameters in the statisticalmodel M(G) given byd(G) =Xi2N ( r(i)� 1 ) � X`2pa (i) r(`) :



Examples of score metrics IIAnother popular criterion is Je�reys-Schwarz criterion, sometimescalled Bayesian Information Criterion :BIC (G;D) = MLL (G;D)� 12 � d(G) � ln d :One can easily show that all these three criteria are regular.In Bayesian approach one speci�es a prior density �G onthe set of parameters for each statistical model M(G)into consideration. One usually puts additional assump-tions on these priors and considers convenient forms forthem - see e.g. [Spiegelhalter Lauritzen 1990]. More-over, the priors for distinct models are implicitly sup-posed to be related.Consequently, having �xed a collection of priors by integrating thelikelihood function according to them (and taking possibly the log-arithm of the result) other reasonable score metrics can be derived.For example, the logarithm of the marginal likelihood :LML (G;D) = ln ZM(G) l(P;D) d �G(P )can be shown to be a regular criterion on suitable asumptions, Iguess.



The method of local searchIt may be computationally demanding task to evaluate the scoremetric in general. To avoid these problems the method of localsearch was proposed [Meek 1997], [Chickering 2002].The idea is to introduce a suitable concept of neighbourhood forstatistical models into consideration. Thus, the class of Bayesiannetwork models over N can be understood as a (huge) state spacewhose states are equivalence classes of DAGs. Therefore, thesearch space is the class fM(G) ; G 2 DAGS (N) g endowed witha suitable symmetric binary relation 'being a neighbour'.One starts the procedure in a speci�c state and in every step computes thechange in the value of the score metric only for some of (a limited numberof) its neighbouring states. For reasonable score metrics (= regular ones)the change in score is easy to compute since it depends only on a few 'local'terms. Then one 'moves' to the state with the highest increase in the score.This method certainly leads to a 'local maximum' in general buton some (relatively strong) assumptions it is guaranteed to �nd theright (= 'generating') model [Meek 1997].To ensure the convergence of the above procedure the neighbour-hood of a state in the chosen search space has to involve certainminimal neighbourhood (which is justi�ed from a theoretical pointof view).



Inclusion of DAGsNatural idea of de�ning theoretically justi�ed conceptof neighbourhood is based on the inclusion of statisticalmodels.LetK and L are DAGs over N . If mild assumptions onthe sample spaces (and the distribution framework) areful�lled then the inclusion M(L) � M(K) is equiva-lent to the condition I(K) � I(L).One says that two DAGs K and L over N are neigh-bours in sense of inclusion boundary and uses notationI(K) @ I(L) if� I(K) � I(L) (i.e. I(K) � I(L) but I(K) 6= I(L) ),� there is no DAG G over N such that I(K) � I(G) � I(L).Well, it is the matter of taste whether one says then that L is an upperneighbour of K and K the lower neighbour of L or conversely.
It seems to be quite di�cult task to characterize inclusion of DAGsin graphical terms. Note that a conjecture about graphical char-acterization of inclusion (boundary) [Meek 1997] was recently con-�rmed [Chickering 2002].



Internal computer representationTraditional methods of internal computer representa-tion of equivalence classes of DAGs use partially di-rected graphs (i.e. graphs having some edges directedand some undirected ones):� patterns [Meek 1997] may have semi-directed cycles� essential graphs [Andersson et.al. 1977], sometimesnamed 'completed patterns', are acyclic.
In this contribution a non-graphical method of com-puter representation of equivalence classes of DAGs,in particular a method of computer representation ofBayesian network statistical models, is proposed.The main idea is to represent them by certain integralvectors, named structural imsets. This can be viewedas an example of application of a more general methodof description of probabilistic CI structures by integralvectors of this kind [Studen�y 2001]. The actual pro-posal is to represent every equivalence class of DAGsby unique standard structural imset.



Structural imsetsBy an imset over N is understood an integral function on P(N),the power set of N .The word 'imset' is an abbreviation for integer-valued multiset.� 8A � N �A denotes the identi�cator of A�A(A) = 1; �A(B) = 0 for B � N; B 6= A :� T�(N) = fha; bjCi ; a; b 2 N; a 6= b; C � N n fa; bg gthe class of elementary triplets over NThese triplets correspond to elementary CI statements from a certain the-oretical point of view.Given ha; bjCi 2 T�(N) the respective elementary imset uha;bjCiis given by the formulauha;bjCi = �fa;bg[C + �C � �fag[C � �fbg[C :The class of elementary imsets will be denoted by E(N). An imsetis called combinatorial if it is a combination of elementary imsetswith non-negative integral coe�cients :u = Xv2E(N) kv � v where kv 2 Z+ :An imset w is a structural imset if for some natural number n 2 Nthe multiple n � w is a combinatorial imset.There is a polynomial algorithm of testing whether an imset is a combina-torial imset. On the other hand, testing structural imsets could appear tobe a problem unless the following conjecture is con�rmed. It is an openquestion whether every structural imset is a combinatorial imset. Theconjecture was veri�ed in case jN j � 4.



Standard structural imsetsGiven a DAG G 2 DAGS (N) the respective standardstructural imset uG is given by the formulauG = �N � �; +Xi2N �pa (i) � �fig[pa (i) :Actually, it is a combinatorial imset.The concept of standard structural imset o�ers a simple non-grap-hical method of testing equivalence of DAGs.Theorem 1 Two DAGs K and L over N are equiva-lent i� uK = uL.In particular, standard structural imsets can serve as representa-tives of equivalence classes of DAGs. However, this concept is alsouseful for the following fact.Observation 2 Let S be a regular score metric. Then thereexists a real function t : P(N) � DATA (N; d) 7! R such that8G 2 DAGS (N) D 2 DATA (N; d)S(G;D) = t(N;D)� t(;; D)�XA�N t(A;D) � uG(A)� constant (D)� htD; uGi :Actually, the value of t(A;D) � tD(A) depends on D only through DA.Thus, the value of a score metric is a linear function of uG, moreprecisely it is a constant depending on data plus the scalar productof the vector uG and of another real vector tD which represents datain this framework.



Change in scoreMorevover, standard structural imsets allow one to cha-racterize inclusion of DAGs using an algebraic relation.Observation 3 Let K and L are DAGs over N . Then I(K) �I(L) i� uL � uK is a combinatorial imset.Note that this result can be easily derived as a consequence of the validityof above mentioned Meek's conjecture about graphical characterizationof inclusion. Recall that there exists a polynomial algorithm for testingcombinatorial imsets.One can say even more, namely that the neighbourhoodin sense of inclusion boundary can be characterized us-ing an algebraic relation. Finally, the change in thevalue of a score metric is also a linear function of acertain elementary imset.Observation 4 Let S be a regular score metric and K;L areDAGs over N . Then I(K) @ I(L) i� uL � uK is an elemen-tary imset. Of course, this elementary imset uha;bjCi is uniquelydetermined by K and L and 8D 2 DATA (N; d)S(K;D)� S(L;D) =XA�N t(A;D) � uha;bjCi(A) � htD; uha;bjCiiwhere t(A;D) is the function mentioned in Observation 2.Since uha;bjCi has only 4 non-zero values one hashtD; uha;bjCii = tD(fa; bg[C)+tD(C)�tD(fag[C)�tD(fbg[C) :



ConclusionsThe presented approach allow one� to represent every Bayesian network model M(G)by a certain integral vector uG called standard stru-ctural imset,� to represent respective data by a real vector tD,� express the value of a resonable score metric (namelya regular one) as the scalar product of these twovectors (plus a constant),� interpret the change in score between neighbouringmodels in terms of an elementary CI statement andexpress it as a scalar product as well.Moreover, the approach allows one to characterize inclusion ofDAGs in an algebraic way and brings a clear 'algebraic' point ofview on the problem.It is my hope that this point of view will lead to an alternative method ofmaximalization of score metric in future.Finally, the approach can be viewed as a speci�c application of amore general method of mathematical description of probabilisticCI structures by means of structural imsets [Studen�y 2001]. Thus,perhaps this algebraic approach can be extended to learning otherclasses of graphical models.But the present problem (of time) is that:� respective full paper on this topic is to be written . . .� many interesting open questions need to be answered . . .
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