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Graphical models of conditional independence (CI) structures are pop-
ular both in the area of artifical intelligence (AI) and in statistics.

This contribution concerns the problem of learning graphical models
described by acyclic directed graphs, known as Bayesian networks in Al
Some of Bayesian approaches to learning Bayesian networks from data are
based on the idea of maximalization of a score metric and some of them
use the method of local search for its maximalization.

In this contribution an algebraic point of view on this method is pre-
sented. The main idea is as follows: every Bayesian network model can be
represented by a certain integral vector, named standard structural imset
and the value of a (reasonable) score metric is then a linear function of this
vector and of another real vector depending on data only.

Moreover, (reasonable) moves to neighbouring (Bayesian network) mod-
els used in the method of local search can also be represented by very simple
integral vectors, named elementary imsets, which correspond to elementary
CI statements.



BAYESIAN NETWORKS I

Every Bayesian network can be viewed as a specific statistical
model, that is a class of probability distributions.

(G acyclic directed graph having N as the set of nodes
(N = () finite)

Commonly used (but grammatically misleading) phrase directed acyclic
graph leads to generally accepted abbreviation DAG.

Supposing X;,i € N are respective sample (measurable) spaces
the respective class M(G) of probability distributions on the joint
sample space Xy can be introduced in two (typically) equivalent
ways.

A| Using recursive factorization formula

e VACN Xy=][[;cuX; the sample space for A
e Given zy € Xy the symbol x4 denotes the projection of x onto X4

® Let f denote the density of a probability distribution P on Xy with respect to
a suitable dominating product measure. According to a common convention the
marginal and conditional densities will be denoted by the same symbol and their
arguments will indicate what is actually meant.
For example, if A, B C N are disjoint then f(z|xp) is used to denote the value of
the conditional density on X4 given xp (= the configuration x5 € Xp of values for

B) in the configuration x4 € X4.

eVie N pa(i)={be N;b—iin G} parents of anode i (in G)
If it necessary to indicate the graph one writes pa ¢(7).

M(G)={PonXy;Vay € Xy flan)=]] f@ilzma) }-
ieN
In case of finite X,’s the values of conditional densities serve as
traditional parameters for parametric description of M(G).
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B| Models of conditional independence structure

e T(N)={(A,B|C); A, B,C C N pairwise disjoint }
the class of (disjoint) triplets over N

e A1l B|C [P] denotes respective CI statement relative to
P, i.e. the statement saying that for a random vector [&];en
on Xy having distribution P its subvectors [£;];ea and [&]iep
are conditionally independent given [£;];cc.

Graphical separation criteria There are two traditional
equivalent criteria which ascribe to a DAG G the respective formal
independence model. One of them is the moralization criterion
[Lauritzen et.al. 1990], the other one is the d-separation criterion
[Pearl 1988] (here d— means 'directional’).

e A node c is a descendant of a node 7 in GG if there exists a directed
pathi =dy - dy ... > d, =¢,n > 1in G from i to ¢ (possibly
i =c).

e Given (A, B|C) € T(N) one says that C' d-separates between A and
B in G if for every path in G (not necesarily a directed path) from a
node in A to a node in B there exists a node ¢ on the path such that

— either 7 is a collider on the path: a — ¢ < b and none of its
descendants belongs to C'

— or ¢ is not a collider on the path and belongs to C.

e Formal independence model

IZ(G) ={(A,B|C) € T(N); C d-separates between A and B in G }.

M(G)={PonXy; Al B|C [P] if (A, B|C) € Z(G) }.



SCORE METRICS

One of the approaches to learning Bayesian networks
from data (in the form of a sequence of elements of
Xy assumed to be a 'realization’ of an i.i.d. sequence
of random variables with a shared distribution P) uses
the idea of score metric.

However, there are other approaches, for example approaches based on
statistical tests of CI statements.

The idea is that a statistician chooses a function S
which ascribes a real number S(G, D) to every DAG
G € DAGS(N) (= the collection of acyclic directed
graphs having N as the set of nodes) and every data
D € DATA (N, d) (= the collection of all sequences of
elements of Xy of length d > 1) which measures how
suitable is the statistical model determined by G for ex-
planation of the occurence of data D, shortly how the

DAG (G fits the data D. This function is here named
the score metric.

The basic aim is clear: the higher the value of S(G, D) is the better
the statistical model determined by G should fit the data D. How-
ever, some usual score metrics have also penalization terms which
somehow (negatively) reflect the complexity of a model (measured
for example by the 'number’ of free parameters). Therefore, from a

mathematical point of view the resulting task to maximize S(G, D)
over G’s for fixed D.



EQUIVALENCE OF DAGS

Since the aim 1s to find ’the best’ statistical model

M (G) it is not reasonable to distinguish between equiv-
alent DAGs, that is DAGs K and L for which M(K) =

M(L).

Note that if the sample spaces are non-trivial (and the
distribution framework is sufficiently wide) then this is
characterized by the condition that the induced formal

independence models coincide: Z(K) = Z(L).

The situation Z(K) = Z(L) can be characterized directly in graphical terms
as well.

Therefore, a natural assumption is that the metric S is
score-equivalent which means S(K, D) = S(L, D) for
every data D € DATA(N,d) and K, L € DAGS (N)
such that Z(K) = Z(L).



DECOMPOSABLE CRITERIA

Further reasonable assumption is that the score met-
ric factorizes according to the DAG in a way which is
analogous to the (recursive) factorization formula - see

[Chickering 2002].

e VAC N D € DATA(N,d) D4 denotes the projection of D onto X4

1 d 1 d
Ty,...,T > .’EA,...,ZI?A

A score metric S is called decomposable if there exists a collection
of real functions s,z on DATA ({i} U B,d) where i € N and
B C N\ {i} such that VG € DAGS (N) D € DATA(N,d)

S(G,D) =Y Sipa (i) (Diijupati)) -

1EN

[ myself advocate for the following concept. A score metric is reg-
ular if there exists a collection of real functions ¢4 on DATA (A, d)
where A C N such that

VG € DAGS (N) D € DATA(N,d)

S(G,D) = triyuma () (Piiyopa ) — tpa)(Dpai)) -
1€N

Observation 1 A score metric is regular iff it is score-
equivalent and decomposable.



EXAMPLES OF SCORE METRICS 1

Typical method of derivation of a suitable score metric is the
method of maximized likelihood [Cowell et.al. 1999]. This leads
to maximum log-likelthood criterion which is the maximum of the
logarithm of the likelihood function I(D, P) (= the probability of
occurence of data D provided that P ’generates’ the data) over all
probability distributions P € M(G) in the model:

MLL (G, D) = max{In (D, P); P € M(G) }.

If one has discrete data (i.e. finite X;’s) and the order of items in data
is important (that is one distinguishes between data z! = y, 2> = 2 and

2! = 2, 22 = y) then a direct formula can be written.

Conventions

¢t code of anodet € N
k code of a value of a variablet € N k=1,...,7(3), r(i) = |Xj|
j code of a value of a parent configuration fori € N j=1,...,q(i,G),

Q(Za G) = ‘Xpa(i)‘
Then

MLL (G, D)= Z Zdwk In —2% ”’“

1EN j=1 k=1
where d;;;, respectively d;; denotes the number of occurences of the respec-

tive configuration in data D € DATA (N, d).

Penalized derived criterion is Akaike’s Information Criterion:
AIC (G, D) =MLL (G, D) — d(G),

where d(G) denotes the number of free parameters in the statistical
model M(G) given by

d(G)=> (r(i)—1)- Y  r().

i€EN lepa (i)
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Another popular criterion is Jeffreys-Schwarz criterion, sometimes
called Bayesian Information Criterion:

BIC (G, D) = MLL (G, D) — % (@) -Ind.

One can easily show that all these three criteria are regular.

In Bayesian approach one specifies a prior density m¢ on
the set of parameters for each statistical model M(G)
into consideration. One usually puts additional assump-
tions on these priors and considers convenient forms for
them - see e.g. [Spiegelhalter Lauritzen 1990]. More-
over, the priors for distinct models are implicitly sup-
posed to be related.

Consequently, having fixed a collection of priors by integrating the
likelihood function according to them (and taking possibly the log-
arithm of the result) other reasonable score metrics can be derived.
For example, the logarithm of the marginal likelihood:

LML (G, D) = In /M(G> I(P,D) dre(P)

can be shown to be a regular criterion on suitable asumptions, I
guess.



THE METHOD OF LOCAL SEARCH

[t may be computationally demanding task to evaluate the score
metric in general. To avoid these problems the method of [ocal

search was proposed [Meek 1997], [Chickering 2002].

The idea is to introduce a suitable concept of neighbourhood for
statistical models into consideration. Thus, the class of Bayesian
network models over N can be understood as a (huge) state space
whose states are equivalence classes of DAGs. Therefore, the
search space is the class { M(G) ; G € DAGS (N) } endowed with

a suitable symmetric binary relation 'being a neighbour’.

One starts the procedure in a specific state and in every step computes the
change in the value of the score metric only for some of (a limited number
of) its neighbouring states. For reasonable score metrics (= regular ones)
the change in score is easy to compute since it depends only on a few ’local’
terms. Then one 'moves’ to the state with the highest increase in the score.

This method certainly leads to a 'local maximum’ in general but
on some (relatively strong) assumptions it is guaranteed to find the
right (= ’generating’) model [Meek 1997].

To ensure the convergence of the above procedure the neighbour-
hood of a state in the chosen search space has to involve certain
minimal neighbourhood (which is justified from a theoretical point
of view).



INcLusiON OF DAGS

Natural idea of defining theoretically justified concept
of neighbourhood is based on the inclusion of statistical
models.

Let K and L are DAGs over N. If mild assumptions on
the sample spaces (and the distribution framework) are
fulfilled then the inclusion M(L) C M(K) is equiva-
lent to the condition Z(K) C Z(L).

One says that two DAGs K and L over N are neigh-
bours in sense of inclusion boundary and uses notation

I(K)C Z(L) if
e Z(K)CZ(L) (ie Z(K)CZ(L)but Z(K) #Z(L)),
e there is no DAG G over N such that Z(K) C Z(G) C Z(L).

Well, it is the matter of taste whether one says then that L is an upper
neighbour of K and K the lower neighbour of L or conversely.

It seems to be quite difficult task to characterize inclusion of DAGs
in graphical terms. Note that a conjecture about graphical char-
acterization of inclusion (boundary) [Meek 1997] was recently con-

firmed [Chickering 2002].



INTERNAL COMPUTER REPRESENTATION

Traditional methods of internal computer representa-
tion of equivalence classes of DAGs use partially di-
rected graphs (i.e. graphs having some edges directed
and some undirected ones):

e patterns [Meek 1997] may have semi-directed cycles

e cssential graphs [Andersson et.al. 1977], sometimes
named 'completed patterns’, are acyclic.

In this contribution a non-graphical method of com-
puter representation of equivalence classes of DAGs,
in particular a method of computer representation of
Bayesian network statistical models, is proposed.

The main idea is to represent them by certain integral
vectors, named structural imsets. This can be viewed
as an example of application of a more general method
of description of probabilistic CI structures by integral
vectors of this kind [Studeny 2001]. The actual pro-
posal 1s to represent every equivalence class of DAGs
by unique standard structural imset.



STRUCTURAL IMSETS

By an imset over N is understood an integral function on P(N),
the power set of V.

The word ’imset’ is an abbreviation for integer-valued multiset.

e VA C N 4 denotes the identificator of A
04(A)=1, d4(B)=0 for BC N, B#£A.

e T.(N)={{(a,b|C);a,be N, a#b, C C N\{a,b}}

the class of elementary triplets over N

These triplets correspond to elementary CI statements from a certain the-
oretical point of view.

Given (a,b|C) € T:(N) the respective elementary imset w, ¢
is given by the formula,

U(a,b|Cy = Ofapiuc T 0c — Ofayuc — dgpyuc -

The class of elementary imsets will be denoted by £(N). An imset
is called combinatorial if it is a combination of elementary imsets
with non-negative integral coefficients:

U= Z k,-v wherek, € Z".
veE(N)

An imset w is a structural imset if for some natural number n € N
the multiple n - w is a combinatorial imset.

There is a polynomial algorithm of testing whether an imset is a combina-
torial imset. On the other hand, testing structural imsets could appear to
be a problem unless the following conjecture is confirmed. It is an open
question whether every structural imset is a combinatorial imset. The
conjecture was verified in case |N| < 4.



STANDARD STRUCTURAL IMSETS

Given a DAG G € DAGS (N) the respective standard
structural imset uq is given by the formula

ug — 5N — 6@ T Z 5pa (2) — 6{2’}Upa (¢) -
€N
Actually, it 1s a combinatorial imset.

The concept of standard structural imset offers a simple non-grap-
hical method of testing equivalence of DAGs.

Theorem 1 Two DAGs K and L over N are equiva-
lent iff ug = uy.

In particular, standard structural imsets can serve as representa-
tives of equivalence classes of DAGs. However, this concept is also
useful for the following fact.

Observation 2 Let S be a regular score metric. Then there
exists a real function ¢ : P(N) x DATA (N,d) — R such that
VG € DAGS (N) D € DATA (N, d)

S(G,D) =t(N,D) — t(), D) — Y (A, D) ug(A)
= constant (D) — {tp,ug) .

Actually, the value of t(A, D) = tp(A) depends on D only through D 4.

Thus, the value of a score metric is a linear function of u¢g, more
precisely it is a constant depending on data plus the scalar product
of the vector u¢g and of another real vector ¢ p which represents data
in this framework.



CHANGE IN SCORE

Morevover, standard structural imsets allow one to cha-
racterize inclusion of DAGs using an algebraic relation.

Observation 3 Let K and L are DAGs over N. Then Z(K) C
Z(L) iff u;, — ug is a combinatorial imset.

Note that this result can be easily derived as a consequence of the validity
of above mentioned Meek’s conjecture about graphical characterization
of inclusion. Recall that there exists a polynomial algorithm for testing
combinatorial imsets.

One can say even more, namely that the neighbourhood
in sense of inclusion boundary can be characterized us-
ing an algebraic relation. Finally, the change in the
value of a score metric is also a linear function of a
certain elementary imset.

Observation 4 Let S be a regular score metric and K, L are
DAGs over N. Then Z(K) C Z(L) iff ur, — ug is an elemen-
tary imset. Of course, this elementary imset w, oy is uniquely

determined by K and L and ¥V D € DATA (N, d)

S(K,D)— S(L,D) = Z t(A, D) - upicy(A) = (tp, upicy)
ACN

where t(A, D) is the function mentioned in Observation 2.

Since u, picy has only 4 non-zero values one has

{tp, upc)y) = tp({a, b}UC)+tp(C)—tp({a}UC)—tp({b}UC).



CONCLUSIONS

The presented approach allow one

e to represent every Bayesian network model M(G)
by a certain integral vector ug called standard stru-
ctural imset,

e to represent respective data by a real vector ¢p,

e cxpress the value of a resonable score metric (namely
a regular one) as the scalar product of these two
vectors (plus a constant),

e interpret the change in score between neighbouring
models in terms of an elementary CI statement and
express it as a scalar product as well.

Moreover, the approach allows one to characterize inclusion of
DAGs in an algebraic way and brings a clear ’algebraic’ point of
view on the problem.

It is my hope that this point of view will lead to an alternative method of
maximalization of score metric in future.

Finally, the approach can be viewed as a specific application of a
more general method of mathematical description of probabilistic
CI structures by means of structural imsets [Studeny 2001]. Thus,
perhaps this algebraic approach can be extended to learning other
classes of graphical models.

But the present problem (of time) is that:

e respective full paper on this topic is to be written ...

e many interesting open questions need to be answered . ..
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