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1. Introduction 

The topic of this paper is chain graph models of conditional independence 
structures. The class of chain graphs was introduced by Lauritzen and We- 
rmuth [10] as a graphical tool which allows one to represent both symmetric 
associations and directional influences among variables. The symmetric asso- 
ciations correspond to lines ( = undirected edges) and the directional influences 
correspond to arrows ( =  directed edges). Note that the original research re- 
port [10] was later modified and became a basis of Ref. [11]. Mathematical 
theory of chain graphs was developed mainly by Frydenberg [8]. The class of 
Markovian distributions with respect to a chain graph was introduced by 
means of a moralization criterion, see also Ref. [12]. Moreover, Frydenberg [8] 
characterized Markov equivalent chain graphs (i.e., graphs inducing the same 
class of Markovian distributions) in graphical terms and showed that every 
equivalence class contains a distinguished representative which is called the 
largest chain graph. 

Several later works dealt with chain graphs, for example Refs. 
[20,5,4,16,19,1]. An equivalent separation criterion for chain graphs was in- 
troduced in Ref. [3]. It made it possible to confirm the conjecture from Ref. [8] 
that the global Markov condition is the strongest possible one - see Ref. [18]. 
Chain graphs became a topic of books as well -- see Refs. [21,13]. Cox and 
Wermuth [6] introduced a wider class of joint-response chain graphs in which 
two additional types of relationships among variables are considered (they are 
represented by dashed lines and arrows). An alternative Markov property for 
joint-response chain graphs with dashed arrows and solid lines was developed 
by Andersson, Madigan and Perlman [2], for comparison see Ref. [15]. 

Nevertheless, this paper is concerned with the original chain graphs 
(with solid lines and arrows) treated by Frydenberg [8]. One of Fryden- 
berg's open questions was to find a procedure that, for a given chain 
graph, constructs the largest chain graph with the same Markov properties. 
The pool-component procedure from Ref. [17] is an example of such a 
procedure. In this paper, we present even a more elegant solution of the 
problem. We give a simple direct graphical characterization of those chain 
graphs which are the largest chain graphs of (some) classes of Markov 
equivalent chain graphs. The characterization leads immediately to another 
algorithm for finding the largest chain graph which is Markov equivalent 
to a given chain graph. 

Section 2 deals with basic concepts and their relevant properties. Section 3 
introduces the concept of protected arrow. The main result of the paper is that a 
chain graph is the largest chain graph (of a class of Markov equivalent chain 
graphs) iff its every arrow is protected. Section 3 also contains the description 
of the above-mentioned algorithm. In Section 4, we used the algorithm to 
generate a catalog of the largest chain graphs over at most five vertices by a 
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computer. The results of the paper and further prospects are discussed in 
Section 5. 

2. Basic concepts 

2.1. Graphs and routes 

A hybrid graph over V is an ordered pair G = (V, E), where V is a finite non- 
empty set, elements of which are called vertices of G, and E is a set of ordered 
pairs of distinct vertices of G. An ordered pair (u, v) of vertices of G is called an 
edge in G, iff (u, v) E E or (v, u) E E. An edge (u, v) in G is called an undirected 
edge if (u, v) E E and (v, u) E E, a directed edge if (u, v) E E and (v, u) ~ E, and 
a reverse directed edge if (u, v) ~ E and (v, u) E E. We also use the phrases line, 
arrow, reverse arrow in G and the notation u - -  v, u -~ v, u *-- v, respectively. 
Note that our definition implies that at most one edge occurs for every ordered 
pair of distinct vertices. Let us give an example of a hybrid graph. Put 
V =  {a,b,c},  E =  {(a,b) , (b ,a) , (a ,c)}  and G =  (V,E). Then (a,b) and (b,a) 
are lines in G, (a, c) is an arrow in G and (c, a) is a reverse arrow in G. The pairs 
(b, c) and (c, b) are not edges in G. The graph G is shown in the left picture of 
Fig. 1. 

Let G = (V, E) be a graph over V and U _c V is non-empty. The graph 
(U, E N (U × U)) is called the subgraph of G induced by U and denoted by Gu. 
A graph which contains no arrow is called undirected, a graph which contains 
no line is called directed. In particular, the graphs without edges are both di- 
rected and undirected graphs. The underlying graph of a graph G is an undi- 
rected graph obtained from G by replacing all edges in G by lines. 

Let Gl = (V~,EI) and G2 = (V2,E2) be two hybrid graphs. We say that they 
are isomorphic if there exists a one-to-one mapping t from V1 to Vz such that, 
for every ordered pair (u,v) of distinct vertices of GI, (u ,v)E Ej iff 
(~(u), ~(v)) E E2. For example, the graph in the right picture of Fig. 1 is is- 
omorphic to the graph in the left picture of Fig. 1. Here l(a) = e, t(b) = d, 
, ( e )  ---- e ,  

A route from a vertex ul to a vertex u, (n ~> 1) in a hybrid graph G is a finite 
sequence (u l , . . .  ,u,) of its vertices such that (u;,u;+l) is an edge in G for all 

0 b c J  

Fig. 1. Examples of hybrid graphs. 

od 
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i = 1 , . . . ,  n -- 1. A path is a route which consists o f  distinct vertices. A pseudo- 
cycle is a route ( u j , . . . ,  u,) such that  n >~ 4 and ul = u,. A cycle is a pseudo- 
cycle ( u l , . . . ,  u,) such that ( u l , . . . ,  u,_l) is a path. A route  ( u l , . . . ,  u,) is called 
undirected, if ui - -  ui+l for all i = 1 , . . . ,  n - 1. It is called descending if either 
ui ~ us+l or ui - -  ui+j for all i = 1 , . . .  ,n - 1. A descending route (u l , . . .  ,u,)  is 
called directed if u s ~ UJ-I for  at least one j E { 1 , . . . ,  n - 1 }. 

Example. Let us give a few examples o f  different types o f  routes in the graph 
from Fig. 2: 
• (a, b, c , f  g, b, c, d) is a general route which is neither a pseudo-cycle nor  a 

path, 
• (a, b, c, d) is a directed path, 
• (b, c , f ,  e, d, e , f ,  g, b) is a pseudo-cycle which is not  a cycle, 
• (b, c, d, e, f ,  g, b) is a directed cycle, 
• (a, b , g , f )  is bo th  an undirected path and a descending path,  
• (d, c, b, a) is a path which is neither undirected nor  directed. 
A vertex u is an ancestor of  a vertex v in a graph  G if there exists a descending 
route f rom u to v in G. Note  that every (descending) route p can be shortened 
to a (descending) path. Indeed, if a vertex w occurs more  than once in 
p :  ( U  = U 1 . . . .  , u, = v), then p can be replaced by ( u l , . . . ,  ui_j, uk , . . . ,  u,) where 
u~ is the first occurrence o f  a node w in p, and uk is the last occurrence o f  w in p. 
The set o f  ancestors o f  vertices o f  a set U C_ V is denoted by an(U).  

A complex in a hybrid graph G is a path ( u l , . . . ,  u,) in G such that n > 2, 
uj ~ u2, u,_j *-- u,,, ui--u~--i for all i = 2 , . . . ,  n - 2, and no other  pair o f  ver- 
tices o f  {ul,.  • . ,  u,} is an edge in G. That  means, the subgraph o f  G induced by 
{u~ , . . . ,  u,} looks like the graph  in Fig. 3. Note  that  our  concept  o f  complex 
corresponds to the concept  o f  'minimal  complex '  f rom Ref. [8]. An arrow 
x ~ y is called a complex arrow in G if there exists a complex ( u l , . . . ,  u,,) in G 
such that  x = ul and y = u2. An arrow x ---, y in G is called a non-complex ar row 
if it is not  a complex ar row in G. Two graphs will be called (graph) equivalent, 
if they have the same underlying graph and the same complexes. It is evidently 
an equivalence relation. The following lemma simplifies the task to verify 
whether two graphs are equivalent. 

f e 
0 0 

9 

l o & 
a b c d 

Fig. 2. Examples of routes in a graph. 
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u I i n 
0 0 0 

U 2 'U 3 Un--2 U n - 1  

Fig. 3. A complex. 

Lemma 2.1. Two hybrid graphs are graph equivalent iff the)' have the same 
underlying graph and the same complex arrows. 

Proof. It suffices to show that whenever G~ and G2 have the same underlying 
graph and complex arrows, then they have the same complexes. Suppose for a 
contradiction that ( u j , . . . ,  u,) is a complex in Gl, which is not a complex in G2. 
Since u~ ~ u2 and u, ~ un-t are complex arrows in Gl, they are arrows in G2. 
Let us introduce i = m a x { k ; l ~ < k ~ < n - 2 ,  uk--+u~+l in G2} and then put 
j = min{k; i + 1 ~< k ~< n - 1, uk +-- u,+l in G2}. Then (U~+l,..., uj) is an undi- 
rected path in G2. Since (u~, . . . ,  u,) is a complex in GI, and G2 has the same 
underlying graph as Gi, the path (u~,.. . ,  uj+l) is a complex in Gz. One has i = 1 
as otherwise (u~,ui+l) is a complex arrow in G2 which is a line in Gi. 
Analogously, j = n - 1 as otherwise (uj+l, UJ) is a complex arrow in G2 which is 
a line in G~. Thus, (u~ , . . . ,u , )  is a complex in G2 which contradicts the 
assumption. [] 

Lemma 2.2. Let u ~ v be a non-complex arrow in a hybrid graph G, and the 
graph H differs from G only in the edge (u, v), which is a line in H. Then G and H 
are graph equivalent. 

Proof. The graphs G and H have the same underlying graph. By Lemma 2.1, it 
suffices to verify that they have the same complex arrows. Since u ~ v is not a 
part  of  any complex in G, every complex in G remains a complex in H and 
every complex arrow in G is a complex arrow in H. 

Let us prove by contradiction that every complex arrow in H is a complex 
arrow in G. Consider a complex arrow a --+ b in H which is a non-complex 
arrow in G. Then there exists a complex (a, b = c j , . . . ,  c,, d), n ~> 1 in H. Since 
it is not a complex in G the edge (u, v) belongs to the path (Cl , . . . ,  cn). Find the 
index i such that u = c~ and either v = c~+~ or v = ci-I. Then either the path 
( c i = u , c ~ _ l = v , . . . , c , , d )  or the path ( a , b = c j , . . . , c i _ l = v ,  c i = u )  is a 
complex in G which contradicts the premise that u ~ v is a non-complex arrow 
in G. [] 
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Consequence 2.3. Let  G be a hybrid graph, s ¢ a  collection o f  non-complex arrows 
in G, and H a graph made o f  G by converting the arrows f rom ag into lines. Then 
H is graph equivalent to G. 

Proof .  Let  us o rde r  the col lect ion ag into  a sequence ui ---+ vi, i = 1 , . . . ,  m and  
denote  ~Q/i = {uj ---+ q/;i<<j<~m} for  i = 1 , . . .  ,m. Put  Gl =--- G and  in t roduce  
G~+I (for i --- 1 , . . . ,  m) as the g raph  made  o f  G~ by conver t ing  the a r row ui --+ v~ 
into a line. The idea is to show by induc t ion  on  i = 1 , . . . , m  tha t  a¢~ is a 
col lect ion o f  non -complex  a r rows  in G~ and  tha t  G~+~ is equivalent  to Gi. 
Indeed,  one can app ly  L e m m a  2.2 to show that  G2 is equiva len t  to G~. The 
induc t ion  step (for i = 1 , . . . , m ) :  since G~+I and  Gi have the same complex  
a r rows  ( L e m m a  2.1) aCi-t is a col lect ion o f  non -complex  ar rows in G~+~ as well. 
This  al lows one to app ly  L e m m a  2.2 again  to show tha t  G~_2 is equivalent  to 
Gi+l. Hence,  H = G,,+l is equiva lent  to G1 = G. [] 

Let  Gl = (V, EI)  and  G2 = (V, E2) are  hybr id  graphs .  W e  will say tha t  Gt is 
larger than  G2, and  write G1 /> G2 if  El _D E2. It  implies  tha t  every line in G2 is a 
line in GI. In  a pa r t i cu la r  case that  G1 and  G2 have the same under ly ing  graph,  
Gj ~> G2 iff every a r row in Gj is an a r row in G2. No te  that  whenever  a vertex u 
is an ances tor  o f  a ver tex v in G2 and  G~ /> G2 then u is an ances tor  o f  v in Gi. 
Indeed,  it suffices to realize tha t  a sequence o f  vertices (u = u l , . . . ,  u , - - v ) ,  
n ~> 1 is a descending  rou te  in Gj = (V, Ej), j =  1,2 iff (ui, ui+i) E E~ for  all 
i =  1 , . . . , n - 1 .  

2.2. Cyclic arrows 

Let  G be a hybr id  g raph  and  u ~ v an a r row in G. W e  will say tha t  u --+ v is a 
cyclic arrow in G, if  there exists a d i rec ted  pseudo-cyc le  in G such that  u --+ v is 
a pa r t  o f  it. Equivalent ly ,  if  u --, v in G and  v is an  ances to r  o f  u in G. In 
par t icu lar ,  u ~ v is a cyclic a r row in G iff there  exists a d i rec ted  cycle in G 
con ta in ing  u ---+ v. 

Lemma 2.4. Let  G be a hybrid graph and u --+ v a cyclic arrow & G. Let  the graph 
H is made o f  G by converting u ---+ v into a line. Then an arrow x --+ y is a cyclic 
arrow in H iff it is a cyclic arrow in G, different f r o m  u --~ v. 

Proof.  Every  di rec ted  pseudo-cyc le  in G con ta in ing  an a r row x --+ y different 
f rom u ---, v remains  a d i rec ted  pseudo-cycle  in H.  Thus,  every cyclic a r row in G 
different f rom u --+ v is a cyclic a r row in H.  

Conversely ,  suppose  tha t  x ---+ y is a cyclic a r row in H.  Then  x ---+ y in G and  
there exists a descending  route  qJ: (y = u j , . . . ,  u, --- x), n ~> 3 in H.  I f  qJ remains  
a descending  route  in G, then x ---, y is a cyclic a r row in G. Otherwise  there 
exists 1 ~< i ~< n - 1 such tha t  (ui, ui+l) = (v, u). Since u ---+ v is a cyclic a r row in 
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G, there exists a descending route a: (v = v l , . . . ,  v~ = u), k ~> 3 in G (see Fig. 4). 
Therefore (y = u l , . . . , u i  = v = Vl , . . . , v~  = u = Ui+l,. . . , u ,  = x) is a descend- 
ing route in G and x ~ y is a cyclic arrow in G as well. [] 

2.3. Chain graphs 

A chain graph is a hybrid graph in which there is no directed pseudo-cycle. 
Equivalently, a chain graph is a hybrid graph without cyclic arrows. In par- 
ticular, a hybrid graph is a chain graph iff it has no directed cycle. Every un- 
directed graph is a chain graph because it does not contain any arrow. Directed 
chain graphs are more often called directed acyclic graphs. Note that the above 
definition of  a chain graph is not the original one given by Lauritzen and 
Wermuth [10] which motivated the name 'chain'.  Other equivalent definitions 
of  a chain graph are given in Ref. [17], Lemma 2.1. A simple way of how to 
convert a hybrid graph into a chain graph is based on Lemma 2.4. 

Consequence 2.5. Let  K be a hybrid graph and H is the graph made o f  K by 
converting all its cyclic arrows into lines. Then H is a chain graph. 

Proof. Let us order the collection of  all cyclic arrows in K into a sequence 
ue ~ vi, i =  1 , . . . , m  and denote d ,  = {uj ~ vj;i<<,j<<,im} for i =  1 , . . . , m +  1. 
Put G1 - K  and introduce Gi+l (for i = 1 , . . .  ,m) as the graph made of Gi by 
converting the arrow ui ~ v~ into a line. One can use Lemma 2.4 to show by 
induction on i = 1 , . . . ,  m + 1 that ~¢i is the collection of all cyclic arrows in Gi. 
Hence, H = Gm+l has no cyclic arrow. [] 

The graph equivalence decomposes the class of  chain graphs over V into 
equivalence classes. The proof  of  the following important  result was given by 
Frydenberg [8], Proposition 5.7. 

7)k- I /Zi-l-2 

V2 ~ i - 1  

Fig. 4. Figure illustrating the proof of Lemma 2.4. 
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Theorem 2.6. Every equivalence class o f  graph equivalent chain graphs contains a 
graph which is larger than any other graph o f  the class. 

Of course, the graph from the previous theorem is uniquely determined. It 
will be called the largest chain graph of the class of equivalent chain graphs. Let 
us emphasize that the equivalence class may contain incomparable chain 
graphs (with respect to the relation 'larger') in general. On the other hand, the 
largest chain graph of the class is comparable with every chain graph of 
the class. The only difference between a general chain graph G belonging to the 
class and the largest chain graph L of the class is that some non-complex ar- 
rows in G can be lines in L. 

2.4. Independency models and Markov properties 

Let V be a non-empty finite set of variables. Let us denote the set of all 
triplets (X, YIZ), where X, Y, Z are disjoint subsets of V, and X, Y are non- 
empty, by #~(V). If  the sets X, Y have only one element, then the triplet 
(X, YIZ) is called elementary. The set of all elementary triplets over V is de- 
noted by e(V). An independency model over V is any subset of J-(V). An in- 
dependency model .//! is a semi-graphoid [14] if it satisfies the following 
properties: 

(X, YI z )  C ~a ¢=~ ( v , x t z ) ~ . . # ,  

{(X, YIWZ) C J¢ and (X, WIZ) 6 rig} ¢=¢, (X, YW[Z) 6 J//. 

The significance of elementary triplets is that the list of elementary triplets 
belonging to a semi-graphoid , g  suffices to reconstruct ~ '  and can be used as 
an economical record of Jg. We leave it to the reader to verify the following 
lemma. 

Lemma 2.7. Let Jtl be a semi-graphoid over V, (X, Y[Z) E ,Y-(V). Then 
(x, ylZ)  #/ff 

V x c X  Vy r v z c _ w c ( x u r u z ) \ { x , y }  

(x,ylW) n e(v). 

In particular, °/#1 = Jtl2 iff Jgj A 6~(V) = ~/¢2 N ~(V)  for semi-graphoids ,g l ,  
~12 over V. 

Every chain graph over V induces a certain independency model over V. The 
moral graph of a hybrid graph K is an undirected graph over the same set of 
vertices which has an edge (u, v) iff either (u, v) is an edge in K or there exists a 
complex (u = u l , . . . ,  u, = v), n/> 3 in K. We will say that a triplet {X, YI Z) C 
Y-(V) is represented in a chain graph G over V according to the moralization 
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criterion if every path in the moral graph of  Gan(xuruz) from a vertex of  X to a 
vertex of  Y contains a vertex of  Z. The independency model induced by G 
consists of the triplets represented in G according to the moralization criterion. 
It is always a semi-graphoid - see Ref. [18], Lemma 3.1. Thus, according to 
Lemma 2.7, one can encode it by means of the list of elementary triplets rep- 
resented in the graph. 

Let {Xi; i E V} be a collection of  finite non-empty sets indexed by a finite 
non-empty set V. Let the symbol I-I(U), where ~ -¢ U C V, denote the Carte- 
sian product I]icu Xi. A discrete probability distribution over V is a function 
P:  1-I(V) ~ [0, 1], which satisfies ~x~niv)P(x) = 1. The marginal distribution of  
P for a non-empty subset U c_ V is a probability distribution pu over U defined 
by 

pU(x) = ~ P(x ,y)  for every x c FI(U). 
ycn(v\u) 

Of course, pO = 1. Supposing (X, YIZ) 6 .Y-(V) we say that X is conditionally 
independent of  Y given Z with respect to P if 

v x c n ( x )  y c n ( r )  z I](Z) 

pXurUZ(x, y, z) .  PZ(z) = PXUZ(x, z)- prUZ(y, z). 

The independency model induced by a probability distribution P consists of  the 
triplets (X, YIZ} E Y-(V) such that X is conditionally independent of  Y given Z 
with respect to P. Note that it is always a semi-graphoid as well [7]. 

A probability distribution P over V is called Markovian with respect to a 
chain graph G over V if the independency model induced by G is a subset of the 
independency model induced by P. Two chain graphs over the same set of  
nodes are Markov equivalent if their classes of Markovian distributions coin- 
cide. Frydenberg [8] gave the following elegant characterization of Markov 
equivalent chain graphs. One can use it to show that two chain graphs 
are Markov equivalent iff they induce the same independency model - see also 
Ref. [1]. 

Theorem 2.8. Two chain graphs are Markov equivalent iff they are graph 
equivalent. 

3. Characterization of the largest chain graphs 

3.1. Protected arrows 

The goal of  this section is to characterize arrows in the largest chain graph of  
a class of  equivalent chain graphs. It seems very easy - a n  edge is an arrow in 



218 M. Volf, M. Studenf I Internat. J. Approx. Reason. 20 (1999) 209-236 

the largest  chain  g raph  iff it is an a r row in every equiva lent  chain graph.  
However ,  to inspect  the whole  equivalence  class o f  cha in  g raphs  is r a the r  de-  
manding .  Thus,  a r easonab le  cha rac te r i za t ion  o f  a r rows  in the largest  chain 
g raph  should  work  only  with one g raph  f rom the equivalence class. W e  have 
found  out  tha t  every non -complex  a r row in the largest  chain  g raph  prevents  a 
complex  a r row f rom being a cyclic a r row.  

Definition 3.1. Let  G be a hybr id  graph.  W e  say tha t  an a r row u --, v in G covers 

an a r row x ~ y in G and  write u ---* v _ x ~ y if  u is an ances to r  o f x  in G and  y 
is an ances tor  o f  v in G (see Fig. 5). We  say tha t  an a r row u ~ v is pro tec t ed  in 
G if  it covers  a complex  a r row in G. A n  a r row in G is cal led non-protec ted  if  it is 
not  a p ro tec ted  a r row in G. 

Since every vertex is an ances to r  o f  i tself  the re la t ion  ;2 is reflexive. Thus,  
every complex  a r row is a p ro tec ted  ar row.  Since the re la t ion 'be ing  an ances tor '  
is t ransi t ive  the re la t ion :-- is t ransi t ive  as  well. In par t icu la r ,  an a r row which 
covers a p ro tec ted  a r row is a p ro tec ted  ar row.  

Lemma 3.1. L e t  G be a chain graph,  and  u ---* v and  x --~ y in G. Then u --* v >- 

x ~ y in G i f f  there exis ts  a descending pa th  f r o m  u to v containing the arrow 

x - - - ~ y i n G .  

Proof .  The  sufficiency o f  the given cond i t ion  is trivial.  F o r  necessity suppose  
u --, v ___ x ~ y. Let  (u = u l , . . . ,  un = x), n />  1 and  (y = v l , . . . ,  V m = V), m /> 1 
be the co r r e spond ing  descending  paths .  W e  prove  by  con t rad ic t ion  tha t  
{ u l , . . . , u n } N { v l , . . . , v , ~ } = O .  Let  k E { 1  . . . .  ,n} be the largest  index, for  
which there exists an  index i E { 1 , . . .  ,m} such tha t  uk = vi. I f k  = n, then i ¢ 1 
since x ¢ y. Moreover ,  i 7 ~ 2 as o therwise  v2 = un = x ~ y = v! con t rad ic t s  the 
fact tha t  [vl --~ v2 or  vt - v2]. Thus,  k = n implies  i t> 3. Ana logous ly ,  i = 1 
implies k ~< n -  2. Then the route  (uk , . . .  ,u ,  = x , y  = v l , . . .  ,vi) is a d i rected 
cycle in G which con t rad ic t s  the a s sumpt ion  that  G is a chain graph.  [] 

Consequence 3.2. L e t  G be a chain graph and  u ~ v, x --+ y two different arrows 

in G. L e t  the graph K differs f r o m  G only in that  the edge (u, v) is a line in K. Then 

u ~ v ~- x --~ y in G i f f  the arrow x ~ y is a cyclic arrow in K. 

I ° 
t----- 

O O 
v y 

Fig. 5. u ~ v covers x ---* y. 
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Proof.  Supposing u ~ v _ x --* y by Lemma 3.1, there exists a directed path 
( U  = b / l , . .  • , /'/n = x , y  = V I , . . .  , V m = V) in G containing the a r row x ~ y where 
m + n  >~ 3. Then (u = ul . . . .  ,u,  = x , y =  v l , . . . , v m  = v,u)  is a directed cycle 

in K. 
Conversely, let x ~ y be a cyclic a r row in K. Thus,  there exists a directed 

cycle in K containing x ~ y. Since G does not  contain  a directed cycle and G 
and K differ only in the type o f  (u, v), the above-ment ioned directed cycle in- 
volves (u, v). The sections ( y , . . . ,  v) and (u , . . .  ,x) o f  the cycle are descending 
paths both in G and K then. [] 

Lemma 3.3. Let  G be a chain graph, u --~ v an arrow in G, and the graph H is 

made o f  G by converting all its arrows, which are covered by u ~ v in G 
(including u ~ v) into lines'. Then H is a chain graph. 

Proof. Let us t ransform G into H in two steps. First, we replace only the ar row 
u ~ v by a line and obtain a hybrid graph K. Consequence 3.2 says that an 
arrow x ~ y is a cyclic ar row in K iff it is covered by u ~ v in G but  differs f rom 
u ~ v. Second, we convert  all cyclic arrows in K into lines and obtain the graph 
H. By Consequence 2.5, H is a chain graph. [] 

3.2. Main results 

Lemma 3.4. Let  G be a chain graph and L the largest chain graph equivalent to G. 
Then ever), non-protected arrow in G is a line in L. 

Proof. Let u ~ v be a non-protected a r row in G. Let us create the graph H by 
convert ing all arrows in G, which are covered by u ~ v in G (including u ~ v) 
into lines. By Lemma 3.3, H is a chain graph. Every ar row in G covered by 
u --+ v is a non-complex ar row in G (otherwise u ~ v is protected in G). Thus, 
by Consequence 2.3, H is graph equivalent to G. Thus,  H is a chain graph 
equivalent to G, but strictly larger than G because (u, v) is a line in H. Since L is 
equivalent to H but larger than H, (u, v) is a line in L as well. [] 

Lemma 3.5. Let  G and H are equivalent cha& graphs and H >>, G. Then every 
protected arrow u ~ v in G is a protec ted  arrow in H. 

Proof.  Accord ing  to the assumption,  u ---+ v covers in G a complex ar row x ~ y. 
Because G and H are graph equivalent, x ~ y is also a complex ar row in H.  
Since u is an ancestor o f  x in G and H >~ G, u is an ancestor o f  x in H as well. 
Fo r  similar reasons y is an ancestor o f  v in H. In particular, there exists a 
directed route in H f rom u to v containing x ---, y. Thus  the edge (u, v) in H must  
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be an ar row from u to v as otherwise there exists a directed pseudo-cycle in H.  
Evidently, u ~ v covers x ~ y in H. 

Consequence 3.6. Let G be a chain graph and L the largest chain graph equivalent 
to G. Then u ~ v is an arrow in L (ff u --~ v is a protected arrow in G. 

Proof.  I f  u -~ v is a protected a r row in G, then u ~ v is an ar row in L by 
Lemma 3.5. The converse follows f rom Lemma 3.4. [] 

Theorem 3.7. A chain graph G is the largest chain graph of  the class o f  all its 
graph equivalent chain graphs iff ever}, arrow in G is protected in G. 

Proof. To show that every ar row in G is protected in G apply Consequence 3.6 
with G -- L. Conversely, suppose for a contradict ion that  every arrow in G is 
protected in G but there exists a chain graph H ~ G equivalent to G and larger 
than G. There exists an edge (u, v), which is an ar row in G and a line in H. 
According to the assumption u ~ v is a protected ar row in G. Lemma 3.5 
implies that u ~ v is an ar row in H as well, which contradicts  the fact that  
u - - v  in H. [] 

Theorem 3.7 gives an answer to the question whether a given chain graph is 
the largest chain graph o f  a class o f  equivalent chain graphs or not. In case the 
answer is negative we would like to be able to construct  the respective largest 
chain graph. 

Consequence 3.8. The set of  protected arrows is the same for all equivalent chain 
graphs. 

Proof.  It follows directly f rom Consequence 3.6. [] 

Theorem 3.9. Let G be a chain graph. Let H be the hybrid graph obtained from G 
by replacing all non-protected arrows in G by lines. Then H is the largest chain 
graph o f  the class of  chain graphs equivalent to G. 

ProoL Let L denote the corresponding largest chain graph. According to 
Theorem 3.7, an edge (u, v) in L is an ar row u --~ v in L iffit is a protected ar row 
in L. According to Consequence 3.8, an edge (u, v) in L is a protected ar row in L 
iff it is a protected arrow in G. Since G and L have the same underlying graph 
the graphs L and H must  coincide. [] 

Theorem 3.9 can be used as a basis for an evident a lgori thm construct ing the 
largest chain graph o f  the class o f  chain graphs which are equivalent to a given 
chain graph G: 
1. Find and indicate all non-protected arrows in G. 
2. Conver t  all indicated arrows into lines. 
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One can also consider the following algorithm which is based mainly on 
lemmas from the preceding subsection. 
1. Seek for a non-protected arrow in G. If there is no such arrow in G, then G is 

the largest chain graph. 
2. Convert the chosen non-protected arrow into a line and denote the resulting 

graph H. 
3. Seek for a cyclic arrow in H. If there is no such arrow in H, then put G _= H 

and return to 1. 
4. Convert the chosen cyclic arrow into a line and return to 3. 
Indeed, if there is no non-protected arrow in the chain graph G in Step 1, then 
G is the largest chain graph by Theorem 3.7. If there is a non-protected arrow 
in G, then it is a non-complex arrow and by Lemma 2.2 the graph H in Step 2 is 
equivalent to G. Repetitive application of  Steps 3 and 4 leads to a chain graph 
by Consequence 2.5. Consequence 2.3 implies that the resulting graph is 
equivalent to the original graph G. Note for explanation that if one converts in 
Step 2 a protected non-complex arrow into a line, then a complex arrow in G 
becomes a cyclic arrow in H (see Consequence 3.2). Thus, the resulting graph 
after Steps 3 and 4 is then a chain graph which is not equivalent to the original 
graph G. 

4. Catalog of the largest chain graphs 

The goal of this section is to give a catalog of all largest chain graphs over n 
vertices, 2 ~< n ~< 5, together with the induced independency models. Since is- 
omorphic graphs need not be repeated just one representative is given for each 
equivalence class of  isomorphic graphs. Every independency models induced 
by a graph in the catalog is recorded in the form of an encoded list of  repre- 
sented elementary triplets. 

4.1. Preliminaries 

To help the reader get a picture, we give some numbers below. 

Lemma 4.1. The number of all hybrid graphs over n vertices is given by the 
formula 4(~). 

Proof. Let us order the set of vertices into a sequence u l , . . . ,  u,,. The number of  
all ordered pairs (u,, uj), i < j is then (2)' In a hybrid graph, for every such pair 
of  vertices just one of  the following possibilities occurs: line, arrow, reverse 
arrow or non-edge. [] 
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Lemma 4.2. The number o f  all elementary triplets over n variables is 
n • (n - 1) • 2 "-2. The number o f  bits needed to encode a semi-graphoid over n 
variables is ("2)" 2" 2. 

Proof. The number of  all ordered pairs of distinct elements of an n-element set 
is n.  ( n -  1). Supposing we have chosen the first two components of an 
elementary triplet it remains n - 2 variables. The number of  all subsets of that 
(n - 2)-element set is 2 ~-2. However, to record a semi-graphoid J / / in  a form of 
a list of elementary triplets (see Lemma 2.7) one does not need to reserve in 
memory of a computer bits for all elementary triplets. Since (x, y lW) ¢ ~# iff 
(y, xlW) c .,,# it suffices to allocate just one bit for such a pair of  'mutually 
symmetric' triplets. [] 

Table 1 gives some numbers of  graphs over n vertices, 2 ~< n ~< 5, which were 
obtained by a computer program. In the table, LCG means 'largest chain 
graph', DAG 'directed acyclic graph' and UG 'undirected graph'. Note that we 
do not know the exact numbers of  those graphs for n ~> 6, except for chain 
graphs (28903216) and largest chain graphs (1853976) over 6 vertices. 

From every pair of mutually symmetric triplets over {a, b, c, d, e} we choose 
that one whose first component precedes the second component in the sequence 
a, b, c, d, e. Table 2 encodes these elementary triplet into numbers. To spare 
space, we refer to a particular elementary triplet by this number in sequel. For 
example, the number 45 refers to the triplet (d, elc ). In the table, ab means 
{a,b}. 

4.2. The catalog 

To keep the size of the catalog in reasonable limits and not to lose relevant 
information, the catalog contains only one item for every class of  isomorphic 
graphs. 

Table 1 
Some numbers 

Number of vertices 2 3 4 5 

Number 
Number 
Number 
Number 
Number 
Number 

of hybrid graphs 4 64 4096 1048576 
of chain graphs 4 50 1688 142624 
of LCGs 2 11 200 11519 
of LCGs, which are equivalent to a DAG 2 11 185 8782 
of LCGs, which are equivalent to an UG 2 8 64 1024 
of LCGs equivalent both to an UG and a DAG 2 8 61 822 

0 0 12 2535 Number of LCGs, which are not equivalent to a DAG 
or an UG 

Number of non-isomorphic largest chain graphs 
Number of bits needed to encode a semi-graphoid 

2 5 22 181 
1 6 24 80 
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Table 2 
Elementary triplets over {a, b, c, d, e} 

223 

0 l0 20 30 40 50 60 70 

o <o, blO> <~,cld> <a,dlbc> (a, dle ) (c, ela) (a, dlbe } <b, elad ) <a, blcde) 
1 (a,c!O) <a, dIb ) (b,c]ad> (b,c[e> (c, elb ) (a,d[ce'; <b, elcd } (a,clbde) 
2 (b, clO) (a, d[c> (b, dlac) (b, die ) (c, eld } (a, elbc) (e, diae } (a, dlbce) 
3 <a,b[c) {b,c]d> (c,d]ab) (c, dle ) (d, ela) (a, elbd } (c,d[be) (a,elbcd) 
4 (a, clb) (b, dla) (a, elO) (a, elb) (d, elb) (a, elcd'; <c, e[ab) (b, clade > 
5 (b, cla ) (b, dlc ) (b,e[O> (a, elc ) (d, elc } (b, clae ) (c,e[ad> (b,dlace t 
6 (a, d]0) (c, d[a) (c, el0> (a, e[d) (a, blce ) <b, clde ) (c, e[bd> (b, e]acd} 
7 (b,dpO) (c, dlb ) (d, elCJ) (b,e]a) (a, blde ) <b, dlae',, (d, elab) (c, dla~e> 
8 (c, dlO) (a, blcd> (a, ble ) (b, e[c) (a, c]be) (b, d]ce~ (d, e[ac) (c, e]abd) 
9 (a, bid> (a, clbd} (a, cle ) (b, eld> (a, clde ) (b, e]ac) (d, e[bc) (d, elabc> 

Q I M 7" 

base 

Fig. 6. Format of  items of  the catalog. 

Fig. 6 explains the format of every item of the catalog. It consists of the 
picture of the largest chain graph, the serial number (S), the number of ele- 
ments of the class of graph equivalent chain graphs (Q), the number of is- 
omorphic classes (I), the codes of elementary triplets from Table 2 which 
belong to the corresponding induced independency model (base) ,  and the 
number of elements of this base (M). The symbol in the position T indicates a 
special property: T - - D A G  means that the equivalence class contains a di- 
rected acyclic graph, T = • means that the class does not: contain any directed 
acyclic or undirected graph, no symbol in the position T means that neither of 
these two possibilities occurs. Note that the equivalence class contains an 
undirected graph iff the picture does not contain an arrow. 

Thus, for a given chain graph G there exists I .  Q chain graphs, which are 
equivalent to a graph isomorphic to G. 

4.2.1. Ca ta log  o f  L C G s  over  two  vert ices 

I 

® @ 

1 1 1 DAG 2 

@ 6) 

3 1 0 DAG 
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4.2.2. 

1 ® 

@ ® 

3 

fo 
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Catalog of LCGs over three vertices 

1 1 6 DAG 

0-5 

8 3 1 DAG 

13 1 0 DAG 

2 3 3 4 DAC 
@ 

@ ® 
1 , 2 , 4 , 5  

1 3 1 DAG 

4.2.3. 

1 
® @ 

@ @ 

3 

Catalog of LCGs over four vertices 

1 I 24 DAG 

0-23 

8 12 14 DAG 

5-8, 11, I2, 14 17, 20-23 

5 20 4 6 DAG 

5, 14, 16, 21 23 

7 1 4 6 DAG 

2, 7, 8, 13, 15, 17 

9 3 16 DAG 

O, 1, 3~ 4, 7 10, 14--19, 22, 23 

9 

II 
I I  32 12 4 DAG 

14, 16, 22, 23 

2 3 6 20 DAG 

@ ® 

@ @ 

4 

6 

l ,  2, 4-8, 10-17, 1~23  

1 12 14 DAG 

2, 6-8, l l -17 ,  20, 22, 23 

2 12 5 DAG 

2, 14, 16, 22, 23 

8 13 4 12 DAG 

6-8, 11, 12, 14-17, 20, 22, 23 

I0  

12 

20 12 7 DAG 

4, ]4, 16, 17, 19 ,22 ,23  

3 24 7 DAG 

4, 7, fl, 15, 17, 19, 23 
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13 

15 

17 

k{ 
19 

k{ 
21 

X 

3 12 4 DAG 

7, 8, 15, 17 

2 24 2 DAG 

7, 23 

40 6 1 DAG 

8 12 1 DAG 

3 6 1 DAG 

14 

16 

18 

2O 

:< 
22 

1 12 3 * 

7, 18, 23 

17 3 2 

18, 23 

8 12 2 DAG 

17, 18 

1 6 2 DAG 

O, 23 

75 1 0 DAG 

4.2.4. 

1 ® 

@ 

® ® 

3 ® 

7 @ 

Catalog o f  LCGs over f i v e  vertices 

1 1 80 DAG 

0-79 

8 30 60 DAG 

5-8, 11, 12~ 14-17, 20-27, 30, 

32-45, 50-55, 57 69, 72-79 

20 20 44 DAG 

5, 14, 16, 21-.27, 34-45, 52 55, 57, 

59-62, 64 69, 73-79 

1 20 44 DAG 

2, 7, 8, 13~ 15, 17, 24 27, 31-45, 

52-54, 56, 58-61, 63-69, 73, 76, 

78, 79 

2 @ 

® @ 

4 ® 

3 10 72 DAG 

I~ 2, 4-8, I0-17,  19 27, 29-45, 

48-69, 71 79 

1 30 60 DAG 

2, 6-8, 11--17, 20, 22 27, 30-45, 

50 54, 56-69, 72, 73, 75-79 

2 60 42 DAG 

2, 14, 16, 22--27, 31, 34-45, 52 54, 

57, 59-62, 64 69, 73, 75 79 

48 5 24 DAG 

5, 14, 16, 21-23, 37, 40, 43, 55, 57, 
59, 60, 62, 64, 65, 67, 68, 74 79 
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9 @ 
I I  

?: 

4 30 21 DAG 

2, 14, 16, 22, 23, 37, 46, 43, 57, 

59, 66, 62, 64, 65, 67, 68, 75-79 

I 5 24 DAG 

2, 7, 8, 13, 15, 17, 25-27, 31-33, 
38, 39, 41, 42, 44, 45, 56, 56, 61, 

63, 66, 69 

9 15 64 DAG 

0, i, 3, 4, 7-10, 14 19, 22-29, 
32-49, 52-54, 57 71, 73, 75-79 

32 60 40 DAG 

14, 16, 22-27, 34-45, 52-54~ 57, 
59-62, 64-69, 73, 75-79 

3 60 40 DAG 

7, 8, 15, 17, 24-27, 32-45, 52-54, 
58-61, 63-69, 73, 76, 78, 79 

48 60 28 DAG 

4, 14, 16, 17, 19, 22, 23, 37, 40, 
41, 43, 48, 57, 59, 60, 62-66, 71, 

75 79 

6 120 25 DAG 

4, 7, 8, 15, 17, 19, 23, 37, 40, 41, 
43, 46, 59, 60, 63-68, 71, 76-79 

3 30 52 DAG 

0, I, 3, 4, 7-10, 14-19, 22, 23, 
25-29, 32, 33, 37-42, 44-49, 

57-66, 69-71, 75-78 

3 60 28 DAG 

4, 7, 8, 15, 17, 19, 23, 25-27, 32, 
33, 38, 39, 41, 42, 44, 45, 48, 58, 

61, 63, 64, 66, 69, 71, 77, 78 

3 30 20 DAG 

7, 8, 15, 17, 25-27, 32, 33, 38, 39, 
41, 42, 44, 45, 58, 61, 63, 66, 69 

i •  
2 20 18 DAC,, 

2, 7, 8, 13, 15, 17, 37, 40, 43, 59, 
60, 64, 65, 67, 68, 76, 78, 79 

12 @ 

?: 

13 I0 56 DAG 

6-8, 11, 12~ 14-17, 20, 22-27, 30, 
32-45, 50-54, 57 69, 72, 73, 75 79 

20 60 46 DAG 

4, 14, 16, 17, 19, 22-27, 34 45, 48, 
52-54, 57, 59~69, 71, 73, 75 79 

3 120 46 DAG 

4, 7, 8, 15, 17, 19, 23-27, 32 45, 
48, 52-54, 58-61, 53-69, 71, 73, 

76-79 

24 30 52 DAG 

0, ], 3, 4, 7-10, 14-19, 22, 23, 25, 
26, 28, 29, 32, 33, 37-43, 46-49, 

57-68, 70, 71, 75 79 

76 30 20 DAG 

14, 16, 22, 23, 37, 40, 43, 57, 59, 
60, 62, 64, 65, 67, 66, 75 79 

6 60 16 DAG 

7, 8, 15, 17, 37, 40, 43, 59, 60, 64, 
65, 67, 68, 76, 78, 79 

4 60 25 DAG 

4, 14, 16, 17, 19, 22, 23, 27, 37, 
40, 41, 48, 67, 59, 60, 62-66, 71, 

75-78 

6 30 17 DAG 

14, 16, 22, 23, 27, 37, 40, 57, 59, 
60, 62, 64, 65, 75-78 

1 60 38 * 

7, 18~ 23 27, 32, 34 45, 52 54, 
59-61, 64-70, 73, 76 79 
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41 @ 
½ 

47 @ 

2 120 36 DAG 

7, 23 27, 32, 34-45, 52-54, 59-61, 
64-69, 73~ 76-79 

2 120 18 * 

7, 18, 23, 37, 49, 43, 59-61, 64, 65, 

67, 68, 79, 76 79 

1 60 11 * 

7, 23, 25, 27, 32, 39, 44, 64, 70~ 
77, 78 

1 60 26 DAG 

0, 7, 9, 14, 16, 22, 23, 25, 27, 28, 
32, 37, 39, 40, 44, 47, 57~ 59, 60, 

62, 64, 65, 75-78 

40 30 34 DAG 

23-27, 34-45, 52-54, 59 61, 
64-69, 73, 76-79 

8 60 34 DAG 

17, 24-27, 34-45, 52 54, 59-61, 
63~9, 73,76, 78, 79 

76 60 22 DAG 

11, 17~ 25, 23, 37, 40, 43, 44,50, 
59, 60, 63-65, 67-69, 72, 76-79 

96 60 14 DAG 

23, 37, 40~ 43, 59, 60,64, 65, 67, 
68, 76-79 

16 69 13 DAG 

17, 37, 46, 43, 59, 60, 64, 65, 67, 
68, 76, 78, 79 

8 120 22 DAG 

11, 17, 20, 23, 25-27, 38, 39, 41, 
42, 44, 45, 50, 61, 63, 66, 67, 69~ 

72, 77, 79 

8 60 28 DAG 

0, 7, 9~ 14, 16, 22, 23, 25, 28~ 32, 
37, 39, 40, 43, 47, 57, 59, 60, 62, 

64, 65 67, 68, 75-79 

4 121) 15 DAG 

7, 23, 37, 46, 43, 59, 60, 64, 65, 
67 68, 76-79 

2 60 I0 DAG 

7, 23, 25, 27, 32, 39, 44, 64, 77, 78 

4 •  
48 60 31 DAG 

3, II, 12, 17, 18, 20, 23, 37, 38, 
40, 43 46, 59, 51, 59-61, 63-65, 

67-70, 72, 76-79 

4 •  
40 60 17 

18, 23, 37, 40, 43, 59-61, 64, 65, 
67, 68, 70, 76-79 

4 •  
16 60 16 DAG 

17, 18, 37, 40, 43, 59-61, 64, 65, 
67, 68, 70, 76, 78, 79 

4 •  
8 120 31 DAG 

3, i i ,  12, 17,[8, 20, 23, 25-27, 38, 
39, 41, 42, 44-46, 50, 51, 59, 61, 

63, 66-76, 72, 76, 77, 79 

i •  
8 60 17 DAG 

17, 18, 25-27, 38, 39, 41, 42, 44, 
45, 61, 63, 66, 69, 70, 76 

38 8 60 36 DAG 

( ~ / ~  17, 18, 24-27, 34-45, 52-54, 
59-61, 6370, 73, 76, 78, 79 

16 17 15 36 

( ~ / ~  18, 23 27, 34-45, 52-54, 59-61, 
64-70, 73, 76-79 
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53 

57 

8 60 14 DAG 

17, 25-27, 38, 39, 41, 42, 44, 45, 

61, 63, 66, 69 

20 120 17 DAG 

9, 23, 37, 39, 40, 43, 47, 59, 60, 

64, 65, 67, 68, 76-79 

6 120 17 DAG 

1l, 17, 20, 23, 25, 27, 39, 44, 50, 

63, 64, 67, 69, 72, 77-79 

6 120 8 DAG 

23, 25, 27, 39, 44, 64, 77, 78 

4 120 16 DAG 

11, 17, 20, 23, 26, 44, 50, 59, 63, 

67 69, 72, 76, 77, 79 

2 60 i i  * 

23, 26, 48, 59, 63, 67, 68, 71, 76, 

77, 79 

4 120 8 DAG 

23, 26, 59, 67, 68, 76, 77, 79 

3 60 17 DAG 

O, 23, 25, 28, 37, 40, 43, 59,60, 

64, 65, 67, 68, 76 79 

4 60 7 DAG 

23, 25,64, 67, 77-79 

3 30 34 DAG 

8, 24-27, 33 45, 52 54, 59-61, 

64-69, 73, 76, 78, 79 

½ 

½ 

9 60 31 DAG 

0, 6, 9, 11, 17, 20, 23, 25, 27, 28, 

30, 37, 39, 40, 43, 44, 47, 50, 59, 
60, 63-65, 67~59~ 72, 76-79 

3 120 20 * 

IL, 17, 20, 23, 25, 27, 39, 44, 46, 

50, 51, 63, 64, 67, 69, 70, 72, 
77 79 

3 120 9 * 

23, 25, 27, 39, 44, 64, 70, 77, 78 

3 120 13 DAG 

9, 23, 25, 27, 39, 44, 47, 60, 64, 

65, 76-78 

1 60 16 * 

18, 23, 26, 47-49, 59, 61, 63, 67, 

68, 70, 71, 76, 77, 79 

2 120 11 * 

18, 23, 26, 59, 61, 671 68~ 70, 76, 

77, 79 

1 30 36 DAG 

O, 23 28, 34-45, 52-54, 59 61, 

64-69, 73, 76-79 

1 60 8 * 

23, 25, 64, 67, 70, 77 79 

1 120 8 * 

23, 25~ 47, 64, 67, 77 79 

20 60 17 DAG 

16, 18, 37, 40, 43, 59-62, 64, 65, 

67, 68, 70, 76, 78, 79 
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½ 
½ 

20 60 14 DAG 

16, 37, 40, 43, 59, 60, 62, 64, 65, 
67, 68, 76, 78, 79 

6 60 13 DAG 

8, 37, 40, 43, 59, 60, 64, 65, 67, 
68, 76, 78, 79 

1 60 8 * 

8, 26, 27, 33, 42, 45, 72, 76 

2 120 11 DAG 

16, 18, 26, 43, 59, 61, 62, 68, 70, 
76, 79 

1 60 17 DAG 

8, 18, 25-27, 33, 38, 39, 41, 42, 44, 
45, 61, 66, 69, 70, 76 

1 60 14 DAO 

8, 25-27,33, 38, 39, 41, 42, 44, 45, 
61, 66, 69 

108 I0 6 DAG 

23, 64, 67, 77-79 

20 20 6 DAG 

17, 41, 44, 63, 66, 69 

8 60 6 * 

23, 44, 64, 70, 77, 78 

8 60 6 DAG 

23, 44, 47, 64, 77, 78 

7• 
2 60 16 DAG 

8, 18, 37, 40, 43, 59-61, 64, 65, 67, 
68, 70, 76, 78, 79 

7• 
1 60 31 DAG 

3, 6, 8, 12, 16, 18, 20, 25 27, 30, 
33 38 39, 41-46, 51, 59, 61, 62, 

66, 68-70, 72, 76, 79 

7• 
1 ]20 17 DAG 

6, 8, 12, 16, 26, 27, 30, 33, 42, 43, 
45, 51. 59, 62, 68, 76, 79 

2 120 8 DAG 

16, 26, 43, 59, 62, 68, 76, 79 

2 60 7 DAG 

8, 26, 27, 33, 42, 45, 76 

24 10 7 

23, 6,1, 67, 70, 77 79 

20 20 7 DAG 

17, 41, 44, 63, 66, 69, 70 

17 30 7 * 

23, 47, 64, 67, 77-79 

16 6(} 5 DAG 

23, 44, 64, 77, 78 

8 30 7 DAG 

23, 28, 64; 67, 77-79 
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3 30 6 * 

8, 64, 67, 70, 78, 79 

9• 
2 60 6 DAG 

8, 41, 44, 66, 69~ 70 

9• 
1 10 7 DAG 

0, 23, 64, 67, 77-79 

½ 

99 

1 10 7 DAG 

8, 26, 27, 33, 42, 45, 70 

75 5 32 DAG 

24-27, 34-45, 52-54, 59-61, 
64-69, 73, 76, 78, 79 

76 60 24 DAG 

4, 11, 19, 20, 37, 40, 41, 43, 44, 
48, 50, 59, 60, 64-69, 71, 72, 76, 

78, 79 

176 20 12 DAG 

37, 40, 43, 59, 60, 64, 65, 67, 68, 
76, 78, 79 

13 60 15 DAG 

20:25 27, 38~ 39, 41, 42~ 44, 45, 
6l, 66, 69, 72, 79 

6 120 18 DAG 

0, 26, 25, 28, 37, 40, 43, 59, 60, 
64, 65, 67-69, 72, 76, 78, 79 

2 120 11 * 

20, 25, 46, 51, 64, 67, 69, 70, 72, 
78, 79 

½ 6 30 5 DAG 

8, 64, 67, 78, 7(1 

2 60 5 DAG 

8, 4i, 44, 66, 69 

1 30 6 DAG 

8, 18, 64, 67, 78~ 79 

3 i0 6 DAG 

8, 26, 27, 33, 42, 45 

1• 
4 120 8 DAG 

26, 25, fi4, 67, 69, 72, 78, 79 

1• 
9 60 15 DAG 

0, 25, 28, 37, 40, 43, 59, 60, 64, 
65, 67, 68, 76, 78, 79 

1• 
13 20 12 DAG 

25-27, 38~ 39, 41, 42, 44, 45, 61, 
66, 69 

i• 
13 60 24 DAG 

4, 11, 19, 20, 25-27, 38, 39, 41, 42, 
44, 45, 48, 50, 61, 64, 66, 67, 69, 

71, 72, 78, 79 

1• 
92 60 15 DAG 

20, 37, 40, 43, 59, 60, 64, 65, 
67 69, 72, 76, 78, 79 

98 39 10 48 DAG 

( ~  O, 1, 3, 4, 6, 9-12, 18-20, 25-30, 
37-51, 59-6], 64-72, 76, 78~ 79 
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1 60 6 * 

25, 64, 67, 70, 78, 79 

9 60 24 DAG 

1, 6, 10, 12, 26, 27, 29, 30, 37, 40, 
42, 43, 45, 49, 51, 59, 60, 64, 65, 

67, 68, 76, 78, 79 

3 60 9 * " 1 1 4 ( ~  

26, 27, 42, 45, 48, 50, 71, 72, 76 

6 60 5 DAG 

25, 64, 67, 78, 79 

20 120 15 DAG 

12, 37, 40, 43, 45, 51, 59, 60, 64, 
65~ 67, 68, 76, 78~ 79 

3 120 6 * 

26, 27, 42, 45, 72, 76 

3 120 I0 DAG 

12,26, 27, 42, 45, 51, 59, 68, 76, 
79 

120 15 16 DAG 

5, 14, 21, 22, 40, 43, 55, 57, 64, 
65, 67, 68, 74, 75, 78, 79 

21 12 15 

19, 22, 46, 47, 49, 58, 64, 66-68, 
70, 71, 75, 78, 79 

108 60 7 DAG 

22, 64, 67, 68, 75, 78, 79 

20 120 10 DAG 

15~ 19, 41, 44, 45, 58, 6fi, 69, 7I, 
78 

8 60 11 * 

19, 22, 28, 64, 66 68, 71, 75, 78, 
79 

53 30 5 

64, 67, 70, 18, 79 

6 60 5 DAG 

26, 27, 42, 45, 76 

9 15 16 DAC, 

2, 7, I3, 15, 26, 27, 31, 32, 41, 42, 
44, 45, 56, 58, 66, 69 

48 60 10 

19, 22, 64, 66 68, 71, 75, 78, 79 

20 60 15 DAG 

15, 19, 41, 44-47~ 49, 58, 66, 
69-71, 75, 78 

20 60 7 DAG 

15~ 41, 44, 45, 58, 66, 69 

16 120 8 DAG 

22, 28, 64, 67, 68, 75, 78, 79 

192 30 4 DAG 

134, 67, 78+ 79 
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32 120 10 DAG 

20, 41, 44, 46, 51, 66~ 69, 70, 72, 

79 

32 60 5 DAG 

41, 44, 66, 69, 70 

l• 
24 30 5 DAG 

28, 64, 67, 78, 79 

8 120 6 * 

12, 64, 67, 76, 78, 79 

1 60 11 * 

O, 19, 22, 64, 66-68, 71, 75, 78, 79 

1•  
40 30 5 DAG 

I8, 64~ 67, 78~ 79 

3 60 15 DAG 

10, 15, 26, 27, 42, 45-47, 49, 58, 

65, 69-71, 75 

3 120 8 BAG 

10, 26, 27, 42, 45, 49, 65, 75 

6 I20 5 DAG 

26, 27, 42, 45, 75 

3 30 5 DAG 

26, 27, 42, 45, 70 

32 120 7 DAG 

20, 4l, 44, 66, 69, 72, 79 

32 60 4 DAG 

4l, 44, 66, 69 

6 60 8 DAG 

1, 6, 10, 12, 64, 67, 78, 79 

16 120 5 DAG 

12, 64, 67, 78, 79 

2 120 8 DAG 

O, 22, 64, 67, 68, 75, 78, 79 

3 30 5 DAG 

O, 64, 67, 78, 79 

3 60 6 * 

26, 27, 42, 45, 71, 75 

3 120 10 DAG 

15, 26, 27, 42, 45, 46, 58, 69, 70, 

75 

3 120 7 DA(-; 

15, 26, 27, 42, 45, 58, 69 

9 30 4 DAG 

26, 27, 42, 45 
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1 120 6 * 

25, 46, 64, 67, 78, 79 

2 120 6 * 

1, 64, 67, 70, 78, 79 

17 60 5 * 

46, 64, 67, 78, 79 

8 120 3 * 

41, 70, 79 

8 120 3 DAG 

41, 46, 79 

2 120 6 DAG 

1, 18, 64, 67, 78, 79 

2 60 3 * 

26, 74, 79 

3 60 3 * 

26, 70, 79 

2 120 3 DAG 

26, 69, 71 

2 120 2 DAG 

26, 69 

4 60 8 DAG 

l, 20, 64, 67, 69, 72, 78, 79 

6 120 5 DAG 

l, 64, 67, 78~ 79 

1• 
8 60 3 * 

41, 71, 79 

16 120 2 DAG 

41, 79 

I 120 6 * 

1, 46, 64, 67, 78, 79 

8 60 5 DAG 

3, 64, 67, 78, 79 

I• 
I 60 3 * 

26, 56, 69 

6 60 2 DAG 

26, 79 

I• 
1 60 3 DAG 

26, 46, 79 

I• 
2 120 3 DAG 

26, 69, 70 
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82 15 2 

74, 79 

248 10 1 DAG 

79 

40 30 1 DAG 

69 

16 60 2 DAG 

45, 74 

8 30 2 DAG 

45, 70 

1 30 2 DAG 

2, 69 

541 1 0 DAG 

17 15 2 * 

56, 69 

40 60 2 DAG 

69, 71 

8 30 2 DAG 

0, 79 

8 60 2 DAG 

45, 56 

24 30 i DAG 

45 

13 I0  1 DAG 

27 

5. Conclusions 

In this paper we gave a graphical characterization of the largest chain graphs 
of classes of Markov equivalent chain graphs which is quite clear and 
straightforward. The arrows in the largest chain graph can be recognized as 
special 'protected' arrows in every graph from the equivalence class (Conse- 
quence 3.6). What one needs to examine are some special paths in the graph - 
complexes and descending paths between certain vertices. It provides us with a 
simple method for construction of the largest chain graph on the basis of a 
given chain graph from the equivalence class (Theorem 3.9). 
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The given catalog of the largest chain graphs gives us an idea about the 
number of chain graph models over two, three, four and five variables. While 
in case of four variables one can check manually that the catalog is exhaustive, 
it is almost impossible in case of five variables. We do not know a general 
formula for the number of chain graph models over a given number of vertices. 
It remains an open question. 

Let us note that one can recognize directly on the basis of the largest chain 
graph whether the induced independency model can be described either by an 
undirected or by a directed acyclic graph. Of course, it is an undirected graph 
model iff the largest chain graph is an undirected graph. An elegant charac- 
terization of chain graphs equivalent to directed acyclic graphs is given in Ref. 
[1], Proposition 4.2 (it appeared earlier in Ref. [9] without proof). It follows 
from that characterization that the models which can be described both by 
undirected and by directed acyclic graphs are just those models whose largest 
chain graph is a decomposable undirected graph. 

We have indicated the directed acyclic graph models in our catalog by the 
mark DAG. We were also interested in pure chain graph models, that is models 
which cannot be described either by an undirected or by a directed acyclic 
graph. They are indicated by an asterisk in the catalog. In case of four variables 
one has 6 percent of pure chain graph models (12 of 200) while in case of five 
variables one has already more than 22 percent of pure chain graph models! 
One can expect that their proportion increases with the number of variables 
( =  vertices). Perhaps it is a good argument in favor of chain graphs: they 
certainly allow one to describe a much wider class of conditional independence 
structures in comparison with classic graphical approaches. 
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